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A Unified Approach to Relative Interpolation

DENNIS DUCHHART*

1 Introduction In general, languages L,, do not have the interpolation
property that, for L, was proven by Craig ([3]). At this moment interpolation
is known to hold for L,,,L,,. ([10]; see [12] for a combinatoric proof) and
for countable admissible fragments of L, (see [1]). Other infinitary languages
just do not seem to have the property, as was partly shown by Malitz ([13]), who
gave counterexamples for languages L., with « > w;, and L,, with k Z \ > w.

As a result of this situation attention has been paid to more restrictive
forms of interpolation. For strong limits k with c¢f(x) = w, for instance, Karp
([11]) proved an extension of Craig’s theorem to L,, using the notions of con-
sistency property with respect to w-chains of structures and w-satisfiability (intro-
duced in [10]). That is, for L,,-sentences ¢ and ¢ with E“¢ — ¢ there exists an
interpolating L, -sentence 6 such that F¢ — 6 and F6 — . Cunningham
improved this to F“¢ — 6§ and E“8 — v, using the notion of chain consistency
property (see [4]). Ferro introduced the seq-consistency property (see [7]) to
prove Cunningham’s result and extend it to second-order logic.

This paper concentrates on another approach: that of ‘relative’ interpola-
tion (i.e., there exists an interpolating sentence, but in a stronger language).
Dickmann ([5]) uses Interp(L,»,L,») to denote the property that for every pair
of L,,-sentences there is an interpolating sentence in L, .

Malitz ([13]) outlines a combinatoric proof of Interp(L,,,L@<x)+,) for
regular «. For cf(x) = w, Friedman ([8]) proves Interp(L,+,,L<~+,). Chang
([2]), using special and w,-saturated models, proves Interp(L,+,,L,+,) for
strong limits « with cf(kx) = w, which—although proven independently —is a
direct consequence of Friedman’s result.

This paper contains a straightforward proof, using only basic model-
theoretic notions, of a somewhat stronger version of Interp(L,,,L<x)+,) for
regular «. It will be shown that this proof can be easily modified to obtain the
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theorems of Friedman and Chang, thus providing a unified method to yield all
known relative interpolation results.

Moreover, the reason for the bound (2<*)* is explained in a natural way
by this method (a model-construction in the vein of [9]).

2 Relative interpolation Every nonlogical symbol in an L,,-formula is in
the range of only a finite number of negations. This justifies the definition of
positive (negative) occurrence of a nonlogical symbol, i.e. being within the range
of an even (odd) number of negations. (A nonlogical symbol can occur posi-
tively, negatively, both, or not at all in an L,,-formula.)

Atomic formulas and negations thereof are called basis-formulas. B(T') is
the set of all basis-formulas in a set I" of formulas. A basis-sentence is a basis-
formula containing no free variables.

A formula is in negation normal form (is an nnf) if it is composed of basis-
formulas by means of V, 3, A, and V. An nns is an nnf containing no free vari-
ables. It is easy to show the following

Lemma 2.1 For every L,\-formula ¢ there exists an L, \-nnf ¢' with the
same positive (negative) occurrences of relation-symbols and with the same
occurrences of constants as ¢, such that ¢ — ¢'.

For convenience we will make no use of function-symbols, nor of the
identity.

Before proving the relative interpolation result for L,, we state a model
existence lemma with only ‘break-down clauses’ (like the ‘mixed lemma’ in [6])
that exactly meets our requirements:

Lemma 2.2 Let T' and A be sets of nns’s of a fragment of L,, for a language
L(C) with C a nonempty set of constants. Suppose the following conditions
hold:

(T'1) Ixp(x) €T = ¢(c) €T for somece C
(r2yvéer = ¢ €T for some ¢ € ®
(T'3) vx¢(x) €T = ¢(c) €T forallc e C
(ray N® eT >¢op€l forallp e d

(A1) Ixp(x) €A = ¢(c) €A forallce C
(A2) Vo € A >¢pEAforallped

(A3) vxo(x) € A = ¢(c) € A for somec e C
(A4) A\® € A = ¢ € A for some ¢ € ®

(5) Yy EAB(T') A 7VB(A) for some model Y.

Then A £ AT' A 7V A for some model U.

Proof: Let Ay =<Ag,...), A ={c¥|ce C)and ¥ = (A,...). Then we have
A E AB(I') A ~VB(A). For convenience, we identify constants with their
interpretation in ¥ (i.e., in ).

