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Many-Sorted Elementary Equivalence

DANIEL DZIERZGOWSKI

Introduction Let us consider a many-sorted language <£. Any £-theory 3 can
be effectively replaced by an equally powerful cC*-theory 3*, where £ * is a one-
sorted language canonically associated with <£ (most often, <£* contains a unary
predicate Ss for each sort s of <£). Such a remark appears in the first para-
graphs of many texts dealing with many-sorted theories, e.g. [3], p. 13; [5], ch.
5; or [7], ch. XII.

On the other hand, some many-sorted notions cannot be directly transposed
to the corresponding one-sorted notions (see, for example, [4]).

In this paper, we will study how the many-sorted elementary equivalence
can be transposed into one-sorted elementary equivalence. More precisely, if
91Z and 91 are ^-structures we will see when 911 = 91 implies, or is implied by,
911* = * 91*, where 911* and 91* are c£*-structures canonically associated with 9H
and 91 (in a way which will be made more precise later), and = and = * denote
respectively the <£- and <£*-elementary equivalence relations.

First, we will study, as an example, the case where <£ is £ττ, the language
of Simple Type Theory, with four different ways to build <£*. Then we will char-
acterize the many-sorted languages for which the results for £ττ can be gener-
alized.

1 An example: £ττ If <£ is £>ττ> then the set of sorts of <£ thus is ω, and
its only nonlogical symbol is the binary relational symbol E. Hence, if d is an
<£-structure, then d will be of the form

a=(A°,Aι,...;ea),

where

e G c U AlxAi+l. (l)

As usual, we will impose that

V/G ω, A1 ψ 0 ,
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and also that

V/,7 eω,iΦj=*AιΠ AJ = 0 . (2)

Throughout this section, 31Z and 31 will denote two <£-structures: 3)1 =
(M°,Mι,. . . Ggrc), and 31 = (N°,N1,.. . ;G O T ).

There will be four cases, each case considering a different way to build £* .
The first and second cases are quite simple; they are mentioned for the sake of
completeness.

1.1 Case 1 Here, the nonlogical symbols of £ * are E°,eι, . . . , S ° , S 1 , . . .
and for every £-structure β, β* is defined by

β* = (u^^^,...,sg,sέ,...),
\/6ω /

where, for every / G ω, G ^ = E ^ Π A/' X Mί+ι and S ^ = M'.
It is easy to see that if OH* Ξ=* 01*, then 311 = 91. Indeed, for any £-

sentence σ, there exists an £*-sentence σ* such that for any £-structure β, β h
σ<=> β* t= σ*. σ* is obtained by substituting simultaneously, for each expression
of the form 3xιφ(xι) in σ, an expression of the form 3x(S*(x) Λ Φ(X)) (with the
understanding that different variables in σ are replaced by different variables in
α*).

The other implication, DTI = dl => DH* Ξ * 91* is done in a similar way: for
any £*-sentence σ* we have to find an £-sentence σ such that for any £ -
structure &, CE* N σ* <=> (1 f= σ. The construction of σ will not be given here; it
is based on the following lemma:

Lemma 1 Let φ be an £*-formula, and nφ a natural number such that, if E1

or Sι occurs in φ, then i < nφ. Also let (2 be an ^-structure, and f a permu-
tation of (J A1 such that f{x) = x for every x in A0 U . . . U A"*. Then, for

every x,yT - G (J A\ α* N φ[x,y,... ] « α* 1= Φ[f(x),f(y),... ] .
'Gω

1.2 Case2 The nonlogical symbols of £ * are E°,Gι,..., and for every £ -
structure &, β* is defined by

a*= (\jA';eoa,eι

a, \
\ ί€ω /

As £ * is a sublanguage of the language £ * introduced in Case 1,311 =
31 => 3Π* = * 31* is a consequence of Case 1. But now, 3H* = * 31* => 3H = 31
is no longer true. This can be shown in the following trivial example:

• 9TC = ({/wo},{'w1),{/722})...,{/wί},...;GcyK), where e m = 0
• 31 = ({/2O,ΛI},{Λ2},{Λ3}» » ( Λ / } , . . . ; G 9 1 ) , where G ^ = 0 ;

3Π* Ξ * 31*, because 311* = 31*. But if σ is 3x°3y° x° Φ y°, then 3H ψ σ and
31 Nσ. Thus 3H ^ 31.

