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Topologicαl Duality for Diagonalίzable Algebras

CLAUDIO BERNARDI* and PAOLA D'AQUINO

Introduction Diagonalizable Algebras have been introduced by Magari in
[9] to provide an algebraic treatment of logical incompleteness phenomena.
We recall that a Diagonalizable Algebra (briefly a DA) is a structure 21 =
<y4; + , ,ϊ>,0,l,τ> where <^4; + , ,Ϊ>,0,1> is a Boolean Algebra,1 and r is a unary
operation such that the following identities hold:

rl = 1; τ(p-q) = τp-τq; τ{vτp + p) = p.

Sometimes it is more convenient to consider the operation σ = vτv instead
of r, because σ is a hemimorphism in the sense of Halmos ([8]).

If a theory T possesses a formula Theor(ι ) which numerates the set of
theorems and satisfies the usual derivability conditions, we get the DA of T
endowing the Lindenbaum Algebra of T with the operation r defined as follows:
τ[p] = [Theor(/?)]. In this way, many logical features of Γcan be discussed in
purely algebraic terms. See [4] and [14] for general surveys about DA's and the
corresponding modal logic GL.

A representation theorem for DA's has been obtained in [10] by applying
Halmos' duality for hemimorphisms. More precisely, starting from a DA <3ί;τ>,
a Boolean relation (R can be defined on the Stone space X of 81 as follows:

x (R y iff τp G x => p Gy V/? G 81 [iff σy c x]

and (R can be proved to be transitive and relatively reverse well-founded (that
is, every nonempty clopen set in X has a maximal element). Conversely, let a
Boolean relation (R be given on the Stone space X of a Boolean Algebra 31; if
(R is transitive and relatively reverse well-founded, the operation r defined on
31 as follows:

(1) τp = [x/x (R y for no y G vp] (that is, σp = [x/x (R y for some y G p})
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satisfies the identities of DA's. (X,(R) is sometimes called the dual space of the
DA 81.

On the other hand, the Stone duality provides a topological representation
for Boolean Algebras. In this direction, some recent papers ([6],[5]) suggest a
topological representation of the operation σ: namely, another topology is intro-
duced in a dense subset of X and σ is interpreted as the derived set operator with
regard to the new topology. In [6] the key topological concept is the following:
a topological space S is said to be scattered if every nonempty subset of S con-
tains an isolated point. (Note that every subspace of a scattered space is in turn
scattered.)

However, as we shall see in Section 2, both the topologies discussed in [6]
and [5] are not defined on the whole Stone space X; moreover, a topological
characterization of DA's is not supplied.

It is just in order to characterize DA's in a topological way that we slightly
modify the topology defined in [5] and introduce the notion of relatively scat-
tered bi-topological space (Definition 2). In fact, this notion allows us to con-
struct a topological duality for DA's, that is, to translate into topological terms
the algebraic concepts of homomorphism (Corollary 3), r-filter and quotient
algebra, subalgebra, and direct product (Section 6).

Some applications of the topological representation are given in Section 7.
One of these is concerned with the topological concept of sheaf (Theorems 17
and 18). In this regard, we add that a similar technique could be useful in other
situations —in particular to get a topological characterization of Hyperdi-
agonalizable Algebras (see [3] for definition).

Among other things, some results are proved about reflexive points (The-
orems 4, 7, 8, 10 and Corollary 1).

Since we refer to two topologies defined on the same set (the Stone topol-
ogy and the one which induces σ), when using a topological term we usually
specify which topology we are considering. However, a clopen set always denotes
a clopen set in the Stone topology, and we identify it with the corresponding ele-
ment of the algebra.

We conclude this section by recalling three known examples of DA's, to
which we will often refer in the following.

Example 1 (see [10]): Let Y= {xn/n G ω | U [yn/n G ω}. Define:

xn (R xm iff n > m; yn (R ym iff n < m;
yn (R xm for every n,m\ xn (R ym for no n,m.

Let 21 be the Boolean Algebra of finite and cofinite subsets of Y. We get
a DA % defining the operation r as in (1). Note that (R is not well-founded on Y.

Example 2 (see [10]): Consider the Boolean Algebra (P(ω). Let u be a fixed non-
principal ultrafilter and u0 be the principal ultrafilter generated by {0}. Define
(R to be just {(uo,u)} and call 33 the corresponding DA.

Example 3: Let Y= {xn/n G ω j U [yn/n G ω). Define:

xn (R xm iff n > m; yn (R xm for every n,m;
*n & ym for no A2,m; yn (R ym for no n,m.
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We call © the DA which is obtained introducing in (P(Γ) the operation r
defined as in (1).

1 σ as a derived set operator In this section we examine some previous topo-
logical results about DA's.

The first step is due to H. Simmons who in [13] studies logical problems
in topological terms. Actually, he does not consider DA's (which were not
defined until the following year), or topological spaces, either. Simmons
introduces pseudo-topological spaces (A;+,-,v,0,l,d), that is, Boolean Algebras
which are endowed with a unary operation d that satisfies the following iden-
tities: dO = 0; d(p + q) = dp + dq\ ddp < dp.

If we interpret the operation d as the derived set operator, then we can still
call dp the "set" of all accumulation points of an element p of 21. Similarly, con-
sidering is(p) — p — dp, we obtain the "set" of all isolated points of p. In this
sense, if is(p) Φ 0 for every/? E 21 (with/? Φ 0) then <2I,tf> is called scattered.

If 21 is the Lindenbaum Algebra of a suitable theory T and dp is defined
to be -ιTheor(=ψ)9 then {%,d) is a pseudo-topological space. Simmons does
not consider algebraic aspects at all. The logical properties of the theory Γare
directly translated into topological properties of the associated pseudo-
topological space. For instance, if the theory satisfies Lob's property (if T h
Theor(a) -> a then TV a) then the associated pseudo-topological space is scat-
tered. Therefore, using Simmons' terminology, we could say that a DA is a scat-
tered pseudo-topological space.

Some years later, Russian and Polish mathematicians studied DA's from
a topological point of view, obtaining results somewhat similar to the above
mentioned results by Simmons.

The link between DA's and scattered spaces is pointed out by Esakia in [6],
for the first time in explicit terms. The operation σ defined in a DA is interpreted
as the derived set operator in a suitable topological space. The main result is the
following:

Proposition 1 Let (X, T) be a scattered topological space; if d is the derived
set operator, then <(P (X) d) is a DA. Conversely, if X is a topological space such
that {(9{X);d) is a DA, then X is scattered.

