A Unified Approach to Relative Interpolation

DENNIS DUCHHART*

I Introduction In general, languages $L_{\kappa\lambda}$ do not have the interpolation property that, for $L_{\omega\omega}$, was proven by Craig ([3]). At this moment interpolation is known to hold for $L_{\omega\omega}$, $L_{\omega_1\omega}$ ([10]; see [12] for a combinatoric proof) and for countable admissible fragments of $L_{\infty\omega}$ (see [1]). Other infinitary languages just do not seem to have the property, as was partly shown by Malitz ([13]), who gave counterexamples for languages $L_{\kappa\omega}$ with $\kappa > \omega_1$, and $L_{\kappa\lambda}$ with $\kappa \ge \lambda > \omega$.

As a result of this situation attention has been paid to more restrictive forms of interpolation. For strong limits κ with $cf(\kappa) = \omega$, for instance, Karp ([11]) proved an extension of Craig's theorem to $L_{\kappa\kappa}$ using the notions of consistency property with respect to ω -chains of structures and ω -satisfiability (introduced in [10]). That is, for $L_{\kappa\kappa}$ -sentences ϕ and ψ with $\models^{\omega}\phi \to \psi$ there exists an interpolating $L_{\kappa\kappa}$ -sentence θ such that $\models\phi \to \theta$ and $\models\theta \to \psi$. Cunningham improved this to $\models^{\omega}\phi \to \theta$ and $\models^{\omega}\theta \to \psi$, using the notion of chain consistency property (see [4]). Ferro introduced the seq-consistency property (see [7]) to prove Cunningham's result and extend it to second-order logic.

This paper concentrates on another approach: that of 'relative' interpolation (i.e., there exists an interpolating sentence, but in a stronger language). Dickmann ([5]) uses Interp($L_{\kappa\lambda}, L_{\kappa'\lambda'}$) to denote the property that for every pair of $L_{\kappa\lambda}$ -sentences there is an interpolating sentence in $L_{\kappa'\lambda'}$.

Malitz ([13]) outlines a combinatoric proof of Interp($L_{\kappa\omega}$, $L_{(2^{<\kappa})^+\kappa}$) for regular κ . For cf(κ) = ω , Friedman ([8]) proves Interp($L_{\kappa^+\omega}$, $L_{(2^{<\kappa})^+\kappa}$). Chang ([2]), using special and ω_1 -saturated models, proves Interp($L_{\kappa^+\omega}$, $L_{\kappa^+\kappa}$) for strong limits κ with cf(κ) = ω , which—although proven independently—is a direct consequence of Friedman's result.

This paper contains a straightforward proof, using only basic model-theoretic notions, of a somewhat stronger version of Interp($L_{\kappa\omega}$, $L_{(2^{<\kappa})^{+}\kappa}$) for regular κ . It will be shown that this proof can be easily modified to obtain the

^{*}I am indebted to H. C. Doets for helpful suggestions and to the referee for drawing my attention to the work of Ferro and Cunningham.

theorems of Friedman and Chang, thus providing a unified method to yield all known relative interpolation results.

Moreover, the reason for the bound $(2^{<\kappa})^+$ is explained in a natural way by this method (a model-construction in the vein of [9]).

2 Relative interpolation Every nonlogical symbol in an $L_{\kappa\lambda}$ -formula is in the range of only a finite number of negations. This justifies the definition of positive (negative) occurrence of a nonlogical symbol, i.e. being within the range of an even (odd) number of negations. (A nonlogical symbol can occur positively, negatively, both, or not at all in an $L_{\kappa\lambda}$ -formula.)

Atomic formulas and negations thereof are called *basis-formulas*. $B(\Gamma)$ is the set of all basis-formulas in a set Γ of formulas. A *basis-sentence* is a basis-formula containing no free variables.

A formula is in *negation normal form* (is an nnf) if it is composed of basis-formulas by means of \vee , \exists , \wedge , and \forall . An nns is an nnf containing no free variables. It is easy to show the following

Lemma 2.1 For every $L_{\kappa\lambda}$ -formula ϕ there exists an $L_{\kappa\lambda}$ -nnf ϕ' with the same positive (negative) occurrences of relation-symbols and with the same occurrences of constants as ϕ , such that $\models \phi \leftrightarrow \phi'$.

