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There are Denumerably Many Ternary
Intuitionistic Sheffer Functions

DJORDJE CUBRIC*

In [1] DoSen asks what is the number of mutually nonequivalent ternary
indigenous Sheffer functions for {—,A,v,—} in the intuitionistic propositional
calculus (IPC). The answer is: denumerably many.

Following [2] we shall say that a set of functions F'is an indigenous Sheffer
set for a set of functions G iff every member of G can be defined by a finite
number of compositions from the members of F and vice versa. A function f
is an indigenous Sheffer function for G iff { f} is an indigenous Sheffer set for
G. The n-ary propositional functions f and f, are mutually equivalent iff for
some permutation P of the sequence A44,...,A4, in the propositional calculus
we can prove fi(A,,...,A4,) < f>(P). We work all the time in IPC. Expres-
sions of the form FA (or #4) mean that A is provable (or unprovable) in IPC.

Kuznetsov [3] and Hendry [2] have shown that there is no binary indig-
enous Sheffer function for {—,A,v,—} in IPC. The first example of a ternary
indigenous Sheffer function was given in [3]. Here we use one of the three exam-
ples given in [1].

The Rieger-Nishimura Lattice of one variable X, RNL(X) is recursively
defined as follows: Py(X) = X A =X, Pi(X) = X, P,(X) = 7 X,P(X) =
X=X, Pypy3(X) = Popy 1 (X)) V Popy2 (X)), Papia(X) = Papy3(X) = Popyy (X)),
for n = 0. For every i > j, tP;(X) — P;(X) (see [5] or [4]).

First, we have one simple lemma:

Lemma Forevery i =5:
1) FX A P(X) - X
() FPi(L).

Proof: (1) For every i = 5, we have =X I P;(X) directly from RNL(X). We
obtain (2) by using F— L and (1).
*I wish to thank Kosta Dosen for the help he gave me in writing this note.
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Next, we give the following definition:

Definition fi(A,B,C) =t(A,B,C) A Pi(B A C), where t(A4,B,C) = (A v
B) » (C - B))v(A « (C < —B)) (see [1]), and P;(BA C) € RNL(BA C).

Theorem For every i = 3, f; is an indigenous Sheffer function for {—,n,
v,m} and for every i = 5 and every j > i, tf; < f;.

Proof: For every i = 5, f; is an indigenous Sheffer function for {—,A,v,}
because:

.f;(A,A’A) A t(A9A»A) A PI(A)
— A AP;(A)
- —A (by using Lemma (1));

Ji(A,B,mB) < t(A,B,~B) A P{(B A —B)
— (AvB)AP;(L)
—~AvVB (by using Lemma (2));

fi(A,m(Av —A),B) « t(A,L,B) A P;(1L A B)
= (A < B)rPi(L)
— (A < B) (by using Lemma (2));

and we know that { < ,v,—} is an indigenous Sheffer set for {—,A,v,—} (we
have: FH{(A > B) & (AvB) < B),F(AAB) = (Av B) « (A < B))).

If for some i = 5 and some j > i, kf; < f,, we have Ff,(L1,B,B) «
J;(1,B,B) which implies FT A P,(B) < T A P;(B), and that implies |-P;(B) <
P,(B), which is a contradiction.

Note that this theorem is also valid for i = 3.

For every i = 5 and j > i, f; and f; are mutually nonequivalent because
Ji(A, B, C) is classically equivalent only with f;(C, B, A), but not in IPC (if it is,
we have: 1f;(L,T,C) < f;(C,T,1); then F(L1,T,C) A P;(C) < T, and then
FP;(C), which is a contradiction). Since we have at most denumerably many
nonequivalent ternary indigenous Sheffer functions (consider them as words in
the alphabet {A4,B,C,—,A,v,—}), we may conclude that there are exactly
denumerably many of them.

For every n > 3, there exist denumerably many n-ary Sheffer functions for
{—=,A,v,7} (we substitute A; A...A A,_, for A in f;).

We conclude this note with two questions:

(1) Is it true that for every ternary Sheffer function in the classical proposi-
tional calculus there exists a classically equivalent function which is a
Sheffer function in IPC?

(2) What structure is produced by all ternary Sheffer functions in IPC?
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