Of course, the previous property characterizes only the DA's of the form
(9(X) (in fact, X is not the dual space of the algebra (P(X)). Actually, as we
shall see in Section 3, this result cannot be generalized to all DA's.

The idea of interpreting the operation σ as a derived set operator has been
developed by Busrkowski and Prucnal in [5]. Their construction applies to all
DA's, but it does not refer to scattered spaces. The principal result is the fol-
lowing

Proposition 2 For every DA 21 there exists a topological space X such that
21 is embeddable in (P(X) and dp = σp for every p G 21.

The proof depends on two lemmas.

Lemma 1 Every DA 21 is embeddable in an atomic DA φ .
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Lemma 2 For every atomic DA 35 there exists a topological space (Y,T*)
such that 35 is embeddable in C?(Y) and σp = dp for every p E 2).

The set Fthat is mentioned in Lemma 2 is the set of all atoms of 35. An
open basis for T* is the set of all subsets of the form p rp. We can extend the
topology T* to the whole dual space X of any DA 21 considering the same
basis. In this way, every open set //is "(R-hereditary", in the following sense:
if x E H and x(Ry then yGH. (If the algebra is finite this property characterizes
the open sets of T*.)

In [11] an interior operator /is defined on a DA 21 in the following way:
Ip =p-τp for every p E 21. The operator /is not defined on the whole dual space
X of 21, but only on the clopen sets of X. It is of interest to notice that if we
extend the operator / to the whole dual space X putting IH = U {p rp/p rp c
//} for every H <Ξ χ9 then the operator / induces the same topology T*.

2 The topology T In this section, we introduce and discuss a topology T,
defined on the set of ultrafilters of a DA and similar to T*, but handier in var-
ious respects.

Definition 1 Let 2ί be a DA and let (X,(R) be its dual space. A subset H of
X is open in T if H is (R-hereditary, that is x (R y and x E H imply y E H. (It
is trival that T is a topology.)

Therefore the open sets in (X, T) are exactly the subsets of X of the form
H U (RH for some H^X\ similarly, the closed sets in (X, T) are exactly the sub-
sets of X of the form H U (R"1//.

Topologies induced by relations in this sense have been considered in dif-
ferent contexts, in particular to represent pseudo-Boolean Algebras (see, for
example [16]).

First of all, we show that the operation σ can be represented also by the
topology T.

Theorem 1 In each DA 21 we have σp — dp for every p E 21, where d is the
derived set operator in T.

Proof: Let x be an element of σp; by Lemma 7 of [2] there exists a maximal
element y in p (that is, an element y such that y (R z for no z E p) such that
x (R y. Each open set H of T containing x must contain y too; then xGdp (note
that x Φ y because y (jk y). Conversely, let x £ σp. The set H = (R{x] U {x} is
open in T and x E //, but (// — {x}) Π p = 0 ; hence x £ dp.

The previous statement can be expressed by the equality dp = (R~ιp. How-
ever, dH does not equal (R~ιH for each H <Ξ X: as an example, consider the
singleton of a point y such that j> (R y. On the other hand, called c the closure
operator in Tthe equality cH = HU dH = HU (R~ιHholds for every H^X.

Unlike Lemma 2 of [5], it is not necessary to require that the algebra is
atomic. From this point of view, the proof of Theorem 1 is much simpler than
the analogous proof in [5] which refers to the topology Γ*.

As we have seen, the two topologies T and T* play a similar role for a
topological representation of the operation σ. Actually, there are in general many
topological spaces such that σp = dp for every/? E 2ί. Let us discuss the situa-
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tion. First, although (X, T) induces σ, if we define the topology T* on X, as
at the end of Section 1, it does not work in general: consider the DA 93 intro-
duced in Example 2, where u G d\, but u £ σl = [u0]. In fact, in this case the
topologies T and Γ* are quite different, even if restricted to the subset Y of all
atoms of 93. Indeed, T\Y is discrete (and therefore it does not induce the oper-
ation σ), while in T*γ the singleton {u0] is not open. It is worth noticing that
T*γ coincides with the topology whose existence is guaranteed by Esakia's the-
orem, and that it induces σ.

In Remark 2 below we shall examine the connection between T and Esakia's
topology in a general framework.

As another example, consider the DA © (see Example 3). In this case, both
T* and Γ, restricted to the set of all atoms of 6, induce the operation σ (that
is, the derived set operators of T* and T coincide when applied to the subsets
which correspond to the elements of ©). On the other hand, T\γ and T*γ are
different from each other: the subset {xn/nGω} U [y0] is open in T\γ but not
in ΓjY.

In general, since every open set in T* is (R-hereditary (see Section 1), T*
is less fine than T. In fact, T* is less fine than any topology whose derived set
operator d satisfies the equality dp — op for every/? E 21; this is because the set
p rp = v(pp + vτp) = v{vp + σvp) = v{vp + dvp) is open.

Though T* and f are different, we can define T starting from T* in the
following way. Let Γ** be the topology generated by T* and in which the
intersection of open sets is always open: we claim that T = Γ**. It is trivial
that T** < T. Conversely, it suffices to show that each open set in T of the
form {x} U (R{x] is also open in Γ**. For every x E X the set {x} U (R{x) is

closed in the Stone topology T; hence {x} U (R{x] = f] Pi where each/?, is a
iei

clopen set of Γ. Now it is easily seen that {x} U (R{x) = Π/?/ = Πί/vφ,-);
hence {x} U (R{x) is open also in 7**.

Therefore T is the least fine topology satisfying the following two condi-
tions: σp = dp and the intersection of arbitrarily many open sets is in turn open.
This characterization of Γis deeply related to the equations:

c{y}= (f)σg) U{y} (1)

cH= U c{y}. (2)
y<=H

Indeed, the latter equation is equivalent to the fact that the union of arbi-

trarily many closed sets is closed (the proof is straightforward), while the former

says that the closure of a singleton is as large as possible (c{y\ is always con-

tained in ( P| σq) U {y] in every topology such that σp = dp). The equa-
\yeq I

tions (1) and (2) are of some interest, because, as it is readily seen, they allow
Γto be defined directly from σ with no reference to the relation (R.

Remark 1: We can compare Γwith the Stone topology T. Actually, the following
conditions can be easily proved to be equivalent: (1) T^ T; (2) (R = 0 ; (3) T
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is discrete; (4) τp = 1 for every/? G 21; (5) p-τp = p for every p G 2ί; (6) T is
3 i ; (7) f i s3 2 .