For convenience we will make no use of function-symbols, nor of the identity.

Before proving the relative interpolation result for $L_{\kappa\omega}$ we state a model existence lemma with only 'break-down clauses' (like the 'mixed lemma' in [6]) that exactly meets our requirements:

Lemma 2.2 Let Γ and Δ be sets of nns's of a fragment of $L_{\kappa\omega}$ for a language L(C) with C a nonempty set of constants. Suppose the following conditions hold:

```
(\Gamma 1) \exists x \phi(x) \in \Gamma \Rightarrow \phi(c) \in \Gamma \text{ for some } c \in C
(\Gamma 2) \lor \Phi \in \Gamma \Rightarrow \phi \in \Gamma \text{ for some } \phi \in \Phi
(\Gamma 3) \forall x \phi(x) \in \Gamma \Rightarrow \phi(c) \in \Gamma \text{ for all } c \in C
(\Gamma 4) \land \Phi \in \Gamma \Rightarrow \phi \in \Gamma \text{ for all } \phi \in \Phi
(\Delta 1) \exists x \phi(x) \in \Delta \Rightarrow \phi(c) \in \Delta \text{ for all } c \in C
```

$$(\Delta 1) \ \exists \lambda \phi(\lambda) \in \Delta \Rightarrow \phi(t) \in \Delta \ \text{for all } \phi \in \Phi$$

$$(\Delta 2) \ \forall \Phi \in \Delta \Rightarrow \phi \in \Delta \ \text{for all } \phi \in \Phi$$

$$(\Delta 3) \ \forall x \phi(x) \in \Delta \Rightarrow \phi(c) \in \Delta \ for \ some \ c \in C$$

$$(\Delta 4) \land \Phi \in \Delta \implies \phi \in \Delta \text{ for some } \phi \in \Phi$$

(5) $\mathfrak{A}_0 \models \wedge B(\Gamma) \wedge \neg \vee B(\Delta)$ for some model \mathfrak{A}_0 .

Then $\mathfrak{A} \models \Lambda \Gamma \wedge \neg \vee \Delta$ for some model \mathfrak{A} .

Proof: Let $\mathfrak{A}_0 = \langle A_0, \ldots \rangle$, $A = \{c^{\mathfrak{A}_0} | c \in C\}$ and $\mathfrak{A} = \langle A, \ldots \rangle$. Then we have $\mathfrak{A} \models \wedge B(\Gamma) \land \neg \vee B(\Delta)$. For convenience, we identify constants with their interpretation in \mathfrak{A} (i.e., in \mathfrak{A}_0).

By induction on the complexity of the nns ϕ we prove

$$(\phi \in \Gamma \Rightarrow \mathfrak{A} \models \phi) \& (\phi \in \Delta \Rightarrow \mathfrak{A} \models \neg \phi). \tag{1}$$

(a) If ϕ is a basis-sentence then (1) holds by $\mathfrak{A} \models \wedge B(\Gamma) \land \neg \lor B(\Delta)$. Suppose ϕ is not a basis-sentence, and the induction hypothesis is

(1) holds for
$$\psi$$
 with $c(\psi) < c(\phi)$, (2)

where $c(\phi)$ is the complexity of ϕ . We distinguish the following cases:

- (b) $\phi = \exists x \psi(x) : \exists x \psi(x) \in \Gamma \Rightarrow \psi(c) \in \Gamma \text{ for some } c \in C \Rightarrow \mathfrak{A} \models \psi(c) \text{ for some } c \in C \text{ (by (2))} \Rightarrow \mathfrak{A} \models \exists x \psi(x); \exists x \psi(x) \in \Delta \Rightarrow \psi(c) \in \Delta \text{ for all } c \in C \Rightarrow \mathfrak{A} \models \neg \psi(c) \text{ for all } c \in C \text{ (by (2))} \Rightarrow \mathfrak{A} \models \neg \exists x \psi(x) \text{ (for } A \subset C).$
- (c) $\phi = \forall \Phi \colon \forall \Phi \in \Gamma \Rightarrow \phi \in \Gamma$ for some $\phi \in \Phi \Rightarrow \mathfrak{A} \models \phi$ for some $\phi \in \Phi$ (by (2)) $\Rightarrow \mathfrak{A} \models \forall \Phi$; $\phi \in \Delta \Rightarrow \phi \in \Delta$ for all $\phi \in \Phi \Rightarrow \mathfrak{A} \models \neg \phi$ for all $\phi \in \Phi \Rightarrow \mathfrak{A} \models \neg \forall \Phi$ (by (2)).
- (d) $\phi = \forall x \psi(x)$: similar to (b).
- (e) $\phi = \Lambda \Phi$: similar to (c).