7.3 Case 3 The only nonlogical symbol of £ * is E, and for every ^ s t r u c -

ture β, β* is ί (J AL,Ea). In this case it is not trivial to prove that 3H = 31 =>
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OH* = * 01*. The easiest proof the author has found, on a suggestion of M.
Boffa and M. Crabbe, makes use of Fraϊsse's technique of partial isomorphisms
(see [6], ch. 26). But such a proof cannot be nicely generalized, since it can only
be applied to languages having a finite number of symbols. However, another
more general but also more tedious proof has been found. It is given in detail
in [2], and its generalization will be given later in this paper.

On the other hand, the argument given in Case 2 can be reproduced here
to prove that OH* Ξ * 91* φ OH = 01.

1.4 Case 4 The nonlogical symbols of <£* are E j S ^ S 1 , . . . , and for every
Ju-structure Q, (2* is given by

where SQ = A\ for every / E ω.
An easy adaptation of the proof given in [2] shows that OH Ξ= 01 => OH* Ξ *

01*. And OH* Ξ=* 01* =» OH = 01 can be proved by reproducing the argument sug-
gested in Case 1.

2 Notations In the following sections, <£ will denote a many-sorted lan-
guage, whose set of sorts will be Σ. In some sections, there will be constraints
on <£, which will be indicated. An ^-structure Q will be of the form

β = ((^)56Σ;(«Γ)Γ€Λ,(Ϊ/)/6F),

where the As's are the domains, the (R/s the relations, and the 3y's the func-
tions. As for £ ^-structures, we will impose that

vs GΣ,ASΦ 0 ,

and that

Vs, t E Σ, s Φ t =» As Π A1 = 0 . (3)

To generalize the results produced for £ττ, four different one-sorted lan-
guages <£* will be introduced. Each time, (2* will be the £*-structure canonically
associated with an ^-structure β, in the same way that this has been done for
JCTTS in particular, the domain of (2* will be (J As.

sSΣ

Two languages, £ G and £ + will be also introduced later. ==, = * , = G ,
and Ξ= + will denote the elementary equivalence relations corresponding respec-
tively to <£, £*, £G, and £ + . For example, β = * (B iff β t= σ <=> (B h σ for
every £*-sentence σ.

3 Generalization of Case 1 and Case 2 The generalization of Case 1 is quite
straightforward, and thus details will be left as an exercise. Roughly speaking,
£ * is obtained by splitting functional and relational symbols of «£, according
to the sorts of their arguments, and by adding a unary predicate symbol Ss for
each sort s. Then, using a generalization of Lemma 1, one can prove that:
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For any £*-formula φ, there exists Σφ C Σ, Σφ finite, such that, for any £-
structure &, and for any yx,... ,yn G (J As,

sGΣ

3χe \J As a* £φ[x,yu...,yn]**ixe U A* α * N Φ t ^ J Ί * - >>'J
S(ΞΣ sGΣφ

This is the key to show that 911 = 91 => OH* ==* 91*, for any two ^-structures
911 and 91. And 911* Ξ * 91* => 9H Ξ= 91 is true by exactly the same argument as
in Case 1.

Now, in order to generalize Case 2, £ * will be defined as above, but with-
out the S5's. As this £ * is a sublanguage of the preceding £ * , then 9H = 91 =>
9TC* Ξ=* 91*. As we saw in Case 2, 911* Ξ=* 91* => 9H = 91 is in general false. Nev-
ertheless, it will be true if the Ss's can be "defined" in 911 and 91, i.e. if, for
every s G Σ, there exists an <£*-formula φs(x), having x as its only free variable,
such that

VxG [J M< ΐKl* t φs[x] <=>xeMs

ίGΣ

and

Vx G (J Nt 91* N φ*[x] «=> x G A^5.

For example, if £ is Sίττ, then for every / G Σ = ω, there exists a formula
φ'(x), such that for every <£ ̂ -structure & satisfying the axioms of Simple Type
Theory, (£* |= φι[x] <=*xGAι, for every x G (J ^47. It suffices to define φι(x) as

ί'Gω

( 3 y ( x G y Λ 3xo3X! . . . 3 i i j 0 ^ ^ i A X i G i 2 A . . . Λ i ; G j ) )

Λ (Vy(x<Ξ y => ~i(3xo3Xi. .3*ι+i *o ^ X\ Λ * I G X 2 A . . .ΛΛΓ / + 1 G J ) ) ) .

