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Indenumerability and Substitutional

Quantification

PHILIP HUGLY and CHARLES SAYWARD

We here establish two theorems which refute a pair of what we believe to
be plausible assumptions about differences between objectual and substitu-
tional quantification. We first informally introduce a terminology which enables
us to state these assumptions with reasonable clarity. Next we show that these
assumptions have actually been made. Finally, in the remaining sections of the
paper we prove the refuting theorems and explore the relations between the
second and the Skolem submodel theorem.

1 L is any first-order language with countably many names and rc-ary
predicates as its nonlogical constants. An interpretation I of L is any triple
(D, p, d) with nonempty set D, assignment p to the «-ary predicates of L of
sets of ^-tuples of elements of D, and assignment d to the names of L of ele-
ments of D. I is countable or indenumerable as D of / is countable or in-
denumerable. An interpreted language is a pair (L, I) with / an interpretation
of L. <//, /'> is an extension of (L, I) iff V results from adding countably many
names to L and / ' is like / except for its assignments to those new names. A
definition of truth under an interpretation is deviant for interpreted language
(L, I) iff some existential quantification of L is by that definition not true
under / and yet some x e D of / satisfies its contained formula, and is irre-
ducibly deviant for (L, I) iff it is deviant for (L, /> and for every extension of
(L, I). I is a complete interpretation of L iff/ is an interpretation of L and each
x e D of / is by d of / assigned to some name of L. I is a quantificationally
complete interpretation of L iff/ is an interpretation of L, and for each degree-
one formula of L, if some x e D of / satisfies that formula, then some such
x e D of / is by d of / assigned to some name of L.

As propounded in [1], Mates' formal language JL (less its zero-place
letters) is one of our L. An interpretation of JL (less the assignment to those
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letters) is one of our (D, p, d). Mates considers two definitions of truth under
an interpretation: one objectual (the ODT), the other substitutional (the SDT).
The ODT is deviant for no <JL,I). Not so, as Mates notes, for the SDT. On
Mates' view, a definition of truth under an interpretation permits the applica-
tion of Z to a domain set D only if the definition of truth under an interpreta-
tion is nondeviant for some interpretation I of L of which D is the domain set.
Thus, the SDT seems to incur the risk of restricting the application of JL. Mates
also notes that the SDT is nondeviant for all (L, I) with complete interpretation
/ of JL. Thus, the application of JL to countable domains is not restricted by
the SDT, for every countable set D is the domain set of some complete inter-
pretation of JL. In this manner Mates makes a case for the SDT which also, as
he notes, is simpler than the ODT ([ 1 ], pp. 62-63). His determination of which
truth definition to adopt is based on the following reasoning:

. . . since in applying JL we do not wish to be restricted to domains for which
there are in JL enough [names] to go around, we shall stick to a definition which
does not presuppose that every element in the universe of discourse has a name.
(M.p.63)

Since Mates sticks with the ODT and rejects the SDT, the above passage
implies at least the following:

(I) The SDT would preclude the application of JL to at least one in-
denumerable domain.

The main fact to which Mates appeals in connection with (I) is:

(II) If D is indenumerable, then there are not enough names to go around,
i.e., then no (D, p, d) is a complete interpretation of £.

To get from II to I Mates needs this assumption:

(M) At least one D which is the domain of no complete interpretation of
JL is also the domain of no quantificationally complete interpretation of JL.

This assumption is refuted by T1 below.
For the second assumption we dispute we go to the following passage

from Quine:

. . . the substitutional characterization of quantification is not coextensive with
the characterization in terms of objects, or values of variables, if we assume a
rich universe. An existential quantification could turn out false when sub-
stitutionally construed and true when objectually construed, because of there
being objects of the purported kind but only nameless ones . . . And no lavish-
ness with names can prevent there being nameless objects in a generous universe.
Substitutional quantification is deviant if the universe is rich. ([2], p. 93)

By a rich or generous universe Quine means an indenumerable one. Also we
capture his "lavishness with names" by our concept of an extension of a
language. Now note that Quine is saying more than this:

(i) The SDT is deviant for some interpreted languages with indenumerable
domains.
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For the SDT is also deviant for some interpreted languages with countable
domains. So if Quine meant (i) the ado about generous universes would be
pointless. Now a fact implicitly noted by Quine is that in the case of countable
domains deviance is always eliminated in some extension. So his point has to be
that the SDT, for at least some interpreted langauges with indenumerable
domains, is deviant and remains so for all extensions. That is to say, Quine is
implicitly assuming this:

(Q) There exist languages with indenumerable domains for which sub-
stitutional quantification is irreducibly deviant.