Hence $\mathfrak{A} \models \Lambda \Gamma \wedge \neg \vee \Delta$.

Let $\Gamma \models \phi$ (respectively $\phi \models \Gamma$) abbreviate $\wedge \Gamma \models \phi$ (respectively $\phi \models \vee \Gamma$) for formulas ϕ and sets of formulas Γ .

Theorem 2.3 Let κ be regular. For $L_{\kappa \omega}$ -sentences ϕ and ψ with $\models \phi \rightarrow \psi$, there exists an $L_{(2^{<\kappa})^+\kappa}$ -sentence θ such that

- (i) $\models \phi \rightarrow \theta$ and $\models \theta \rightarrow \psi$
- (ii) every relation-symbol occurring positively (negatively) in θ occurs positively (negatively) in both ϕ and ψ
- (iii) every constant occurring in θ occurs in both ϕ and ψ .

Proof: From Lemma 2.1 we can assume that ϕ and ψ are nns's. Supposing there is no $L_{(2^{<\kappa})^+\kappa}$ -nns θ satisfying (i)–(iii) above permits us to construct a model of $\phi \wedge \neg \psi$.

For this purpose we form two countable chains of sets of nns's

$$\{\phi\} = \Gamma_0 \subset \Gamma_1 \subset \dots$$

and

$$\{\psi\} = \Delta_0 \subset \Delta_1 \subset \dots$$

and a countable chain of sets of constants

$$C_{\rm L} = C_0 \subset C_1 \subset \dots$$

where C_L is the set of all constants in L (the basic set of nonlogical symbols from which we form the languages $L_{\kappa\lambda}$). We can assume that L contains only symbols occurring in either ϕ or ψ , so that $|C_L| < \kappa$.

symbols occurring in either ϕ or ψ , so that $|C_L| < \kappa$. It is our intention that $\Gamma = \bigcup_{n \in \omega} \Gamma_n$, $\Delta = \bigcup_{n \in \omega} \Delta_n$ and $C = \bigcup_{n \in \omega} C_n$ satisfy the conditions of Lemma 2.2, assuring us of the existence of a model of $\wedge \Gamma \wedge \neg \vee \Delta$, and hence of $\phi \wedge \neg \psi$.

First a definition: An $L_{(2^{<\kappa})^{+}\kappa}(C_p)$ -nns θ separates Γ_n and Δ_m relative to C_p if $\Gamma_n \models \theta \models \Delta_m$ and every relation-symbol occurring positively (negatively) in θ occurs positively (negatively) in both Γ_n and Δ_m $(n, m, p \in \omega)$; if such a θ does not exist, Γ_n and Δ_m are inseparable relative to C_p ; Γ_n and Δ_n are inseparable if they are inseparable relative to C_n .

The construction of the chains is such that for all $n \in \omega$ the following are satisfied:

$$(1_n) |\Gamma_n|, |\Delta_n|, |C_n| < \kappa \text{ and } \Gamma_n, \Delta_n \subset L_{\kappa\omega}(C_n)$$

 (2_n) Γ_n and Δ_n are inseparable

 $(\Gamma 1_n) \exists x \eta(x) \in \Gamma_n \Rightarrow \eta(c) \in \Gamma_{n+1} \text{ for some } c \in C_{n+1} \text{ if } n = 0 \pmod{8}$

 $(\Gamma 2_n) \ \forall \Phi \in \Gamma_n \Rightarrow \eta \in \Gamma_{n+1} \text{ for some } \eta \in \Phi \text{ if } n = 1 \pmod{8}$

 $(\Gamma 3_n) \ \forall x \eta(x) \in \Gamma_n \Rightarrow \eta(c) \in \Gamma_{n+1} \text{ for all } c \in C_{n+1} \text{ if } n = 2 \pmod{8}$

