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Equivalent Versions of a Weak Form
of the Axiom of Choice

GARY P. SHANNON

We make the following definition:

Definition Let (Q,<) be a quasi-order (i.e., < is reflexive and transitive).
Two elements x, y of Q are said to be incompatible if there does not exist z €
QO such that z < x and z < y. A subset I of Q is said to be an incompatible set
if any two elements of I are incompatible. For each x € Q, let /(x) denote the
set of lower bounds of x; and let c(x) denote the set of elements of Q that are
compatible with x. “Countable” is used here to mean “countably infinite”.

Let U,{O (U,i‘oo) denote the statement that the union of a countable collec-
tion of pairwise disjoint nonempty finite (countable) sets is countable.

Let AC,{O(AC,E‘(;)) denote the statement that there exists a choice function
for any countable family of finite (countable) nonempty sets.

Let ACS,{O(ACS;?OO) denote the statement that for any countable family of
finite (countable) nonempty sets there exists a countable subfamily for which a
choice function exists.

It is known that in ZF, U{:O is equivalent to AC,{O. <Let C={C,:neN}

be a countable collection of pairwise disjoint nonempty finite sets. Let |C,| =
m,; and, by AC,{O, choose for each n € N a function f,,: C, —» m, X {n} such

that f, is 1-1 and onto. Then |J f,is 1-1; |J f,,[ U C,,] is an infinite sub-

neN neN nelN
set of N X IN (which is countable) —and therefore U C,, is countable. Con-
nelN

versely, if € = {C,: n € IN} is a countable collection of finite nonempty sets
then ® = {C, X {n}: n € N} is a countable collection of pairwise disjoint non-
empty finite sets and hence, by U,{O, U (C,, x {n}) is countable. Therefore

EN
there exists a g: U (C, X {n}) » ]I\'f, such that g is 1-1 and onto. A choice
neN
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function for € is then given by f(C,) = the element x of C, such that g(x,n)
is the least element of g[C, X {n}].

It is also known that in ZF Uz implies ACR?, but it is not known if AC{0
implies UR0 ([7], pp. 203, 324).

AC,{O is also equivalent to Konig’s Infinity Lemma ([5], p. 298; [1], pp.
202, 203), Ramsey’s Theorem [6], and a limited version of Tychonoff’s The-
orem [4]. It is clear that AC,{O implies ACS,{O, and it will be shown that ACS,{O
implies AC,{O.

Let Qg,(Pyx,) denote the statement that if (Q,<) is a countable quasi-
order (partial-order) that contains incompatible sets of arbitrarily large finite
cardinality then Q contains a countable incompatible set. (Py, follows from an
old result of Erdds and Tarski [2].)

Let QU;{O(QU,E‘OO) denote the statement that if (Q,<) is a quasi-order that
contains incompatible sets of arbitrarily large finite cardinality, and if Q can be
written as a countable union of finite (countable) sets, then Q contains a count-
able incompatible set. Let PU,{O,PU,i‘g denote the analogous statements for
partial orders.

Let QM,{O(QM,i‘g) denote the statement that if (Q,<) is a quasi-order
that contains incompatible sets of arbitrarily large finite cardinality, and if Q
can be written as a countable union of finite (countable) sets, then Q contains
a maximal countable incompatible set. Let PM,{O,PM,{‘(? denote the analogous
statements for partial orders.

It will be shown that in ZF, QU,{O, PU,{O, QM,{O, and PM,{O are equivalent
to each other and to AC}{O.

Theorem 1 AC{O is a theorem of ZF U {ACS;{O}.