This assumption is refuted by T2 below.1

2 In order to prove Tl and T2 we need to reintroduce some of the preced-
ing terminology with a bit more precision. In the following, names and rc-ary
predicate letters are nonlogical constants and N, V, and the variables x, x \ . . .
are logical constants. A language L is any denumerable or finite set of nonlogi-
cal constants not void of predicate letters. The formulas of L are as follows:
^coj, . . ., (jjn if each cj/ is a name of L or a variable and ^ is an ft-ary predicate
letter of L\N^{^2

 i f * i a n d ^2 a re formulas of I ; Vo& if a is a variable and ^
is a formula of L and a has at least one occurrence in ^ which is not a proper
part of ^ of the form Va\ for any formula x of L. The sentences of L are the
formulas of L void of free occurrences of variables. ^a /0 is the result of replac-
ing each free occurrence of variable a in formula ^ by a name j3 not in ^ . ^ i s
the result of replacing each free occurrence of variable a in formula ^ by a
name ]3.

An interpretation I of L is a triple (D, p, d), where D is a nonempty set, p
is a function defined on the predicate letters of L assigning to each n-ary
predicate letter of L some set of ^-tuples of elements of Z), and d is a function
defined on the names of L assigning to each some element of D. I f / = (D, py d)
is an interpretation of L then for each rc-ary predicate ^ of L, / ( ^ ) = pi^f) and
for each name P of L, 1(15) = d((3). We also speak of what / assigns to predicate
^ or name ]3. / is an interpretation of a sentence 0 if and only if/ is an interpre-
tation of some language L of which 0 is a sentence. Where d is a function
defined on some set of names, d% = / is the function which differs from d at
most in that / is defined for name j3 and /(|8) = a. Where / = (D, p,d), /If =
(D, p, d\). We note that if/ is an interpretation of Voc^", then, for any name (3
and a e D of /, /If is an interpretation of SEWjl For each sentence 0 and
interpretation / of 0, 0 is true in / if and only if 0 is an atomic sentence
^JSJ . . . ft, and (IiPi), . . ., /(ft,)> e / ( ^ ) , or 0 is a compound sentence N * ^
and neither ^ x nor ^ 2 *s t r u e in h or 0 is a general sentence Va^ and \lWj3 is
true in some/If.

The main theorems we seek to establish are these:

Tl For every language L with denumerable set A of names and D and p
belonging to some interpretation of L, there is a d defined on A and into D
such that (D, p, d) is an interpretation of L and for every sentence V0& of L,
Vaty is true in (D, p, d) iff, for some name @ e A, \E^ is true in (D, p} d).
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T2 For every language L and interpretation (D, p, d) of L there is a set A
of names not in L and a d\ d C d\ such that (D, p, df) is an interpretation of
Lf = L U A and: (1) for every sentence 0 ofL, 0 is true in (D, p, d) if and only
if 0 is true in (D, p, d'), and (2) for every general sentence Vo& of L\ Vo& is
true in (D, p, d') if and only if for some name P of Lf, ^fis true in (D, p, d1).

3 We begin by noting for future reference four lemmas of a relatively
elementary character.

Lemma 1 / / / and I' are interpretations of sentence 0 and do not differ in
what they assign to the nonlogical constants in 0, then 0 is true in Iiff(p is true
in / ' .

Lemma 2 If a sentence 0 is like 0' except for having an occurrence of a
name y wherever 0' has an occurrence of a name P and I is an interpretation of
0 and V is an interpretation of 0' and V is just like I except that 7'Q3) = 7(7),
then 0 is true in I iff <t> is true in I1.

Definition * is a degree-one formula iff * is a formula and exactly one
variable a has free occurrences in * .

Note that * is a degree-one formula iff for some variable a, V0& is a sentence.

Definition If VaSlf is a sentence and I an interpretation of Va}&, then
£ ( * , 7) ={a: ^a/|3 is true in some7lf!.

Read '£(* , 7)' as 4the extension o f * in I1.

Lemma 3 For every language L, interpretation I of L and sentence Va$? of
L, E(V, 7) =£ A iff Vocb is true in I.

Lemma 4 For every language L, interpretation I of L and sentence Va^ of
L, there is a name p of L such that I(P) e £ ( * , 7) iff there is a name P of L such
that tyf is true in I.

Tl is an immediate consequence of Lemmas 3 and 4 and

Lemma 5 For every language L with denumerable set A of names and every
D and p belonging to some interpretation of L, there is a d such that {Dy p, d) is
an interpretation of L such that for every sentence Va^/ of L, 2s(*, (D, p, d)) =fc
A iff there is a name p of L such that d(p) e £ ( * , (D, p, d)).