By induction on the complexity of the nns ¢ we prove

(PET=AFP) & (dEA=UAF 19). 6]
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(a) If ¢ is a basis-sentence then (1) holds by % F AB(I') A °VB(A).
Suppose ¢ is not a basis-sentence, and the induction hypothesis is

(1) holds for y with ¢(¥) < c(¢), ?2)

where c(¢) is the complexity of ¢. We distinguish the following cases:

() ¢ = Ixy(x): Y (x) ET = Y(c) €T for some ce C= Y Fy(c) for
some ¢ € C (by (2)) = A F IxY(x); Ixy(x) € A = Y(c) € A for all
ceC=UFEyY(c)forallce C (by 2)) = A F —axy(x) (for A C C).

©¢p=VP: VP eIl = ¢ T for some ¢ € P = U F ¢ for some ¢ € &
by RQ)=>AFVe;peA=>pcAforall g € d=UYFE ¢ for all
o€ D=>UAEVD (by (2).

(d) ¢ = ¥xy(x): similar to (b).

(e) ¢ = A®: similar to (¢).

Hence A E AT A 2 VA.

Let T' F ¢ (respectively ¢ FT') abbreviate AT F ¢ (respectively ¢ FV T') for
formulas ¢ and sets of formulas I'.

Theorem 2.3 Let k be regular. For L, -sentences ¢ and Y with F¢ — y,
there exists an L<x)+,-sentence 0 such that
(i) Eod — 0 and F6 - ¢
(ii) every relation-symbol occurring positively (negatively) in 6 occurs positively
(negatively) in both ¢ and
(iii) every constant occurring in 0 occurs in both ¢ and .

Proof: From Lemma 2.1 we can assume that ¢ and ¢ are nns’s. Supposing there
is no L <«y+,-nns 0 satisfying (i)-(iii) above permits us to construct a model of
é A Y.

For this purpose we form two countable chains of sets of nns’s
{p}=ToCTyC...
and
(Y} =AgCA, C...
and a countable chain of sets of constants
CL=CyCcC|C...

where Cy is the set of all constants in L (the basic set of nonlogical symbols
from which we form the languages L,,). We can assume that L contains only
symbols occurring in either ¢ or , so that |Cp| < k.

It is our intention that I' = |J T,,, A= |J A, and C= |J C, satisfy the

L. . new n'Ew new
conditions of Lemma 2.2, assuring us of the existence of a model of AI' A =VA,

and hence of ¢ A Y.

First a definition: An Lp<«+,(C,)-nns 0 separates T', and A,, relative to
C,if T', F 0 F A, and every relation-symbol occurring positively (negatively) in
6 occurs positively (negatively) in both I', and A,,, (n,m, p € w); if such a 6 does
not exist, ', and A, are inseparable relative to C,; I, and A, are inseparable
if they are inseparable relative to C,,.
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The construction of the chains is such that for all n € w the following are
satisfied:

(1) |Tul, |Aul, |Cs| < kand Ty, A, C L,,(Cp)

(2,) T, and A, are inseparable
(I'1,)) 3xn(x) €T, = 9(c) € T4, for some c € C,,, if n =0 (mod 8)
(Ir2,)véerl', =€, forsomen € ®if n =1 (mod 8)
(I'3,) vxn(x) €T, = 9(c) €T,y for all c € C,yy if n =2 (mod 8)
(T'4,) AT, =nel,, forally e ®if n =3 (mod 8)
(Al,) Ixn(x) € A, = n(c) €A,y forall c € C,yq if n =4 (mod 8)
(A2,) V@ e A, =29p€ A, foralln e ®if n =5 (mod 8)
(A3,) Vxn(x) € A, = n(c) € A, for some ¢ € C,,,; if n = 6 (mod 8)
(A4,)) N € A,=np€E A, for somen € ®if n =7 (mod 8).

Ty = {9}, Ag = {¥}, and Cy = Cy, satisfy (1) and (2¢): suppose 0 separates
{#} and {y] relative to Cy, then F¢ — 6 and FO — .

Say § = 0(D,,D,) where D, (respectively D,) is the set of all (less than «)
constants in 6 not occurring in ¢ (respectively ¢). Then VE3Y (X, Y) is an
interpolating L;<«+,-sentence for ¢ and y, contradicting our assumption.

Suppose I',;, A,,, and C, are formed and satisfy (1,) and (2,).