Remark 2: Of course, not every topology Γin a set 7 is induced by a relation
on 7in the previous sense. However, if (7, T) is a topological space, then we
can obtain another topological space (Z, T) which is strictly related to the given
one, but such that T is induced by a relation. More precisely: consider the
Boolean algebra (P(Y) and let Z be its dual space. We define a relation (R on
Z in the following way: x (R y iff for every A G (?(Y) if A G j> then GL4 G x
(where d is the derived set operator in T). Since d is a hemimorphism, the rela-
tion (R is Boolean (see [8]), and some topological properties of Γare translated
into properties of the relation (R. In particular, (R is transitive iff ddH c dH for
every H ' c Y.

Now, let Γbe the topology induced by the relation (R, that is, the topol-
ogy in which a subset H of Z is open if it is (R-hereditary. First of all, Γis less
fine than T\γ. Indeed, let AT be a closed set of T; from the definition of (R it is
trivial that (R~ιK c= K (where K is the subset of Z constituted by all ultrafilters
to which K belongs) and hence K is closed in (Z, T).

Even if in general Γ| γ is different from Γ, these two topologies are "equiv-
alent" in the sense that for every / / c 7we have dH = dH Π 7, that is, the
derived set operators d and d (of Γand T, respectively) essentially coincide. To
show that dH ^ dH D 7, consider an element x of dH. Let 8 = {G Π H -
{x} /G is an open neighborhood of x in T]. The set 8 has the f.i.p.; then there
exists an ultrafilter y of (P(Y) such that 8 £Ξ .y. Of course, // is an element of
jμ; let us show that dA G x for every 4̂ G 7, that is, JC (R j . Let A be an element
of y and let G be an open neighborhood of x in T; then ( G Π / / - ( x ) ) Π
A Gy. Hence, G Γ\A — {x} belongs to y and therefore it is not empty; we can
conclude x G dA. Thus we have proved that x G dH Π F. On the other hand,
dH Π Y c ΛF/. Indeed, let JC G Ji? Π 7 and let G be an open neighborhood of
x in T. The set G is open in f and hence (G - {x}) Π H Φ 0 . Let j> G (G -
{jt})Π//; we have ( G - {x}) Π //Gj> and so ( G - { x ) ) Π / / ^ 0 . Therefore
x belongs to rf//.

5 Relatively scattered bί-topological spaces Our aim is now to determine
topological properties which provide a characterization of DA's.

Notation: A bi-topological space (X\ Γ, T) is a set X on which two topologies
Γand fare defined.

Definition 2 A bi-topological space (X; T9 T) is said to be relatively scattered
if:
(1) each nonempty clopen set p of T is not dense in itself in T
(2) if p is a clopen set of Γ, then dp is in turn a clopen set of T (where d is the

derived set operator of T)
(3) ddp Q dp for every clopen set p of T.

We notice that Condition (3) appears as the direct translation of an iden-
tity of DA's; on the other hand, from a topological point of view, this require-
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ment is reasonable because many topological spaces satisfy it (for example, all
3i spaces).

Theorem 2 (First characterization) Let 21 be a DA; let (X; T) be the Stone
space of 21 and let T be the topology induced by the relation (R on X. Then the
bi-topological space (X; T, T) is relatively scattered.

Conversely, let (X; T) be a Stone space and let T be any topology on X
such that (X; T, T) is relatively scattered. Then the algebra 2t of all clopen sets
of T endowed with the derived set operator d of T is a DA.

Proof: (=>) Let p be a clopen set of T. In view of Theorem 1 we have that dp
is equal to op. Now the proofs of (1), (2), (3) are trivial.

(<=) We have to show that the derived set operator d of the topology T satis-
fies the following properties (see [10]): (a) d<2 - 0; (b) d(p + q) = dp + dq\ (c)
ddp <Ξ dp; (d) if /? <Ξ dp then/? = 0 (for allp,q clopen sets of T). Every derived
set operator satisfies (a) and (b). By our hypothesis (X; T, T) is relatively scat-
tered: so, (c) and (d) are trivial consequences of (3) and (1), respectively.

Theorem 3 (Second characterization) Let 21 be a DA then the bi-topological
space (X; T, T) (defined as in Theorem 2) satisfies the following properties:
(i) if p is a clopen set of T} then dp is in turn a clopen set of T (where d is the

derived set operator in T)
(ii) for each clopen set p of T and for each open set H of T, the set p Π H (if

nonempty) contains an element x which is isolated in cp = pΌ dp.
Conversely, let (X; T) be a Stone space and let T be any topology on X

such that (X; T, T) satisfies (i) and (ii). Then the Boolean Algebra of clopen sets
of T endowed with the derived set operator dofTisa DA. In other words, (i)
and (ii) characterize the relatively scattered bi-topological spaces.

Proof: (=>) The proof of (i) is trivial. Then let x be an element of p Π H, where
p is a clopen set of T and H is an open set of T. If x is maximal in p, then x is
the only element of the intersection of the open set 6i{x] U {x} and p; hence
x is isolated in cp. If x is not maximal in p, there exists a maximal element y of
p (see Lemma 7 of [2]) such that x (R y. The subset H is open in T and xG H:
thusj> E H. In this case ((R{^) U {y}) Πp = {y}; hencey is isolated in cp.

(<=) Let (X; T, T) be a bi-topological space which satisfies the properties
(i) and (ii). Obviously, d0 = 0 and d(p + q) = dp H- dq for all clopen sets p,q
of T. Let p be a nonempty clopen set of T. Consider the open set H = X; by
Condition (ii) there exists an isolated element y of p in cp. Therefore y is iso-
lated in p. As a consequence, we have that p $έ dp. Finally, let us prove that
ddp c dp for every clopen set p of T. Consider an element y of ddp; for every
open neighborhood G of y in T there exists an element z different from y such
that z E G Π dp. By Condition (ii) there is an element w G G Πp which is iso-
lated in cp. Then y must be different from w and so y E dp.

In general, the topological space (X; T) of a DA is not scattered. Actually,
consider the DA 21 in Example 1 and call X the set of all ultrafilters of 21. There
exists no topology T such that (X; T) is scattered and dp = op for every clopen
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set p in 21 (where J i s the derived set operator in T). Indeed, for every m G ω
let pm denote the subset {y0, »̂ w) of Y Each pm is an element of 21 and
dpm+χ = σpm+ι = pm. Define H to be (J pm (where each pm is regarded as a

subset of X) then dH = d [j pm^ \J dpm = H. Hence H is dense in itself.

We can conclude that the space (X; T) is not scattered.

4 Reflexive elements In this section, given a DA 21, we shall study a subset
Z of the dual space (X',6i) of 21 which is of some interest.