Proof: It will be shown that U,{O is a theorem of ZF U {ACS{O}.
Let C be a countable collection of pairwise disjoint nonempty finite sets;
then C can be written as € = {C,: n € N}. Each C, is finite, and the union

of a finite collection of finite sets is finite, so for each n € N there exists a
n

natural number &, such that | | J C,~| = k,. Therefore for each n € IN there
i=0

n
exists a 1-1 function from U C; onto k, x {n}. For each n € N there exist
i=0
finitely many such functions; and therefore, by ACS,{O, there exists a collection
t

{/i,: n € N} such that f; is a 1-1 map of L"} C;onto k, X {t,}. Let go = fi,.
i=0

t"
For each n,n = 1, let g, denote the restriction of f; to U C;. Then g,

i=th_1+1

In
isal-1map of |J C;intok, X {t,}, and therefore g = |J g, is a 1-1
i=th_1+1 neN
map of U C, into N x IN. Since the g,’s have pairwise disjoint ranges,

neN

g( U C,,) is a countable <([3], pp. 79, 81)—since g( U C,,) is infinite)

neN neN
subset of IN x IN.

Therefore (since g is 1-1) U C, is countable, and U,{O is a theorem of
nelN
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ZF U {ACSY,}. Thus AC{, is a theorem of ZF U {ACS{,}. (Theorem 1 can
also be proved by showing that Konig’s Infinity Lemma is a theorem of ZF U
{ACS,{O}, but the proof of this is more involved than the proof given above.)

Theorem 2 Qy, is a theorem of ZF U {ACY, ).

Proof: Assume that (Q,<) is a countable quasi-order that contains incompat-
ible sets of arbitrarily large finite cardinality. Let Q = {q,: n € IN}.

Let € be the collection of incompatible subsets, 7, of Q such that | /| =2
and such that there exists y € I such that /(y) contains incompatible sets of arbi-
trarily large finite cardinality.

If € = @ then let D be the collection of all incompatible subsets of Q. If
D is not countable then Q contains a countable incompatible set. Assume that
D is countable; then D can be written as D = {D,: n € N}. Let g, be the least

natural number such that D, is a proper subset of D,, (gl exists since D is

finite and for each y € D, there exists a maximal finite incompatible set 7(y) S
I(y) (since C = J). Therefore the largest incompatible subset of U c(y) has

YED,
cardinality >, |I(»)|, and hence Q # [J c(»). Let m be the least natural
YED, yeD,
number such that g, € Q — U c(y). Then D, U {q,,} € ZD). For each n > 1
YE€D,

define, by induction, g, to be the least natural number such that D, is a

proper subset of D, Then U D,, < Q is a countable incompatible set,
neN
therefore Q contains a countable incompatible set.

Assume C # . If C is not finite and not countable then Q contains a
countable incompatible set. Assume that C is countable (the proof for the case
that C is finite is similar); then C can be written as C = {I,,: n € N}. For each
n € N, choose (by AC,{O) Pn € I, such that /(p,) contains incompatible sets of
arbitrarily large finite cardinality; and for each n € N, let C, = {I€ C: I S
I(py)}. If C, = @ for any n, then (by an argument similar to that given above
for € = ) Q contains a countable incompatible set. Therefore assume that
C,, # @ for all n € N. Choose r; € I, — { p;} and let N(1) be the least natural
number such that I, € C;. Choose r, € I 1) — { Prq)} and let A(2) be the
least natural number such that I, ;) € C,(;1,. Assume that r, is defined (n = 2),
Tn € Ixn—1) — {Pa(n—1y}. Let N (n) be the least natural number such that I, €
Cx(n—1y- Then choose (by AC,{O) Fut1 € Inny — {Pa(my }- By construction, . . . <
Pr3) =P =Dy SDP», and 1 < pp, 13 <SPy, T4 < Pa)s - - - - Thusit follows
that foreachm <n €N, n> 0, r,, and r,, are incompatible. Then {r,: n € N} is
a countable incompatible subset of Q.

Therefore Qy, is a theorem of ZF U {ACY, ).

It follows from Theorem 2 that QU,{O is a theorem of ZF U [AC,{O} (since
AC{:O implies U;{O).
Theorem 3 ACY, is a theorem of ZF U {QUY, }.
Proof: To prove AC,{O it suffices (by Theorem 1) to prove ACS{O.

Let C be a countable family of finite sets. It can be assumed (without loss

of generality) that the sets of © are pairwise disjoint. Define < on Q = U A
AEC

n+1°
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by x < y iff there exists A € C such that x€ A and y € A. Then < is a quasi-order
on Q; and two elements u, v are incompatible iff there exist 4, B & C, A # B, with
ue Aandv e B.