(T'1,): If n = 0 (mod 8), choose a set C’ = {c,|3xn(x) € I,,} of constants,
all different, such that C’ and C, are disjoint. Take I,y = I, U {n(c,)|3x
n(x) €Ty}, A, =4, and C,y = C, U C’; then (1,,) is satisfied, as well as
(2,41): Suppose 0 separates I',,,; and A, relative to C,,, so that ', U
{n(c,)|3xn(x) €T,} EOFA,. Say 6 = 6(D), where D is the set of all constants
from C’ occurring in 6. Then, from the choice of C’, T', F3X0(X) EA,. But
then 3.X6(X) is an L<«+,-nns separating T, and A, relative to C,: indeed,
every relation-symbol occurring positively (negatively) in 3X6 (X) occurs posi-
tively (negatively) in both I', and A, on account of the corresponding property
of 0, T',.1, and A, , contradicting (2,).

(I'2,): If n =1 (mod 8), choose C,,; = C,. Assertion: there exists a
choice-function f for {#|V® € T,,} such that T, , =T, U {f®|V® €T,} and
A,, are inseparable relative to C,,. Suppose the assertion does not hold; i.e., for
all such f there exists a 0, separating I, » and A, relative to C,. Thus, for all
such f,

T, U {f®|V® ET,} kb, EA,;

i.e.,
r,u [ A fd)} ForFA,.
VeeT,
Consequently,
r,u {V A fd)} E\/ 6 F A,
f Véer, b
Because of

AN VeEV A /@ and T, A VO,
f

VéeT, Véer, VéET,
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we already have

T, EV\ 6 FA,.
f

The cardinality of the disjunction V,, i.e. that of the set of possible choice-
functions, is

d ‘;
V&ET,
and
(%) <I>| s[[c=«Tl = SNl = 3722 =2 < (2<9)*
VEET, T, A<k A<k

by (1,)) and the regularity of «.

Therefore, V0, is an Lg<«+,(C,)-nns. If a relation-symbol R occurs
positively (negatively) in V0, say in 6, then R occurs positively (negatively)
in both T', U {f®|V® €T,} and A,, and consequently in both T, and A, (for
f® € ®). Therefore, V0, separates T, and A, relative to C,, contradicting (2,).

Take I'yyy =T, s and A,y = A, then (1,,,) and (2,,) are satisfied.

(I'3,)): If n =2 (mod 8), choose I',,; =T, U {n(c)|vxn(x) €T, & c €
C,), Ayiy =4, and C,yy = C,, then (1,;) and (2,,,) are satisfied: Suppose
6 separates T',,,; and A, relative to C,;, so that

T, U {n(c)|Van(x) ET, & c € C,} FOF A,
then we already have
TLEOEA,;

more: § separates I',, and A, relative to C,, contradicting (2,).
(T'4,): If n =3 (mod 8), choose T',,; =T, U |J (P|AP ET,}, Apyy1 = A,
and C,,., = C,, then (1,,) is satisfied on account of

ITaetl = |TWl + >0 @] <k

A$ET,
(from the regularity of x); and so is (2,4): Suppose 6 separates I',,; and A,
relative to C,,;; so that
I,UU(@INeET,}FIEA,,
then we already have
I, EOEA,;

more: § separates I', and A, relative to C,,, contradicting (2,,).

Similarly —but dually, according to the conditions of Lemma 2.2 —we
enrich A, if n = 4 (mod 8), 5 (mod 8), 6 (mod 8), 7 (mod 8). The construction
is such that, for all n € w, (1,), (2,), (I'1,)-(I'4,), and (Al,)-(A4,) hold. We
check up on the conditions of Lemma 2.2 for T', A, and C:
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(T'1) Ixy(x) €T, say Ixn(x) €T, for some n = 0 (mod 8). Then y(c) € ',y
for some ¢ € C,,, hence n(c) €T for some c € C.

(I'2) Vo €T, say V® €T, for some n =1 (mod 8). Then n € I, for some
n € ®, hence n € I' for some n € ®.

(I'3) vxn(x) €T, say vxy(x) € I, for some n = 2 (mod 8). Then Vxn(x) €
I',, for all m = n with m = 2 (mod 8). Let ¢ € C be arbitrary, say c € C,,.
Choose an m = 2 (mod 8) such that m + 1 = p; then n(¢) €T,,,; CT.

T'4) A® €T, say A® €T, for some n = 3 (mod 8). Theny €T, CT for all
n € ®.

(A1) 3xn(x) € A, say 3xn(x) € A, for some n =4 (mod 8). Then 3xn(x) € A,
for all m = n with m = 4 (mod 8). Let ¢ € C be arbitrary, say ¢ € C,.
Choose an m = 4 (mod 8) such that m + 1 = p; then 5(c) €T,,,; CT.

(A2)-(A4) similarly.