Definition 3 A subset W of X is said to be representative for the DA 21 with
respect to the relation (R if:
(1) Wis dense in X
(2) (R and (R| Wx w define the same operation r on 21, that is, rp Π W= {y G W

/y &\wxw x for no x G i>/? Π W) for every /? G 2ί.

If the DA 2ί is atomic, the set Y of all atoms of 21 is a dense subset of the
Stone space, but, in general, Ydoes not satisfy Condition (2)-see the DA S3 of
the Example 2 in which ( R ( r x r = 0, but σ is not trivial.

Theorem 4 Let Z be the set of all irreflexive elements of X} that is, Z =
{x G X/x (Rx). The set Z is representative for the DA 2ί with respect to (R.

Proof: Let p be an element of 2ί (different from 0); p must contain an irreflexive
element because the relation (R is relatively reverse well-founded. Then p Π
ZΦ<2.

Let r* be the operation defined by (R| Z x Z = (R*, that is, τ*p z = [y G Z/
j> (R* x for no x G ̂ /?z}> where pz and y/?z stand for p Π Z and vp Γ\ Z respec-
tively. We have to prove that τ*pz = rp Π Z for every/? G 21. Assume that y £
τp(ΛZ\ hence R{y] Π vp Φ 0. By Lemma 7 in [2] there exists a maximal ele-
ment x of y/? such that y (Rx.By the maximality of x we have that x G Z; hence
Λ: G Z Π ̂  = vpz. This implies y £ τ*pz. The other inclusion is obvious.

We can conclude that if we remove all reflexive elements from the space X
(which is convenient in several cases), we modify neither the Boolean structure
nor the operation r. More generally, reflexive points can be eliminated from any
representative subspace Wof X\ in other words, if we take them away from W,
we obtain again a representative subspace of X. The property is expressed by
the following theorem, whose proof is quite similar to the proof of Theorem 4.

Theorem 5 If W is representative with respect to (R, so is W Π Z.

Slightly modifying Definition 3 we get a topological concept.

Definition 4 A subspace W of X is said to be representative for the DA 21
with respect to the topology T if:
(1) Wis dense in X
(2) Trestricted to W(which is denoted by T\w) and Tinduce the same opera-

tion σ on 21, that is, dp Π W equals the derived set of p Π W in the topol-
ogy T\W.
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As may be expected, Theorems 4 and 5 can be translated into topological
terms. More precisely, we have

Lemma 3 W is representative with respect to (R iff it is representative with
respect to T.

Corollary 1
(a) The set Z of all irreflexive points is representative for 21 with respect to T.
(b) If W is a representative subspace of X, so is W Π Z.

Proof: We omit the proofs, which are not difficult.

From a topological point of view, the space Z with the topology Γ|Z
enjoys a good property. Note that the topological space (X; T) is not usually
3 0. (Consider the DA <(P(ω);σ> where σ is induced by the usual relation > on
ω. Every pair of nonprincipal ultrafliters x and y are such that x (R y and y (R
x. Therefore x and y have the same neighborhoods.)

Theorem 6 The subspace (Z; T\Z) is 30 (but in general it is not 3J .

Proof: For every x and y of Z, we cannot have both x (R y and y (R x. If y (ft x,
the open subset (R{y] U {j} does not contain x.

The following theorems characterize the reflexive elements (and hence the
subspace Z) in purely topological terms. The first one regards the topology T9

while the other one is more general because it applies to every topology in which
the derived set operator equals the operation σ.

Theorem 7 An element x of X is reflexive iff there exists an open subset H
of (X; T) such that x E c{y] for every y E H and x E H — H (where c is the
closure operator in T, while H is the closure of H in the Stone topology).

Proof: (=>) Let x be reflexive; the subset H = (R{x] — {x} is nonempty because
x is not a maximal element of X. It is trivial that xGc{y} for every y EH. Now,
let us prove that x E H - H. Since x (R x, for every clopen set p of T contain-
ing x we have that xEσp; hence x £ τvp. By Lemma 7 of [2] there exists a max-
imal element z of p such that x (R z\ z is an element of H, too. Therefore x is
an accumulation point of H.

(«=) We must show that for every clopen set p of T from x E p it follows
x E op. By the hypothesis, there exists an element y of H Π p such that x (R y.
Then JC belongs to σp.

Theorem 8 Let f be a topology on X such that f represents the operation
σ. An element x of X is reflexive iffx E G - {x} for every open neighborhood
Gofx in f (where G - {x} is the closure of G - {x} in the Stone topology T).

Proof: Straightforward.

5 Homomorphisms between DA ys Throughout this section, we consider two
DA's (Sl r^) and <33;rsg>. We denote the corresponding bi-topological spaces
by (X; Tιu fH) and (7; 7^, f^), while (Ra and (Rs are the relations induced by
τ% and TςQ on X and Y, respectively.

Given a homomorphism/: ?ί -• 23, define a function/* from Yto Xin the
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usual way: f+y = {p G Wfp G y] =f~ιy for every y G Y. By the Stone dual-
ity/* is continuous with respect to the topologies T% and 7^. First, let us show
that the following implication holds: if * (R$ y then/** (R^/*^ f° r e v e r y *>.y Ξ
Y. Assume to the contrary that there exist two elements * and y of Y such that
x (RςQ y and not /** (R^/* j>. As a consequence, there exists a clopen set p of
(X; Γa) such that/** G τa/? but/*.y <£p. Therefore xGfτnp = r^fp and j £

fp. Hence it is not true that * (Rςg y.
Now, we are in a position to give a first characterization of the homomor-

phisms between DA's.

Theorem 9 Iff: <2l, τ%) -> <33, τs> is a homomorphism, then the dual func-
tion /*: Y -> Jf satisfies the following conditions:
(1)/* is continuous with respect to the Stone topologies T% and Γa

(2) /* is an open function with respect to the topologies 7$ and Tu

(3) //* (Rsg y then /** (Ra/*y for every *,j> G Y.
Conversely, ifh: Y-+X is a function which satisfies (1), (2), (3) then the

dual function Λ*: 21 -* S3 (defined in the usual way: h*p - h~xp) is a homo-
morphism.

First, let us prove three lemmas.

Lemma 4 Let f be a homomorphism from % into 33 and let x G X. The fol-
lowing conditions are equivalent: (i) x Gf*Y; (ii) ifxGp thenfp Φ Ofor every
/7G2I; (iii) /* has the f.i.p.

Proof: (i) => (ii) Let x =f*y =f~{y where y G Y, that is, /* <Ξ y. If there were
a p in x such that fp = 0, it would follow 0 G y, a contradiction.