 $(\Gamma 4_n) \ \Lambda \Phi \in \Gamma_n \Rightarrow \eta \in \Gamma_{n+1} \text{ for all } \eta \in \Phi \text{ if } n=3 \pmod 8$

 $(\Delta 1_n) \exists x \eta(x) \in \Delta_n \Rightarrow \eta(c) \in \Delta_{n+1} \text{ for all } c \in C_{n+1} \text{ if } n = 4 \pmod{8}$

 $(\Delta 2_n) \ \forall \Phi \in \Delta_n \Rightarrow \eta \in \Delta_{n+1} \text{ for all } \eta \in \Phi \text{ if } n = 5 \pmod{8}$

 $(\Delta 3_n) \ \forall x \eta(x) \in \Delta_n \Rightarrow \eta(c) \in \Delta_{n+1} \text{ for some } c \in C_{n+1} \text{ if } n = 6 \pmod{8}$

 $(\Delta 4_n) \land \Phi \in \Delta_n \Rightarrow \eta \in \Delta_{n+1}$ for some $\eta \in \Phi$ if $n = 7 \pmod{8}$.

 $\Gamma_0 = \{\phi\}, \ \Delta_0 = \{\psi\}, \ \text{and} \ C_0 = C_L \ \text{satisfy (1_0)} \ \text{and (2_0): suppose } \theta \ \text{separates}$ $\{\phi\} \ \text{and} \ \{\psi\} \ \text{relative to} \ C_L, \ \text{then} \ \models \phi \to \theta \ \text{and} \ \models \theta \to \psi.$

Say $\theta = \theta(D_1, D_2)$ where D_1 (respectively D_2) is the set of all (less than κ) constants in θ not occurring in ϕ (respectively ψ). Then $\forall E \exists Y \theta(X, Y)$ is an interpolating $L_{(2^{<\kappa})^+\kappa}$ -sentence for ϕ and ψ , contradicting our assumption.

Suppose Γ_n , Δ_n , and C_n are formed and satisfy (1_n) and (2_n) .

 $(\Gamma 1_n)$: If n=0 (mod 8), choose a set $C'=\{c_\eta | \exists x\eta(x) \in \Gamma_n\}$ of constants, all different, such that C' and C_n are disjoint. Take $\Gamma_{n+1}=\Gamma_n\cup\{\eta(c_\eta)|\exists x\eta(x)\in\Gamma_n\}$, $\Delta_{n+1}=\Delta_n$, and $C_{n+1}=C_n\cup C'$; then (1_{n+1}) is satisfied, as well as (2_{n+1}) : Suppose θ separates Γ_{n+1} and Δ_{n+1} relative to C_{n+1} , so that $\Gamma_n\cup\{\eta(c_\eta)|\exists x\eta(x)\in\Gamma_n\}\models\theta\models\Delta_n$. Say $\theta=\theta(D)$, where D is the set of all constants from C' occurring in θ . Then, from the choice of C', $\Gamma_n\models\exists X\theta(X)\models\Delta_n$. But then $\exists X\theta(X)$ is an $L_{(2^{<\kappa})^+\kappa^-}$ nns separating Γ_n and Δ_n relative to C_n : indeed, every relation-symbol occurring positively (negatively) in $\exists X\theta(X)$ occurs positively (negatively) in both Γ_n and Δ_n on account of the corresponding property of θ , Γ_{n+1} , and Δ_{n+1} , contradicting (2_n) .

 $(\Gamma 2_n)$: If $n=1 \pmod 8$, choose $C_{n+1}=C_n$. Assertion: there exists a choice-function f for $\{\Phi \mid \forall \Phi \in \Gamma_n\}$ such that $\Gamma_{n,f}=\Gamma_n \cup \{f\Phi \mid \forall \Phi \in \Gamma_n\}$ and Δ_n are inseparable relative to C_n . Suppose the assertion does not hold; i.e., for all such f there exists a θ_f separating $\Gamma_{n,f}$ and Δ_n relative to C_n . Thus, for all such f,

$$\Gamma_n \cup \{f\Phi | \forall \Phi \in \Gamma_n\} \models \theta_f \models \Delta_n;$$

i.e.,

$$\Gamma_n \cup \left\{ \bigwedge_{\bigvee \Phi \in \Gamma_n} f\Phi \right\} \models \theta_f \models \Delta_n.$$