^ Generalization of Case 3

4.1 A counterexample For the generalization of Case 3, £ * will be the one-
sorted language having the same logical, relational, and functional symbols as £ .

But first, as a motivation, let us look at a counterexample. Let £ be a
many-sorted language whose set of sorts is ω, and whose atomic formulas are
of the form x' = yι or x° G yi (i G ω). Now let 9H and 91 be the following
slightly different £-structures: 9H = (Af°,M ι , . . . G ^ ) and 91 = (TV^TV1,
. . . Gcft), where

• M ° = {/W!,m2,... }
Mι = {ϊfii}, for every / > 1
^sm = {<"*/,m,>: / G ω}

• TV0 = { Λ 0 . Λ i , Λ 2 , . . . }

7VZ = [hi], for every / > 1

G O T = {{nι,nι)\ i G ω ) .

It can be proved that 9H = 91.
But if σ* is (3x)(^ly)(x G j ) , then 911* (/ σ* while 91* (= σ*. Hence 9H* ^ *

91*.
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What is the "fatal difference" between £ and £TTΊ Well, £ττ is, in a cer-
tain sense, "local", while <£ is not. This "locality" of £ττ means that there are
only a finite number of sorts directly interacting with a given sort. In more tech-
nical words, the only atomic formulas into which xι can occur are of the form
yι~ι E x\ xι = yι or xι E yι+ι', thus sorts / — 1, /, and / + 1 are the only sorts
which can directly interact with sort /. This will be the hypothesis we will put
on <£ to generalize Case 3.

4.2 The hypothesis on £ Let a be an atomic formula of <£*, and suppose
that Xι,.. . ,xn are exactly the variables occurring in a(n > 2). Then Sα will be
defined by

§>a={(su... ,sn) E Σn: a(xp/xu... ,xs

n

n/xn)
is a well-formed <£-formula}.

Then we can define

Sa(s) = {sf E Σ : 3/3/ ' Φ I l(su. . . , £ „ > (ΞSaS^s Λsr =s'}.

Now, the constraint we will impose on £ is the following:

for every atomic £-formula a, having at least two variables, and for every

seΣ,

§>a(s) is finite.

For example, this constraint is satisfied by £ττ:

• if α is xι Gx2 t h e n S Λ ( 0 ) = {1}, a n d §>a(s) = {s - 1, 5* + 1) , if s > 0

• if a is X\ = x 2 t h e n Sa(s) = {s}.

4.3 Generalized sorts We will now introduce £G, a many-sorted language
in which £ and £* can both be "embedded". £G has the same logical, rela-
tional, and functional symbols as <£. But its set of sorts, ΣG, is bigger than Σ:
s E ΣG iff

• either s E Σ (s is called a "proper sort")
• or s is a finite subset of Σ (s is called a "nonproper sort").

Elements of ΣG are called "generalized sorts". Intuitively, a varaible of sort
{sχ9.. ,,sn] will take its value among objects whose sort is neither s{) nor
s2,. . ., nor sn.

Atomic formulas of £G are built in the usual way, from the symbols of
£G, without any restriction on the sort of occurring variables. By the way, we
can extend the definition of §>a to cases where a is an atomic £G-formula,
whose variables are exactly jcf1,.. . 9x%n:

§ , = {<*!,... ,sn) E Σ": *(jcfi/xίV . . ,xs

n»/xfr)
is a well-formed <£-formula}.

So Sa, and also Sa(s), remain defined if a is an c£G-formula.
Now, let OH be an Jΰ-structure:

311 = ((MS)S(ΞΣ; ((Rr)reRΛ$f)feF).
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The £G-structure that will be canonically associated with 311 will be

WG= ((MS)SGΣΛMS)SG(P~(Σ); {(Rr)reR, ( S / W ) .

where, if S E (P°°(Σ), Ms = \J Ms. We will suppose also that every Ms is
sGΣ\S

nonempty. This will be the case if Σ is infinite. We will see later what happens
if Σ is finite.