(ii) => (iii) Let /?i,... ,/?„ G * be such that fp\ . . . -fpn — 0. Since / is a
homomorphism, we have fp{- ... -fpn = f(p\ .. . •/?„) = 0. The element
/?! . . . -pn belongs to * but f(px . . . -pn) = 0.

(iii) => (i) Let z be an ultrafilter of 33 such that/* <Ξ z. It is readily seen that
/*z = *.

Lemma 5 Lei * G ̂ Γ and y G Y". 7/*/*̂  &« * ^^« * G /* Y. In other words,
f*Y is open in T%.

Proof: If x£f*Y, by Lemma 4 there exists an element p of 21 such that p G *
and.//? =: 0. Since/*y (Ra *, from * G p it follows that j> Gfσ%p = σ%fp, which
is absurd.

Lemma 6 Lei * G X and y G Y. 7/7* J ^H ̂  ̂ ^ the set fx U r̂ "1 j Λαs the
fi.p.

Proof: First of all, it is trivial that both the subsets /* and τ%1y are closed
under finite intersection. Suppose that the subset/* U τ%ιy does not have the
f.i.p., that is, there exist a p G * and a q G r^V such that q-fp = 0; hence
fp < *>#. Since q G r^\y, we have y £ σ%vq; besides, in view of the hypothesis
f*y <R« x a n c * °f * e ^ a c t ̂ a t P ^ x> Λe element j> belongs to σ^/σ. We con-
clude that y G a^vq, a contradiction.

Proof of Theorem 9: (=>) Condition (1) is well-known. Consider an open set H
of TQ. Let /* y (Ra *, where y EH and * G Λf: we have to prove that * G/*//.
By Lemma 6, there exists an ultrafilter z such that/* U τ^1,y c ^ hence/* c
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z, that is equivalent to/*z = x. Moreover, τ%ιy <Ξ z and so, for every q E 33,
if y E τsβ# then zG q, that is, y (R% z. From our hypothesis it follows that z E
H. This concludes the proof of Condition (2). We have already proved Condi-
tion (3).

(<=) By Condition (1) we have that /** preserves the Boolean structure. Let
us prove that h*σ%p = σ%h*p for every p E 21. If y is an element of h*σ%p, that
is, hy E σ%p, then there exists an element x of p such that hy (R% x. By Lemma
7 of [2] we can choose x to be maximal in p, so that x (jk x. Consider the open
set G = (R{y} U [y] of 7^; by Condition (2) hG is open in T<% and then x E
ΛG. Let z be an element of G such that x = hz\ from x E p it follows that z E
Λ"1/? = ft*/?; hence y E σ%h*p.

Conversely, let y E a<%h*p\ then there exists an element Λ: E h*p — h~xp
such that y (Rs x. By Condition (3) hy (R^ ftx; hence hy E σ^/?, that is, y E
h~xσnp = h*σ%p.

Our purpose is to find a purely topological characterization of homomor-
phisms between DA's. From this point of view the previous statement is not
completely adequate, because of Condition (3). So, we need a topological trans-
lation of this condition.

First of all, we have the following

Lemma 7 A function h: Y->X is continuous with respect to the topologies
TςQ and 7^ iff from y (A% x it follows either hy (R^ hx or hy = hx.

Proof: We omit the straightforward proof.

From Lemma 7 and Condition (3) of Theorem 9 it follows that the dual
function of a homomorphism between two DA's is continuous also with respect
to the topologies Tjg and T%. In fact, we are in a position to characterize a par-
ticular class of homomorphisms just from a topological point of view.

Corollary 2 A function f: 21 -»33 is a surjectiυe homomorphism, that is, 33
is a quotient DA of 21, iff the dual function /*: 7-> X is one-one, open with
respect to the topologies 7^ and T%9 and continuous with respect to both the
topologies T^, T% and 7^, 7^.

Proof: Trivial.

However, in the statement of Theorem 9, Condition (3) cannot in general
be replaced by a simple topological requirement, as the following Examples
show.

Example 4: The function h: Y-+Xrepresented in Figure 1 is both open and con-
tinuous in respect to any topologies, but the dual function Λ* is not a homo-
morphism. (In the diagrams we intend that a lower point x is joined with an
upper point y by a climbing up line segment iff y (R x.)

Example 5: The function h: Y' -• X' represented in Figure 2 is a homeomor-
phism with respect to the Stone topologies, and an open function with respect
to the topologies fs and T%. But the dual function Λ* is not a homomorphism.

On the other hand, Condition (2) of Theorem 9 can be expressed in terms
of the relation (R as follows: a function hofY into X is open iff the image h Y
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Figure 1 Figure 2

/s open and the following property holds: if hy (R% hx (where hy Φ hx) then
there exists an element z of Y such that y (R% z and hz = hx. We omit the
proof.

Similar conditions are often studied in modal logic, where the name p-
morphism is used. However, in these contexts Boolean Algebras of the form
(P(X) (represented by the set X) are mostly considered.

In our case, difficulties arise because in Condition (3) of Theorem 9 we
have to take into account the possibility that/** coincides with/*.y (in which
case it is a nonprincipal ultrafilter). In the next section we shall see a topologi-
cal translation of Condition (3) which applies to irreflexive points, and to reflex-
ive points as well.

Regarding reflexive points, from Condition (3) it follows that if y is a
reflexive element of Y then/*jμ is a reflexive element of X. On the other hand,
/*j> can be reflexive without y being reflexive. Indeed, consider the following

Example 6: Let <Sl; σ^) be the DA of finite and cofinite subsets of ω, where σ̂
is defined by the usual relation > on ω. Let <93;σ<β> be the DA of finite and
cofinite subsets of the set ω* = ω U {a}, where σ s is defined by the following
relation >* on ω*: a > n for every n G ω and, if n,m G ω, then n >* m iff
n > m. Let X, Γbe the sets of all ultrafilters of 21 and 93, respectively. Consider
the function h: 7-> X such that hn = n for every n G ω, and hu' = ha = u,
where u and u' are the nonprincipal ultrafilters of 21 and 93, respectively. By
Theorem 9 h induces a homomorphism Λ*. The element a of Γis irreflexive,
while ha — u is reflexive. On the other hand, there exists a reflexive element u'
of Fsuch that hu' — ha. This property is satisfied in every DA, as the follow-
ing theorem says.

Theorem 10 Let f: 21 -> 93 be a homomorphism. Iff*y (&%f*y, where y G
F, then there exists an x G Y such that f*x = f*y and x (R% x.

To prove the theorem we need the following lemma.