Let n € N, and let A;,...,A, be elements of C. Choose x; € 4y, x, €
A, ..., x, € A, (this can be done in ZF). Then {x,,...,x,} is an incompati-
ble subset of Q. Therefore (Q,<) contains incompatible sets of arbitrarily large
finite cardinality, and hence (by QU;{O) (Q,=<) contains a countable incompat-
ible set, I.

Let D={A4 € C:ANI+ D}, and define fon D by f(A4) = AN I Then
D is a countable subfamily of € for which a choice function exists.

Therefore ACS,{r is a theorem of ZF U {QU,{O} — and hence AC{O is a

0

theorem of ZF U {QUY{,}.
Therefore QU,{O is equivalent to AC,{O.

It is clear that Qg, implies Py,. The converse is given in the following:
Claim 1 Ox, is a theorem of ZF U {Py,}.

Proof: Let (Q,<) be a countable quasi-order that has incompatible subsets of
arbitrarily large finite cardinality. Then Q can be written as Q = {q,: n € NJ.

ForeachneN,let A, ={q;€ Q: q,=qg,and g, < q;}, and let P= {A,:
n € IN}. Define < on Pby A; < A; iff g; < q;. Then < is a partial-order on P.

Since (Q,=) has incompatible subsets of arbitrarily large finite cardinal-
ity so does (P,<), and hence (by Py,), P contains a countable incompatible
set, 1.

Let J be the set of natural numbers, #, such that 7 = {A4,: n € J} and such
that for any m € N, if m < n then 4,, + A4,,.

Then {g;: i € J} is a countable incompatible subset of Q; and thus Qy, is
a theorem of ZF U { Py }.

Note that the statement: “If (R,<) is a quasi-order that contains incom-
patible sets of arbitrarily large finite cardinality, then R contains a countable
incompatible set” is not a theorem of ZF U {AC}{O} —since from this statement
it follows that any infinite set contains a countable subset (simply define < on
an infinite set R by x < y iff x = y) —but this result requires a stronger form of
the Axiom of Choice than AC,{O ([71, pp. 322, 323).

It follows from Claim 1 that PU,{O is equivalent to QU,{O.

Theorem 4 In ZF, QM}{O is equivalent to AC;{O.

Proof: QM{;O clearly implies QU,{O, thus AC}{O is a theorem of ZF U {QM,{O].

Assume that (Q,<) is a quasi-order that contains incompatible sets of arbi-
trarily large finite cardinality, and that Q can be written as a countable union of
finite sets. Then (assuming AC;{O), Q is countable and hence Q can be written
as Q = {g,: n € N}. By Theorem 2, Q contains a countable incompatible set, 1.

IfQ= U c(x) then I is a maximal countable incompatible set.
xel
Suppose that Q + U c(x). Let d(1) be the least natural number such
x€J

that ga) € Q — |J ¢(x), and let I, = I U {gq(1,}. For n > 1 define, by in-

xel
duction, d(n) and I,, as follows: Let d(#n) be the least natural number such that
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qam€Q— U cx) <if o+ U c(x)) andlet I, = I,_; U {qg(n}. Either

x€l,1 x€l,

Q= U c(x) for some k and then [, is a maximal countable incompatible set;
Xelk

or Q# |J c(x) for all k and then |J i is a maximal countable incompat-
xelk keN
ible set.

Therefore QM{:O is a theorem of ZF U {AC,{O].

By an argument similar to that of Claim 1 it follows that QM;{O is equiv-
alent to PM,{O.
A summary of the implications is that in ZF:

PUY, = QUY, = ACk, = OM{,, = PM{,
ik Z ¢ N
ACS{, = U{,  Ox, = Px,.

Note that all of the arrows except possibly AC,{0 = Qk, are reversible. |
do not know if in ZF Qy, is equivalent to AC{:O.

Some of the ideas for families of finite sets extend to families of countable
sets; but some do not, and some of the implications are not known. A summary
of the implications is that in ZF:

PUR? = QURY  ACR « OMR® = PMEO
U 4 T
ACSg?  Uge.
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