Consequently,

$$\Gamma_n \cup \left\{ \bigvee_f \bigwedge_{\bigvee \Phi \in \Gamma_n} f\Phi \right\} \models \bigvee_f \theta_f \models \Delta_n.$$

Because of

$$\bigwedge_{\forall \Phi \in \Gamma_n} \forall \Phi \models \bigvee_f \bigwedge_{\forall \Phi \in \Gamma_n} f\Phi \quad \text{and} \quad \Gamma_n \models \bigwedge_{\forall \Phi \in \Gamma_n} \forall \Phi,$$

we already have

$$\Gamma_n \models \bigvee_f \theta_f \models \Delta_n.$$

The cardinality of the disjunction V_f , i.e. that of the set of possible choice-functions, is

$$\left|\prod_{\forall \Phi \in \Gamma_n} \Phi\right|;$$

and

$$\left|\prod_{\forall \Phi \in \Gamma_n} \Phi \right| \leq \prod_{\Gamma_n} \kappa = \kappa^{|\Gamma_n|} = \sum_{\lambda < \kappa} \lambda^{|\Gamma_n|} \leq \sum_{\lambda < \kappa} 2^{\lambda} = 2^{<\kappa} < (2^{<\kappa})^+$$

by (1_n) and the regularity of κ .

Therefore, $\bigvee_f \theta_f$ is an $L_{(2^{<\kappa})^{+}\kappa}(C_n)$ -nns. If a relation-symbol R occurs positively (negatively) in $\bigvee_f \theta_f$, say in θ_f , then R occurs positively (negatively) in both $\Gamma_n \cup \{f\Phi | \forall \Phi \in \Gamma_n\}$ and Δ_n , and consequently in both Γ_n and Δ_n (for $f\Phi \in \Phi$). Therefore, $\bigvee_f \theta_f$ separates Γ_n and Δ_n relative to C_n , contradicting (2_n) .

Take $\Gamma_{n+1} = \Gamma_{n,f}$ and $\Delta_{n+1} = \Delta_n$, then (1_{n+1}) and (2_{n+1}) are satisfied.

 $(\Gamma 3_n)$: If $n=2 \pmod 8$, choose $\Gamma_{n+1}=\Gamma_n \cup \{\eta(c)| \forall x\eta(x) \in \Gamma_n \& c \in C_n\}$, $\Delta_{n+1}=\Delta_n$, and $C_{n+1}=C_n$, then (1_{n+1}) and (2_{n+1}) are satisfied: Suppose θ separates Γ_{n+1} and Δ_{n+1} relative to C_{n+1} , so that

$$\Gamma_n \cup \{\eta(c) | \forall x \eta(x) \in \Gamma_n \& c \in C_n\} \models \theta \models \Delta_n;$$

then we already have

$$\Gamma_n \models \theta \models \Delta_n$$
;

more: θ separates Γ_n and Δ_n relative to C_n , contradicting (2_n) .

 $(\Gamma 4_n)$: If $n = 3 \pmod 8$, choose $\Gamma_{n+1} = \Gamma_n \cup \bigcup \{\Phi | \Lambda \Phi \in \Gamma_n\}, \Delta_{n+1} = \Delta_n$ and $C_{n+1} = C_n$, then (1_{n+1}) is satisfied on account of

$$|\Gamma_{n+1}| \le |\Gamma_n| + \sum_{\Lambda \Phi \in \Gamma_n} |\Phi| < \kappa$$

(from the regularity of κ); and so is (2_{n+1}) : Suppose θ separates Γ_{n+1} and Δ_{n+1} relative to C_{n+1} ; so that

$$\Gamma_n \cup \bigcup \{\Phi | \land \Phi \in \Gamma_n\} \models \theta \models \Delta_n$$

then we already have

$$\Gamma_n \models \theta \models \Delta_n$$
;

more: θ separates Γ_n and Δ_n relative to C_n , contradicting (2_n) .