Lemma 8 Let (X; T) be the Stone space of a DA 21. Every nonempty closed
set C contains a <(semimaximaΓ element z, that is, an element z such that, if
z (R xfor some x G C, then x (R z (and hence z (R z).

Proof: Consider the following partially ordered set ({(R{x) Π C/x G C}^).
Since C is compact and every (R{x) is closed, the previous set is inductive. By
Zorn's Lemma there exists an element z of C such that (R{z\ D (R{x\ for no
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x E C. If z is maximal, then it is also semimaximal. If not, there i s x E C such
that z (R x and 6i{x} = (R{z}, so that x (R x. It is immediate that x is semi-
maximal.

Proof of Theorem 10: Let F be the filter generated by the set f*fy c S3 and let
C be the corresponding closed set in the Stone topology. It is readily seen that
C= Π {p/p e F) = {x/f*x = f*y}. By Lemma 8 in C there exists a semimax-
imal element z\ hence/*z =/*.y and/*z (Ά%f*y. By Lemma 6 there exists an
ultrafilter containing the set F U τ%ι[z); thus C Π 9ί s{z} is nonempty. Let
w E C Π (RSQ {z} from w E (R$ {z} it follows z (Ά% w and from the semimaxi-
mality of z in C it follows that w (Rs z; hence z (ft© £•

6 Topological duality First of all, our aim is to settle the question raised in
the preceding section and to find a purely topological characterization of the
dual function of a homomorphism between two DA's.

Lemma 9 Let % be a DA and let (X; T, T) be its bi-topological space. For
every x,y E X the following conditions are equivalent:
(a)x(Άy _
(β) if G is an open neighborhood ofx in T then y E G — {x} (where G — [x]
is the closure of G — {x} in the Stone topology).

Proof: (α) =>(/?) Suppose x (R y\ if x Φ y9 then every open set G of Tcontaining
x must contain y too. Hence y E G — [x] <Ξ G — {x}. If x = y, by Theorem
8 y E G — {x} for every open set G of T containing x.

(β) => (a) Suppose x (ft y. Let x Φ y; the subset G = 6i{x] U {x} is open
in Γand closed in T. The element y does not belong to G 5 G — {x}. If x = y,
by Theorem 8 there exists an open set G of T containing x such that x = y £
G~{x}.

Corollary 3 If f: 2ί -* S3 is a homomorphism, then the dual function /*:
Y -* X satisfies the following conditions:
(1)/* is continuous with respect to the Stone topologies Γςg and 7^
(2) /* is open with respect to the topologies T<$ and T%

(3') if for every open neighborhood G of x in Tϊg the element y belongs to
G — {x}9 then for every open neighborhood H off*x in 7^ the element f^y
must belong to H — [f*x].
Conversely, if h: Y -> X is a function which satisfies (1), (2), (3 r), then

the dual function h*\ 21 -• 33 is a homomorphism.

Proof: By Theorem 9 and Lemma 9.
Let us briefly examine the dual space of a subalgebra of a DA. If 21 is a

subalgebra of 33, then there exists a one-one homomorphism ι from 2ί into 33;
by the previous corollary the dual function t* satisfies Conditions (1), (2), (3')
and is surjective; and conversely.

We have already seen a topological translation of the algebraic concept of
quotient algebra (Corollary 2). In fact the set of all congruences of a DA 31, the
set of all its r-filters (see Definition 2 in [10]), and the set of all quotient algebras
of 21 (up to isomorphisms) can be easily proved to be bijective. In any case, we
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can directly characterize the τ-filters (and hence the congruences) of a DA in
topological terms.

Theorem 11 Let % be a DA and let (X; T, T) be the corresponding bi-
topological space. There exists a natural bijection between the set of all τ-filters
of 21 and the set of all subsets of X which are simultaneously open in T and
closed in the Stone topology T. (Similar results — but with no reference to the
topology T — are stated in [1] and in [12].)

Proof: Let F be a r-filter of 21. We know that the subset H = ΠF is closed in
T; let us prove that H is open in T. Suppose to the contrary that x E H and
x(Ry, buty φH. There exists a clopen setp of Tsuch thatp GFandp £y.
Hence vpGy\ since x (R y, we have x £ τp. Therefore rp £ F> which is absurd.

Conversely, let H be closed in T and open in T. The subset F = [p e 2ί
/H^p] is a filter of 21; let us show that F is a r-filter. Suppose that there exists
p G F such that τp £ F. Thus we can find an element x of H which does not
belong to τp. Let y be an element of vp such that x (R y; since // is open in T
it follows that y G H ^ p, which is absurd.

Now, let us consider the direct product <β;τ§> of two DA's <2l;r2ί> and
<33;r^>. Let (X; T%9 ? a ), (7; 7^, T%) and (Z; Γ, f) be the bi-topological spaces
corresponding to 21, 93, and 6, respectively. Then the set Z is the disjoint union
of X and Y. Moreover, both X and Y are open in T because no element of X
is associated with an element of Y, and conversely. Therefore, with regard to
both the topologies T and T, the open subsets of Z are exactly the unions of the
corresponding open subsets of Jf and Y. In other words, the subspaces X and
Y are a disconnection of the space Z with respect to both the topologies T and
T. This property characterizes the bi-topological space of a direct product of
DA's in topological terms.

Theorem 12 Let (Z; Γ, Γ) &e # relatively scattered bi-topological space. If
there exist two subspaces X and Y of Z which are the components of a discon-
nection in both the topologies T and T, then the dual DA © of (Z;T,T) is iso-
morphic to the direct product of the dual DA's of (X\T\XT\X) and
(y;Γ,y,f|y).

Proof: It is immediate that the spaces (X; T\x, T]x) and (7; T{Yi T]γ) are rel-
atively scattered; let ( 2 1 ^ ) and <99;σφ> be the corresponding DA's. Consider
the function/: 6 -̂  21 X 33 where fp = (pΓ)X9pί)Y) for every/? G 6. It is just
an easy verification that / is a Boolean isomorphism. To prove that / is a
homomorphism between DA's it is enough to verify that σ§p Π X = σ%(p Π X)
and σ$p Π Y = σ%(p Π Y). The operations σ^σ^σ^ can be considered as the
derived sets operators in the spaces (Z f ) , (X;T\X)9 (7;f |y), respectively.
Since both X and Y are clopen sets also with respect to the topology T, the pre-
vious equalities hold.