We say that <£ and <£* can be "embedded" in <£G because, if 311 is an <£-
structure, and if m b . . . ,mn E (J A/5, then

SGΣ

• if φ is an JC-formula, then φ is also an £ G - formula and

311 Nφ[/Wi,...,/wΛ] «=*31lG hφf/Tί!, . . . , w Λ ] ; (4)

• if φ is an £*-formula, then

OH* t = φ [ / w i , . . . , m π ] ^ 3 ϊ l G H φ 0 [ m 1 , . . . , m J , (5)

where φ 0 is φ where every variable x has been replaced by x 0 (that is
because M 0 = ( J M 5 ) .

SGΣ

Now, let us pause for some useful definitions:

• a variable will be called proper (respectively nonproper) if its sort is
proper (respectively nonproper);

• an c£G-formula φ will be called proper (respectively nonproper) if all
variables occurring (free or bounded) in φ are proper (respectively non-
proper);

• an £G-formula will be called homogeneous if it is proper or nonproper.

Also, we will use the following conventions: lower-case letters s, t,... will denote
proper sorts, upper-case letters 5, T,... will denote nonproper sorts, and a bold
lower-case s will denote any generalized sort.

Finally, we can introduce the <£G- tneory Γ, which will allow us to reason
purely syntactically (i.e., independently of the particular structures 9H, 3)1*, and
3TCG). Γ will be satisfied by all £G-structures of the form 3Kσ. Its logical
axioms are given by the following schemas:

Γl -iff, if a is a proper atomic <£G-formula which is not an atomic JC-formula
(this is justified by (3)).

Γ2 -iff, if a is an atomic <£G-formula and S D §a(s) for some variables xs and
ys occurring in a.

Γ3 lxsφ(xs) <=> (lxSU{slφ(xSU{s]) v 3xsφ(xs)), if φ is an £G-formula, and
s£S.

4.4 Working definitions This section contains all the definitions used in the
next sections, together with some simple properties.

If φ is an £G-formula, then
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• if s E Σ, then §>φ(s) =df UfS^ί^): a is an atomic subformula of φ)
• if S C Σ, then cφ(5) =#• U(S0(5): s e S), and we define, by induction,

c$(S) =df S
c$+ι(S) =v φS) U cφ{c$(S))

• if S G Σ , then e j = ^ c | n ( S )
• pr(φ) =<#• {s E Σ: s is the sort of a (proper) variable occurring in φ).

From these definitions it is easy to prove that

If n < m, S C T, and ψ is a subformula of φ,

t h e n e ^ ( 5 ) C C ^ ( Γ ) , (6)

and also that

If n > 0, S C Σ, and φ is an <£G-formula, then

Scen

φ(S) (7)

65(62(5)) = C^+ 1(5). (8)

If φ is an <£G-formula, then nqr(φ), the "nonproper quantifier rank" of
φ is defined by induction as follows:

• nqr(φ) = 0, if φ is atomic;
• nqr(-πφ) = nqr(φ);
• nqΐ(ψ v ψ') = max{nqγ(ψ),nqΐ(ψ')};
• nqr(3*"V) = nqr(^);
• nqr(lxs\l/) = nqr(i/0 + 1.

A key notion, the notion of a connected £G-formula, is also defined by
induction:

• if φ is atomic, then φ is connected
• if φ is connected, then ~iφ is connected
• if φ and ψ are connected and have at least one common free variable,

then φ v φ is connected
• if φ is connected and if xs occurs free in φ, then 3xsφ is connected.

An easy, but important, property of connected formulas is the following:

If φ is a connected <£G-formula such that every atomic

subformula of φ is homogeneous, then φ is homogeneous. (9)

It is also worth noting that

If σ is a connected £G-sentence, then σ

is of the form 3xsφ or -•.. . ~>3xsφ. (10)

We also have to make more precise our definition of lg(φ), the length of
an £G-formula φ:

• if φ is atomic, then lg(φ) = 0
• l g ( ^ v ^ ) = max{lgW,lg(^)} + 1
• l g ( - ψ ) = l g W + 1
• lg(lxsφ) = lg(φ) + 1.
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Finally, here is our definition of a Boolean combination of a set of
£G-formulas:

• if φ is an <£G-formula, then φ is a Boolean combinat ion of {φ}
• if Φ is a Boolean combinat ion of the set of <£G-formulas E, then so is

-iΦ

• if Φ and Ψ are respectively Boolean combinations of the sets of £G-
formulas E and F, then Φ v Ψ is a Boolean combination of E U F.