Similarly – but dually, according to the conditions of Lemma 2.2 – we enrich Δ_n if $n = 4 \pmod 8$, 5 (mod 8), 6 (mod 8), 7 (mod 8). The construction is such that, for all $n \in \omega$, (1_n) , (2_n) , $(\Gamma 1_n)$ – $(\Gamma 4_n)$, and $(\Delta 1_n)$ – $(\Delta 4_n)$ hold. We check up on the conditions of Lemma 2.2 for Γ , Δ , and C:

- (Γ 1) $\exists x \eta(x) \in \Gamma$, say $\exists x \eta(x) \in \Gamma_n$ for some $n = 0 \pmod{8}$. Then $\eta(c) \in \Gamma_{n+1}$ for some $c \in C_{n+1}$, hence $\eta(c) \in \Gamma$ for some $c \in C$.
- (Γ 2) $\forall \Phi \in \Gamma$, say $\forall \Phi \in \Gamma_n$ for some $n = 1 \pmod{8}$. Then $\eta \in \Gamma_{n+1}$ for some $\eta \in \Phi$, hence $\eta \in \Gamma$ for some $\eta \in \Phi$.
- (Γ 3) $\forall x \eta(x) \in \Gamma$, say $\forall x \eta(x) \in \Gamma_n$ for some $n = 2 \pmod{8}$. Then $\forall x \eta(x) \in \Gamma_m$ for all $m \ge n$ with $m = 2 \pmod{8}$. Let $c \in C$ be arbitrary, say $c \in C_p$. Choose an $m = 2 \pmod{8}$ such that $m + 1 \ge p$; then $\eta(c) \in \Gamma_{m+1} \subset \Gamma$.
- $(\Gamma 4)$ $\land Φ ∈ Γ$, say $\land Φ ∈ Γ$ ⁿ for some $n = 3 \pmod 8$. Then η ∈ Γⁿ⁺¹ $\subset Γ$ for all η ∈ Φ.
- ($\Delta 1$) $\exists x\eta(x) \in \Delta$, say $\exists x\eta(x) \in \Delta_n$ for some $n = 4 \pmod 8$. Then $\exists x\eta(x) \in \Delta_m$ for all $m \ge n$ with $m = 4 \pmod 8$. Let $c \in C$ be arbitrary, say $c \in C_p$. Choose an $m = 4 \pmod 8$ such that $m + 1 \ge p$; then $\eta(c) \in \Gamma_{m+1} \subset \Gamma$. ($\Delta 2$)-($\Delta 4$) similarly.
- (5) Suppose $\land B(\Gamma) \land \neg \lor B(\Delta)$ has no model, i.e. $\models \land B(\Gamma) \to \lor B(\Delta)$. Then the Lyndon interpolation theorem for finitary predicate logic (proposition logic is even sufficient!) provides an interpolating sentence θ for $\land B(\Gamma)$ and $\lor B(\Delta)$. So $B(\Gamma) \models \theta \models B(\Delta)$. From the compactness theorem for finitary predicate logic there are already finite $\Gamma' \subset \Gamma$ and $\Delta' \subset \Delta$ such that $B(\Gamma') \models \theta \models B(\Delta')$. Then we can choose an $n \in \omega$ such that $B(\Gamma') \subset \Gamma_n$ and $B(\Delta') \subset \Delta_n$, and therefore $\Gamma_n \models \theta \models \Delta_n$. But then θ separates Γ_n and Δ_n relative to C_n , contradicting (2_n) . Consequently, there exists a model $\mathfrak{A}_0 \models \land B(\Gamma) \land \neg \lor B(\Delta)$.

So Lemma 2.2 provides a model $\mathfrak{A} \models \Gamma \land \neg \lor \Delta$. In particular, $\mathfrak{A} \models \phi \land \neg \psi$, contradicting $\models \phi \rightarrow \psi$.

Remark: The explanation (*) for the bound $(2^{<\kappa})^+$ is connected in a natural way to the use of choice-functions for the construction of Γ_{n+1} in $(\Gamma 2_n)$.

Corollary 2.4 Theorem 2.3 remains valid for formulas ϕ , ψ , and θ , and with (iii) extended to free variables.