7 Applications First we study the product <a of DA's defined by Sonobe
in [15] from a topological point of view. Let us recall that if <2ί; τ%) and <23; r^)
are two DA's then by 21 <a 33 (where a E 21 and a < τ%0) we mean the Boolean
Algebra 21 X 33 with the operation r defined as follows: r(/?,!) = (τ%p,l) and
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τ{p,q) = (a9τs&q) if q Φ 1. (The symbol 21 < 33 denotes 2ί < 0 93.) In [15] it is
shown that 21 <a 33 is a DA.

From a Boolean point of view, the < product coincides with the direct
product; hence the set of all ultrafilters of 21 <a 33 is the disjoint union X U Y
of the sets X and Y of all ultrafilters of 2ί and 33, respectively. Let (R ,̂ (Rs, Γ§j
and T% have the usual meaning.

It is readily verified that the relation (R induced by r on X U F is the fol-
lowing:

if x,z G X then x (R z iff x (RH z
if y, t G F then .y (R ί iff .y (Rs f
if x G X and j> G 7 then y (ft x, while x (R .y iff x <£ #.

We notice that if # = 0 then x (R >> for every x G X and j> G Y.
Let f<α be the corresponding topology on the set X 0 Y. A subset is open

in T<a iff it is either the union of the space Y with an open set in T%, or the
union of an open set in T% with a subset of a (necessarily open in 7^). Clearly
T<a (if a Φ 1) is strictly less fine than the topology T%χ<$ that is defined on the
same set X U Y when we consider the usual direct product of DA's. Intuitively,
in Γ$ίχ58 the subsets Λί and Fare placed "side by side", while in T<a (using the
same convention as in Figures 1 and 2) all the elements of X which do not belong
to a are placed above F, and the elements of a are at the bottom level in X U
Y. The following theorem characterizes the bi-topological spaces of DA's which
are of the form 21 < 33 and 2ί <a 33.

Theorem 13 Let (Z; Γ, T) be a relatively scattered bi-topological space; call
6 the corresponding DA.
(a) © is of the form 21 < 33 iff there exists a nonempty subset p of Z such that:

(i) p is clopen in T and open in T; (ii) for every open set H of T either
p^H or H^p.

(β) © is of the form % <a 93 iff there exists a nonempty subset p of Z such that:
(i) p is clopen in T and open in T; (ii) for every open set H of T, either
HΠdZ^pΠdZorHΏp.

Proof: For the sake of brevity we only prove (β).
The necessity is trivial. Conversely, define a to be vp Π vdZ\ notice that a

is open in T (as it contains only isolated points) and clopen in T (since dZ is a
clopen set). We claim that 6 = 21 <a 33 where 2ί and 33 are the DA's which cor-
respond _to the bi-topological relatively scattered spaces (vp,T\vp,T\vp) and
(/?, T\p, T\p). It is enough to show that T = T<a where the last symbol denotes
the topology which induces σ in the DA 21 <a 33. Let H be an open set of T. If
HΠvpΠdZΦ 0 , then, by our hypothesis, H Ώ. p. Hence H = pU (HCλvp),
where H Π vpϊs an open set of T\vp. If, on the other hand, HΠ vp Γ) dZ = 0,
we have ff= ( f f Π p ) U ( ί f Π ^ Π prfZ), where H D p is open in f)/? and
// Π vp Π ptfZ is open in 7 ^ and it is contained in #. Therefore, in both cases
His open in T<a.

Let AT be an open set of T<a. If K is the union of an open set of T\vp and
/?, then Â  may be expressed as p U H where // is open in T. Hence K is open
in T. Similarly, any union I U M , where L^vp(Λ vdZ and Mis open in T\p9

can be proved to be open in T.
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In [15] subdirectly irreducible (shortly, s.d.i.) DA's (see for instance [7])
are characterized by means of the product <.

Proposition 3 A DA 21 is s. d. i. iff there exists a DA 93 such that 21 is iso-
morphic to the DA 2 < 93, where 2 is the DA with only two elements.

Now we can find a topological characterization of s.d.i. DA's. First of all,
we recall that a minimal element with respect to the relation (R (in particular a
minimum element) must be irreflexive.

Theorem 14 Let 21 be a DA and let (X; T, T) be the corresponding bi-
topological space. The following conditions are equivalent:
(1)21 is s.d.i.
(2) there exists a nonempty proper subset H of X which is open in T, closed in

T, and such that if K C X is open in T and closed in T, then K <Ξ H
(3) in X there exists a minimum element y with respect to the relation (R.

Proof: (1) => (2) By Proposition 3.
(2) =» (3) Suppose that Xhas no minimum element. Since //is closed in T

there exists a clopen set p of T such that H Π p = 0 . Let z be a maximal ele-
ment of p with respect to (R. By our assumption there exists an element x dif-
ferent from z such that x (Ά z. The subset K = H U [z] U (Ά[z) is strictly
contained in X (because x £ K), it is open in T and closed in Γ, but H C K
because z $. H.

(3) => (1) Let y be the minimum element of X. We claim that the subset
X — {y} is closed, and as a consequence clopen in T. Indeed, assuming the con-
trary, it can be shown that y satisfies the hypothesis of Theorem 7 and hence
it is reflexive, which is absurd. It follows that X — {y j is a relatively scattered
space; let 93 be its dual DA. It is immediate that 2ί is isomorphic to 2 < 93; by
Proposition 3 we can conclude that 21 is s.d.i.

It is of interest to discuss connections between topological and algebraic
properties. We recall that a topological space X is said to be irreducible if any
two nonempty open sets intersect; and that a point y of a topological space X
is called generic if c[ y] = X, where c is the closure operator.

Definition 5 (essentially from [15]) A DA 2ί is said to be co-s.d.i. if the lattice
of all congruences of 21 has one and only one co-atom θ which contains every
proper congruence.

Theorem 15 Let 21 be a DA and let (X; T, T) be its bi-topological space. The
following conditions are equivalent:
(1) 21 is co-s.d.i.
(2) there is a maximum τ-filter in 21
(3) in X there exists a nonempty subset H which is open in T, closed in T, such

that ifKΦ0 is open in T and closed in T, then H ^ K
(4) there exists a DA 93 such that 2ί is isomorphic to 93 < 2
(5) rO is an atom of 21
(6) the space (X; T) contains a generic point
(7) the space (X; T) is irreducible.
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Proof: We only sketch the proof. The equivalences (1) «=*(2) <^(3) follow from
Theorem 11. By the definition of < product, Conditions (3), (4), (5) are equiv-
alent. If τθ is an atom of 21, then τθ, regarded as an ultrafilter, is a generic
point: hence X is irreducible. If τO is not an atom of 21, then there exist two dif-
ferent elements x,y of Xsuch that τθ E x and τθ Ey. The subsets [x] and {y]
are disjoint open sets of T; therefore X is not irreducible. This concludes the
proof.