4.5 Lemmas This section contains four lemmas, used in the proof of The-
orem 1 in the next section. It is not necessary to understand the proofs of these
lemmas in order to understand the proof of the theorem. Thus, those readers
who want to get some motivation before going into the proofs of the lemmas
can skip them in a first reading, and see how they are used in the proof of The-
orem 1 (Lemma 3 is used only in the proof of Lemma 4).

Lemma 2 (The fundamental lemma) If φ is a nonhomogeneous £G-formula
such that if S is the sort of a free nonproper variable of φ then S D 6 £ q r ( 0 )

(pr(φ)), or if φ is a homogeneous £G-formula, then there exists an £G-formula
φh such that

• Γ h φ <=> φh

• nqv(φh) < nqr(φ)
• every atomic subformula of φh is homogeneous
• every free variable of φh occurs free in φ.

Proof: The proof will be an induction on lg(φ). Only a construction of φh will
be given, with however some indications concerning the reasons that Γ V φ «=>
φh. The verification of the remainder of the thesis is left as an exercise.

• If φ is atomic and homogeneous, then φh can be set identical to φ.
• If φ is atomic and nonhomogeneous, then let xs and ys be two variables

occurring in φ. As nqr(φ) = 0, then, by the hypothesis of the lemma,

S D e£(pr(φ)) = cφ(pr(φ)) = U{SΦ(O: t G pr(φ)} D Sφ(s).

By Axiom Γ2, φ is thus false. Hence, we can set φh identical to xs Φ xs.
• If φ is -iψ, then e^qr(</))(pr(φ)) = ej q r ( i / / )(pr(^)). So φ also satisfies the

hypothesis of the lemma; by the induction hypothesis, φh exists, and we
can set φh identical to ~^{φh)-

• If φ is φ v φ', then if, for example, φ is not homogeneous, and if S is
the sort of a nonproper variable occurring free in φ, then

e j q r W ( p r W )
c e ^ } ( p r ( φ ) )
(because φ is a subformula of φ, nqr(^) < nqr(φ), and pr(ψ) C pr(φ))
CS.

This is sufficient to show that φ satisfies the hypothesis of the lemma
and, hence, that φ^ exists. In the same way, φ^ exists, and we can set φ^
identical to φh v φ'h.

• If φ is lxsφ and that xs does not occur free in φ, then, as in the preced-
ing case, it suffices to set φh identical to φh.
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• If φ is 3xsφ and that Xs occurs free in ψ, then e $ q r W ( p r ( ψ ) ) =
Gφqr(<ί>)(pr(0)) and, as above, ^ satisfies the hypothesis of the lemma,
we can set φh identical to 3xsψh.

• If φ is 3xsψ(xs), and Λ:5 occurs free in ψ, and 0 has no proper free vari-
able, then φh can be φ.

• If φ is 3x 5 ^(x s ), and xs occurs free in ψ, and at least one proper vari-
able occurs free in ψ, then we would like to set φh identical to lxsψh.
Unfortunately, we cannot prove ψh to exist. A solution consists in first
defining

S' = S\Jepτlφ)-ι(pτ(φ)). (11)

By the constraint on <£, and by the definition of nonproper sorts, S'\S
is finite. We can thus build the following <£*-formula:

lxs\φ(xs'))hv V *xs(Ψ(xs))h. (12)
s(ΞS'\S

By Γ3,φΛ can be set identical to this formula. Indeed, we are going to
prove that ψ(xs) and the ψ(xs)'s satisfy the hypothesis of the lemma;
(φ(xs ))h and the (ψ(xs))h's thus exist. Let us consider ψ(xs ). If Γis
the sort of a nonproper free variable of ψ(xs), then

a. either T is the sort of a free variable of φ,
b. or Γis S'.

In the first case,

c e n q r ( φ ) ( p r ( ( / ) ) ) (by (6))

C T. (hypothesis of the lemma).