Proof: Let $A = \{a \mid a \text{ occurs as free variable in } \phi \text{ or } \psi; \text{ and consider } L(C) \text{ where } C = \{c_a \mid a \in A\} \text{ is a set of constants, all different. If } \phi' \text{ (respectively } \psi' \text{) is the sentence that originates from } \phi \text{ (respectively } \psi \text{) by replacing all free variables } a \text{ by constants } c_a, \text{ then } \phi' \to \psi' \text{ and Theorem 2.3 provides an interpolating } L_{(2^{<\kappa})^{+}\kappa}\text{-sentence } \theta' \text{ for } \phi' \text{ and } \psi'. \text{ Hence } \phi' \to \theta' \text{ and } \theta' \to \psi'. \text{ Then also } \phi \to \theta \text{ and } \theta \to \psi \text{ if } \theta \text{ originates from } \theta' \text{ by replacing all constants } c_a \text{ by variables } a. \text{ Then } \theta \text{ is an interpolating } L_{(2^{<\kappa})^{+}\kappa}\text{-formula for } \phi \text{ and } \psi.$

Lemma 2.5 For κ singular and $\phi \in L_{\kappa^+ \lambda}$, there exists a $\phi' \in L_{\kappa \lambda}$ such that $\models \phi \leftrightarrow \phi'$.

Proof: By induction on the complexity of ϕ . The only interesting case is $\phi = \bigvee_{\mu < \kappa} \phi_{\mu}$. Let $cf(\kappa) = \nu < \kappa$, say $\lim_{\gamma \to \nu} \kappa_{\gamma} = \kappa \ (\kappa_{\gamma} < \kappa)$. Then take

$$\phi' = \bigvee_{\gamma < \nu} \left(\bigvee_{\mu < \kappa_{\gamma}} \phi'_{\mu} \right),$$

then $\phi' \in L_{\kappa\lambda}$ and $\models \phi \leftrightarrow \phi'$.

This result tells us that languages $L_{\kappa^+\lambda}$ and $L_{\kappa\lambda}$ have the same expressive power if κ is singular. (Hence the demand that κ in $L_{\kappa\lambda}$ is regular does not restrict us if the axiom of choice is at our disposal, for in that case κ^+ is regular.)

Next, we show how the proof of Theorem 2.3 can be modified to obtain results by Friedman ([8]) and Chang ([2]), respectively (A) and (B) in the next theorem:

Theorem 2.6 For L_{κ}^{+} sentences ϕ and ψ with $\models \phi \rightarrow \psi$, there exists a sentence θ satisfying (i)–(iii) in Theorem 2.3 and

(A)
$$cf(\kappa) = \omega \Rightarrow \theta \in L_{(2^{<\kappa})^{+\kappa}}$$

(B)
$$cf(\kappa) = \omega$$
 & κ is a strong limit (i.e., $\lambda < \kappa \Rightarrow 2^{\lambda} < \kappa$) $\Rightarrow \theta \in L_{\kappa^+\kappa}$.

Proof: Let $cf(\kappa) = \omega$. If $\kappa = \omega$, then $(2^{<\kappa})^+ = \omega_1$ and the assertion is the interpolation theorem for $L_{\omega_1\omega}$. If $\kappa > \omega$, then κ is singular. Let ϕ' and ψ' be $L_{\kappa\omega}$ -sentences originated from ϕ and ψ as indicated in the proof of Lemma 2.5, so that $\not\models \phi \leftrightarrow \phi'$ and $\not\models \psi \leftrightarrow \psi'$. Then for (A) it suffices to know that there exists an interpolating $L_{\kappa^+\kappa}$ -sentence for ϕ' and ψ' , for the operation ' does not change the positive (negative) occurrence of relation-symbols or the occurrence of constants. Theorem 2.3 unfortunately does not provide such an interpolating sentence, for κ is singular. However, we can modify the proof of Theorem 2.3 as follows:

Write
$$\kappa = \bigcup_{n \in \omega} \kappa_n$$
 ($\kappa_n < \kappa$) and replace ($\Gamma 2_n$) and ($\Gamma 4_n$) by the weaker

 $(\Gamma 2_n)'$ $\forall \Phi \in \Gamma_n \& |\Phi| < \kappa_n \Rightarrow \eta \in \Gamma_{n+1} \text{ for some } \eta \in \Phi \text{ if } n = 1 \pmod{8}$ and

$$(\Gamma 4_n)' \quad \land \Phi \in \Gamma \& |\Phi| < \kappa_n \Rightarrow \eta \in \Gamma_{n+1} \text{ for all } \eta \in \Phi \text{ if } n = 3 \pmod{8}.$$

Then (Γ 2) and (Γ 4) in 2.2 are warranted: in the end, all $\forall \Phi \in \Gamma$ and $\land \Phi \in \Gamma$ come in for their turn because of $\kappa = \bigcup \kappa_n$.