In a similar way, other algebraic properties can be discussed in topologi-
cal terms, and conversely. As an example, we state without proof the following

Theorem 16 Consider the properties:
(a) the DA 21 is s.d.i.
(β) X has finitely many minimal elements, and for every nonminίmal x E X,

there exists a minimal element y E X such that y (R x
(y) (Z; f | Z ) is compact (where Z is the set of all irreflexive elements of X)
(δ) the DA 21 is not (^-consistent (see [9]).

Exactly the following implications hold:

(α)=>(/3)~ (7) =>(«)•

We conclude examining a possible application of another topological con- %

cept. Recall that a sheaf on a topological space X can be regarded as a local
homeomorphism of a topological space Y onto X. In the following the sym-
bols H,S,P have the usual algebraic meaning (see [7]).

Theorem 17 Let 2ί,93 be two DA's and let (X; 7^, 7^), (Y; T%9 7$) be their
bi-topological spaces. If% is finite and B E HP2I, then there exists a local ho-
meomorphism h of (Y\ Tςβ) into (X; 7^). (In other words, h is a sheaf on a
subspace of X.) Moreover, h is continuous with respect to the topologies 7^
and T<%.

We need two lemmas.

Lemma 10 Let 21 be a finite Boolean Algebra. Consider the Algebra 2l7,
where I is any set. Then the Stone space of 2ί7 is homeomorphic to the topolog-
ical product between the Stone spaces of'(? (I) and of%.In other words', every
ultrafilter x of 2ί7 can be identified with a pair (u,a) where u is an ultrafilter of
(P(I) and a is an atom of%.

Proof: We only sketch the proof. If p E 21, we write p to denote the element of
2I7 such that (p)t = p for all / E /. Let x be an ultrafilter of 2I7. If a0,..., an-X

are the atoms of 2ί, then there exists one and only one j G n such that άj E x.
Consider the set u = [H/H c= / and there exists a q E x such that H = {h/qh Φ
0}} it is readily seen that u is an ultrafilter of (9(1). Thus, the ultrafilter x of
2ί7 is associated with the pair (u,aj). Conversely, let a be an atom of 21 and let
u be an ultrafilter of (9(1). It is not difficult to verify that the set x = {q E
2l7/{/*/tf < qh] E u] is an ultrafilter of 2I7.

Lemma 11 Let 21 be a finite DA. Let (X;(Ά) and (W;(R') be the dual spaces
of'81 and 2ί7, respectively. Then, (u,a) 6T (v,b) iffu = v and a (Si b.
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Proof: (=>) We prove first that a (R b. Let p be an element of 21 which contains
b; we must prove that a < σp. Since the element p belongs to (v,b), by the
hypothesis σp E (u,a). Therefore the subset {h/a < σph\ E u, that means a <
σp. Now let us show that u — v. If K E v then there exists a # E (ι>, 6) such that

K = {/:/<?£ =£ 0) = {£/& < ̂ } . From a (Rb'it follows a < σb < σqk for all k E
Tf, while a φ σqk = 0 for all A: ̂  ϋΓ. Therefore the subset {h/a < (σ#)Λ) =
{h/(σq)h Φ 0} equals AT. Since σq E (u,a), we can conclude that K G u.

Conversely, let 77 E w and assume that H£υ. Then the element <? of 2l7,
such that qt = 0 if f / E 77 and #, = b iff / §£ 77, belongs to (v,b). From (u9a)
(R (v,b) it follows that σq E (w,tf). As {k/σqk Φ 0} c / - //, the set I - H
would belong to w, which is absurd.

(*=) Let <7 E (v,b)\ hence ̂  = {A:/6 < qk\ E i; = u. From α (R 6 it follows
that the set H — {h/a < (σ^)^} contains K; therefore HE u. We can conclude
σq E (u,a). This completes the proof.

From an intuitive point of view Lemma 11 says that (W,(R') is constituted
by as many copies of (X,(Ά) as there are ultrafliters in (P(7).

Proof of Theorem 17: We denote the set of ultrafilters of H7 by W. Since there
exists a homeomorphism/of 2ί7 onto 93, then the dual function/* of Yinto W
is one-one, that is, Y can be represented as a subset of W. Let TΓ be the projec-
tion of W onto ̂  (see Lemma 10). Of course, the function h = π °/* is contin-
uous with respect to the Stone topologies. Now, for every y E Y consider the
set G = (R%{y) U {y} which is open in 7^. In view of Lemma 11, the subset G
is contained in Xu = {(u,a)/a E X] c W for some ultrafilter u of (P(7). We
have that h(u,b) = b for every (u,b)E G; therefore hG = βl^hy} U [hy]. We

can conclude that Λ is a homeomorphism of G onto hG.

Theorem 18 Let 21,93 be two DA's and let (X; Tn, Tn), (Y T^ T%) be their
bi-topological spaces. If 21 is finite and if there exists a local homeomorphism
of (Y; T^Q) into (X; Γa), which is continuous with respect to the Stone topolo-
gies, then 93 E SPH2I.

Proof: For every x E Yconsider the subset Hy — (R${.y} U {y\. By our hypoth-
eses and Theorem 11, each Hy represents a quotient DA %y of 21. Consider the
disjoint union of all Hy and call it W. Note that W can be identified with the
set {(w,y)/w E Hy]. In this sense, we have W<ΞzYxY. Introduce in Y x Ythe
product of the Stone topologies, and the product between the topology 7^ and
the discrete topology. Then restrict these topologies to W: in this way W
becomes a relatively scattered bi-topological space. Let © be the corresponding
DA. Since there are just finitely many different 2ίy (up to isomorphism), we
have 6 E HP2ί. Define a function/: W-* Yas follows: f(w,y) = w. The func-
tion/satisfies the conditions of Corollary 3 and it is surjective. Hence there
exists a one-one homomorphism of 93 into 6.

Corollary 4
(a) 7/21 is a finite DA, we have HP21 c SPH2I.
(b) SPH2ί = HSP2I.
(Similar results hold for finitely many finite DA's.)
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Proof: (a) By Theorems 17 and 18.
(b) By part (a) and recalling that DA's have the CEP (congruence exten-

sion property).
To obtain Corollary 4 in an algebraic way, one could apply Jόnnson's

Lemma (see [7]), in view of the CEP and of the distributivity of the congruence
lattice of a DA.

NOTE

1. We use capital Gothic letters both for Boolean Algebras and Diagonalizable
Algebras. So a DA can be denoted either by <2ί;τ> or simply by 2ί.
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