(5) Suppose AB(I') A 7VB(A) has no model, i.e. EAB(I') » VB(A). Then the

Lyndon interpolation theorem for finitary predicate logic (proposition logic is

even sufficient!) provides an interpolating sentence 6 for AB(I') and VB(A). So

B(I') E6 E B(A). From the compactness theorem for finitary predicate logic

there are already finite I C I' and A’ C A such that B(I'') F 6 F B(A’). Then

we can choose an n € w such that B(I'') CT,, and B(A’) C A,,, and therefore

I', E0 EA,. But then 6 separates I',, and A, relative to C,,, contradicting (2,).

Consequently, there exists a model %y F AB(I') A ="VB(A).

So Lemma 2.2 provides a model ¥ FT' A = VA. In particular, A F ¢ A 1y,

contradicting E¢ — .

Remark: The explanation (*) for the bound (2<¥)* is connected in a natural
way to the use of choice-functions for the construction of ', in (I'2,).

Corollary 2.4 Theorem 2.3 remains valid for formulas ¢, , and 0, and with
(iii) extended to free variables.

Proof: Let A = {a|a occurs as free variable in ¢ or y; and consider L(C) where
C = {c,]a € A} is a set of constants, all different. If ¢’ (respectively y’) is the
sentence that originates from ¢ (respectively ¢) by replacing all free variables
a by constants ¢,, then ¢’ — ' and Theorem 2.3 provides an interpolating
L<«+,-sentence 6’ for ¢’ and ¢’. Hence ¢’ — 6’ and 6’ — ¢’. Then also ¢ —
0 and 6 — y if 6 originates from 6’ by replacing all constants ¢, by variables a.
Then 6 is an interpolating L <«+,-formula for ¢ and .

Lemma 2.5 For « singular and ¢ € L+, there exists a ¢’ € L, such that
Ep o ¢,

Proof: By induction on the complexity of ¢. The only interesting case is ¢ =
V ¢,. Let cf(x) = » < «, say lim k, = k (k, < ). Then take

n<k tindd

=V (V&)

y<v p.<K,7

v

then ¢’ € L,, and F¢ « ¢’.
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This result tells us that languages L.+, and L,, have the same expressive
power if « is singular. (Hence the demand that « in L,, is regular does not
restrict us if the axiom of choice is at our disposal, for in that case " is
regular.)

Next, we show how the proof of Theorem 2.3 can be modified to obtain
results by Friedman ([8]) and Chang ([2]), respectively (A) and (B) in the next
theorem:

Theorem 2.6 For L, +-sentences ¢ and  with ¢ — |, there exists a sen-
tence 0 satisfying (i)-(iii) in Theorem 2.3 and

(A) cf(K) = w = 0 € Lp<x)+,

(B) cf(k) = w & « is a strong limit (i.e, N< k=2 < k)= 0 € L,+,.

Proof: Let cf(k) = w. If k = w, then (2<%)* = w, and the assertion is the inter-
polation theorem for L, . If k > w, then « is singular. Let ¢" and ¥’ be L,,-
sentences originated from ¢ and ¥ as indicated in the proof of Lemma 2.5, so
that F¢ <« ¢’ and Fy < {’. Then for (A) it suffices to know that there exists
an interpolating L, +, -sentence for ¢’ and y’, for the operation ’ does not
change the positive (negative) occurrence of relation-symbols or the occurrence
of constants. Theorem 2.3 unfortunately does not provide such an interpolat-
ing sentence, for « is singular. However, we can modify the proof of Theorem
2.3 as follows:
Write k = U k, (k, < k) and replace (I'2,) and (I'4,) by the weaker

neEw
(r2,) VeeTl, & |®| <k,=»n€&T, for somen € ®if n =1 (mod 8)
and
(T'4,) NPT & |®| <k,=2>n€T,, forallyge ®if n =3 (mod 8).

Then (I'2) and (I'4) in 2.2 are warranted: in the end, all V® €T and A® €T
come in for their turn because of x = |J «y.

nEw
The construction of (I'2,)’ is like that of (I'2,); however, we can restrict
the set of choice-functions to

®;
VEET,
|¢!<Kn
and
b =]k = kil = 2<% < (29,
VOET, T,
|| <kn

which is the desired inequality.
In the case of (I'4,)’ we observe that

ITuct] = Tal + 25 |2 =«
APET,
|®| <«

is still guaranteed.
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Similar arguments hold for (A2,)’ and (A4,)’.
(B) is implied by (A): 2<% = « for strong limits «.

Notice that (A) and (B) in Theorem 2.6 are both generalizations of the
interpolation theorem for L,, ,—with which they coincide for k = w (although,
in that case, the proof of Theorem 2.6 does not work)—unlike Theorem 2.3,
which for k = w provides an interpolating sentence in L)+, .
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