The construction of $(\Gamma 2_n)'$ is like that of $(\Gamma 2_n)$; however, we can restrict the set of choice-functions to

$$\prod_{\substack{\forall \Phi \in \Gamma_n \\ |\Phi| < \kappa_n}} \Phi;$$

and

$$\left| \prod_{\substack{\forall \Phi \in \Gamma_n \\ |\Phi| < \kappa_n}} \Phi \right| \leq \prod_{\Gamma_n} \kappa_n = \kappa_n^{|\Gamma_n|} \leq 2^{<\kappa} < (2^{<\kappa})^+,$$

which is the desired inequality.

In the case of $(\Gamma 4_n)'$ we observe that

$$\left|\Gamma_{n+1}\right| \leqq \left|\Gamma_{n}\right| + \sum_{\substack{\land \Phi \in \Gamma_{n} \\ |\Phi| < \kappa_{n}}} \left|\Phi\right| \leqq \kappa$$

is still guaranteed.

Similar arguments hold for $(\Delta 2_n)'$ and $(\Delta 4_n)'$.

(B) is implied by (A): $2^{<\kappa} = \kappa$ for strong limits κ .

Notice that (A) and (B) in Theorem 2.6 are both generalizations of the interpolation theorem for $L_{\omega_1\omega}$ —with which they coincide for $\kappa=\omega$ (although, in that case, the proof of Theorem 2.6 does not work)—unlike Theorem 2.3, which for $\kappa=\omega$ provides an interpolating sentence in $L_{(2^\omega)^+\omega_1}$.

REFERENCES

- [1] Barwise, J., Admissible Sets and Structures, Springer-Verlag, Berlin, 1975.
- [2] Chang, C. C., "Two interpolation theorems," *Symposia Mathematica INDAM*, vol. 5 (1971), pp. 5-19.
- [3] Craig, W., "Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory," *The Journal of Symbolic Logic*, vol. 22 (1957), pp. 269-285.
- [4] Cunningham, E., "Chain models: applications of consistency properties and backand-forth techniques in infinite-quantifier languages," pp. 125-142 in *Infinitary Logic*, in memoriam Carol Karp, Springer-Verlag, Berlin, 1975.
- [5] Dickmann, M. A., Large Infinitary Languages, North-Holland, Amsterdam, 1975.
- [6] Doets, H. C., "Notes on admissible model theory," Report, University of Amsterdam, 1983.
- [7] Ferro, R., "Seq-consistency property and interpolation theorems," *Rendiconti del Seminario Matematico dell' Università di Padova*, vol. 70 (1983), pp. 133–145.
- [8] Friedman, H., "The Beth and Craig theorems in infinitary languages," unpublished, 1970.
- [9] Henkin, L., "An extension of the Craig-Lyndon interpolation theorem," *The Journal of Symbolic Logic*, vol. 28 (1962), pp. 201–216.
- [10] Karp, C., Languages with Expressions of Infinite Length, North-Holland, Amsterdam, 1964.
- [11] Karp, C., "Infinite quantifier languages and ω -chains of models," pp. 225-232 in *Proceedings of the Tarski Symposium*, American Mathematical Society, Providence, 1974.
- [12] Lopez-Escobar, E. G. K., "An interpolation theorem for denumerably long sentences," *Fudamenta Mathematicae*, vol. 57 (1965), pp. 253-272.
- [13] Malitz, J. I., "Infinitary analogs of theorems from first order model theory," *The Journal of Symbolic Logic*, vol. 36 (1971), pp. 216–228.

Mathematical Institute University of Amsterdam Amsterdam, The Netherlands

presently at: Elsevier Science Publishers Amsterdam, The Netherlands