And in the second case,

S'De^(*)-i(pi(φ)) (by (11))

Thus φ(xs ) satisfies the hypothesis of the lemma. Let us now consider
a φ(xs). If φ(xs) is homogeneous, we are done. And if it is not, then
let Γbe the sort of one of its nonproper free variables. Then

e;^χS))(pr(φ(χS)))

= e;i{^χS))(pr(φ)U{s})

ce;i%(χS)\pv(φ)ue^^-i(pr(Φ)))
(by (7), (11), (12), and (6))

= eγ^χS)) ( β ^ 1 0 * - 1 (pr(0») (by (7))

= e^*)-1(er(*)-1(pr(Φ)))
(because nqr(\^(x5)) = nqr(</>) — 1)

= en qr(φ)-l ( eπqr(φ)-l ( p r ( φ ) )

= Vn

φ

qr{φ) (VHΦ)) (by (8))
C T (hypothesis of the lemma).

φ(xs) thus also satisfies the hypothesis of the lemma.
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Connected formulas have been introduced by Crabbe in [1], p. 14, under the
name "elementary formulae", together with a weaker version of the following
lemma:

Lemma 3 Any £G-formula φ is equivalent in Γ to a Boolean combination
φc of a set {</>o,. , Φn) °f £>G-formulas such that, for every i < n,

• nqr(φy) < nqr(ψ)
• φι is connected
• any variable occurring free in φ, occurs free in φ
• any atomic subformula of 0/ is also a subformula of φ.

Proof: The proof is easy; it can be found in [2].

Lemma 4 If σ is an £G-sentence all of whose atomic subformulas are homo-
geneous, then σ is equivalent in Γ to an £G-sentence σc which is a Boolean com-
bination of a set {σ0,. , σn} of £G-sentences such that, for every i < n,

• nqr(σ7) < nqr(σ)
• σz is connected and homogeneous.

Proof: This is just a corollary of Lemma 3 and of Property (9).

Lemma 5 In Γ, every proper £G-formula φ is equivalent to an Si-formula
Φι such that every free variable of φι occurs free in φ.

Proof: By Axiom Γl, φ/ is obtained by replacing in φ every atomic subformula
which is not an JC-formula by a false ^-formula (without adding new variables).

4.6 Conservation of the elementary equivalence In this section, the proof
of 9)1 Ξ= 91 => 3ΪZ* Ξ=* 9fl* will be given. This will be Theorem 2, which is an easy
consequence of the following Theorem 1 :

Theorem 1 IfΐPd and dl are ̂ -structures, then

9ΪI = 91
Φ

STCG = G 3 Ϊ G

Proof: ίr Suppose that 3ϊlG =G dlG, i.e. for every £G-sentence σ, 31ZG N σ<̂ >
dlG 1= σ. In particular, if σ is an ^-sentence, then, by (4), 91Z f= σ<^ 9HG 1= σ<=>
9 l σ H σ ** dl 1= σ. Hence, 9K s 91.

U Suppose that 9H = 91, and let σ be an £G-sentence. We are going
to prove, by induction on nqr(σ), that 3ϊlG 1= σ <=> 9I G 1= σ. As σ has no free
variables, Lemma 2 tells us that σ is equivalent, in Γ, to σh, which is a sentence
all of whose atomic subformulas are homogeneous, and which is such that
nqr(σΛ) < nqr(σ). Now, by Lemma 4, Γ h σh ^ σhc, where σhc is a Boolean
combination of the set ( σ 0 , . . . ,σn] of £G-sentences such that, for every / < n,

• nqr(σ,) < rvqx{σh) < nqr(σ)
• σz is connected and homogeneous.

As 9HG N Γ and 9l G 1= Γ, the problem is to prove that 9ΐZG 1= σhc <=> 9l G 1= σhc.
But, roughly speaking, 1= commutes with -i and v: for example, (9ΠG \= -iφ) *=*
-i (9HG N ψ). Thus, it suffices to show that 9HG h σz ̂  9I G 1= σz, for every σ, .
And as each σz is homogeneous, there are two cases:
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a. either σ, is proper, and then

9 1 l G t=σ,

<=> 9TlG N (σ/)/ (by Lemma 5)

~ 9 R M σ , )/ (by (4))
«=> 91 1= (σz)/ (hypothesis of the theorem)

b. or σ, is nonproper; as σ7 is connected, then, by (10), σ, is of the form
3xsφ{xs) or - > . . . -«3xs φ(xs). If σ, is of the form lxs φ(xs), then

9 H G 1= 3JC5 φ ( j c s )

<=> there exists 5 G Σ\S such that 9ϊlG N lxs φ(xs)
** there exists s e Σ\S such that 9 l G H 3x5 φ(x 5 )

(by the induction hypothesis, because nqr(a.vs Φ(xs)) < nqr(σ, ) <
nqr(σ))

<=> 9 l G Naxsφ(jc5).

And if σ, is of the form - 1 . . . —«3JCS Φ(JC S ) , the proof is done in the
same way.

Thus, 9UG t= σ <=> 9HG |= σΛc ^ 9 l G 1= σΛc «=> 9 l G N σ, and 3HG s G 9 I G .

Theorem 2 will give the solution to our initial problem. It is an easy con-
sequence of Theorem 1.

Theorem 2 IfΐSΐί and 91 are £ -structures, then 9H = 91 => 9H* = * 91*.

Proof: Let σ be an £*-sentence. Then,

9ΪI* hσ

« 9ϊlG 1= σ 0 (by (5))
^ 9 l G h σ 0 (by Theorem 1)
<=* 9 1 * h σ.

Hence, 9)1* = * 91*.

4.7 If Σ was finite As we saw above, if Σ was finite, then some of the 9H5's
could be empty, and then there would be a problem to define 9ΪZG. Neverthe-
less, it remains true that 9TC Ξ= 91 => 3ft* ==* g^* and, furthermore, there is no
constraint on <£ or, if you prefer, the constraint imposed in Section 4.2 is always
satisfied. Indeed, for any £*-sentence σ* there exists an ^-sentence σ such that
for any ^-structure β, β h σ<=* β* f= σ*.

σ is built in two phases. First, σ* is transformed into σ by the following pro-
cedure:

• if φ is atomic, then φ is φ
• φ v φ is φ v φ
• -ιφ is -ι0

• 3xφ is V lxsφ(xs/x).

Then σ is obtained by replacing in σ each atomic subformula which is not an <£-
formula by a false £-formula.
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5 Generalization of Case 4 For the generalization of Case 4, £ must also
satisfy the constraint introduced in Section 4.2 (if £ is infinite). <£* will be the
one-sorted language having the same logical, relational, and functional symbols
as <£, plus one unary predicate symbol Ss for each sort s E Σ.

Let 9ίl and 91 be two ^-structures. A direct proof of ΐtti s 91 => 9ft* ==*
91* can be obtained by slight modifications in proofs given for the generaliza-
tion of Case 3. But on the other hand, it can also be seen as a pure consequence
of Theorem 2. Indeed, let <£+ be the following extension of <£: <£+ is obtained
by adding to <£ one unary predicate symbol Ss for every sort s E Σ. Any £-
structure d can be easily extended to an <£ + -structure d+:

β + = ((ΛS)SGΣ; {<Λr)reR,(S&)sGΣΛ$f)feF),

where, for every s E Σ, S& = As.
Now, atomic formulas of £ + can be defined to be the atomic ^-formulas,

plus the formulas of the form Ss(xs). Thus, £ + also satisfies the constraint
imposed in Section 4.2, and Theorem 2 can be used to prove that

£fll+ Ξ + 9 1 + => 9K* = * 9χ*.

And then it is easy to show that

9H s 91 ^ 9H+ =+ 9 l + => 9H* = * 91*.

On the other hand, it is also easy to show that

arc* s si* => arc 3= si.

d Elementary substructures In every result we have shown, the = relation
could have been replaced by the < relation (even in the counterexamples). In par-
ticular, in the generalization of Case 3, Lemmas 2, 3, and 5 were about for-
mulas, i.e. not specially about sentences. It is thus easy to rewrite Theorems 1
and 2 for the < relation. This will be left as an exercise. (Hint to rewrite The-
orem 1: When showing that for any formula φ, and for any ml9... ,mn E M,
9TC* N φ[mχ,.. . ,mn] «=> 91* t= φ[mu . . . ,mn], you can suppose that free vari-
ables of φ are proper; then the new version of Lemma 2 can be applied.)
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