The proof of Lemma 5 proceeds as follows:

Proof: Let L be any language with denumerable set A of names and let D and
p be any set and function belonging to some interpretation of L. Then, there is
a nonrepeating sequence N = <j3l5 . . ., pn, . . .> of all elements of A and a
sequence F = (0 l5 . . ., 0W, . . .) of all degree-one formulas of L such that:
(1) £(01? (D, p, A)) =£ A and (2) for every i and /, /, / > 0, if ft occurs in 0;, then
/ < /. There also is a sequence (Au . . ., An, . . .) such that

Ax = {{{pi, x)\: x e Eifa, {D, p, A»};
An=ifU \(pnfx)\:f€An^mdxeE(<l>n,(Dfptf))
or E((j)n, (A p, / » = A and x = /(ft)!.
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We set ,4 = U {Ax, . . ., An, . . .} and P(A) = the power set of A ~ U J . By the
axiom of choice, there is a function g defined on P(A) such that for every
x, g(x) e x. Then for each fx e Ax there is a sequence (dx, . . ., dn,. . .) such that

dn=g{f:feAnanddn-lCfl

WtsQtden = U{du . . .,dn, . . .1.

From the construction of den each of the following sublemmas can be
straightforwardly established in the indicated order.

Lemma 5.1 For any interpretation I of sentence Vaty, ifx e E(&, / ) , then
xeD of I.

Lemma 5.2 / / / e An, then f is a function into D defined on just the first n
names in N.

Lemma 5.3 For each n > 0, An =£ A.

Lemma 5.4 For each n > 1, ifh e An-X, then for some f e An, h Cf

Lemma 5.5 For each n > 0, dn e An.

Lemma 5.6 For each n > 0, dn C dn+x.

We next turn to:

Lemma 5.7 den is a function into D and defined on A.

Proof: den = U {dx, . . ., dn, . . .!. By Lemmas 5.2 and 5.5 each d\ is a function.
By Lemma 5.6 each d\ C d,+1. Thus, den is a function. By Lemmas 5.2 and 5.5
each df is into D. Thus den is into D. Next note that if x e A, then for some
/ > 0, x = (ij. By Lemmas 5.2 and 5.5, for each/, df is defined for the first/
names in N and thus for j3/. Thus, for all / > 0, den is defined for ]3/. But by
Lemma 5.2, each df is defined for just the first/ names in TV and thus is defined
only for names in A. Thus den is defined on A.

Lemma 5.8 (D, p, den) is an interpretation of L.

Proof: Immediate from Lemma 5.7.

Lemma 5.9 For each sentence Vctif of Ly E(ty, (D, p, den)) =£ A iff for
some p e A, den (|3) e E^f, <A p, den)).

Proof: The right to left implication is trivial, and we consider now the converse
implication. By assumption, E(&, (D, p, den)) =£ A. We note the following: for
some n > 0, ^ = (pn; dn-x is defined for the first n - 1 names in N; any name in
^ = (pn is one of the first n - 1 names in N. Since dn-x C den, for each 0 < / < n,
tf/i-i(ft) = den (Pi). Also, dn-x { (P) = den { (/3), for any name p and a e D. Thus,
for any name p and a e D, (D, p, den £> and (D, p, dn-x%) are interpretations
which do not differ in what they assign to the nonlogical constants in ^foc/p. So,
by Lemma 1, \£a/|3 is true in <D, p, den&

a) iff ^alp is true in (D, p, dw-if>. Thus,
{a: Va/p is true in some W, p, den f >! = {a: ̂ alp is true in (D, p, dn-x g>}. Thus,
£ ( ^ , <A p, den» = £ ( ^ , <A p, </„_!». Thus, £ ( * , (D, p, ^ _ ! » ^ A. Thus, for
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some x e E(^f, (D, p, dn-x)), (fin, x) e dn. Thus, ((3n, x) e den for some x e
£ ( * , <A p, den)). Thus, for some J8 e A, den (j3) e £ ( ^ , <A p, dew».

From Sublemmas 5.8 and 5.9 it follows that <Z), p, den) is an interpreta-
tion of L such that for every sentence Voc^ of L, E(ty, (D, p, den)) ¥= A iff there
is a name j3 of Z, such that dew (j3) e E(ty, <A p, den)). This completes the proof
of Lemma 5 and thus also of Tl .

4 T2 is an immediate consequence of Lemmas 3 and 4 together with the
following two lemmas.

Lemma 6 / / (D, p, d) is an interpretation of language L and d C d' and
<A p, d') is an interpretation of language L1 = L U A, for some denumerable
set A of names not in L, then for any sentence 0 of L, 0 is true in (D, p, d) iff<j>
is true in (D, p, d').

Proof: By hypothesis of the lemma, (D, p, d) and (D, p, d1) do not differ in
what they assign to any of the nonlogical constants in any sentence 0 of L.
Thus, for each sentence 0 of L, 0 is true in <D, p, d) iff 0 is true in (D, p, d'),
by Lemma 1.

Lemma 7 If A is a denumerable set of names not in language L and language
L ' = 1 U A and (D, p, d) is an interpretation of L, then there is an interpreta-
tion (D, p, d') of V such that d C df and for every sentence Vaty of L\
£ ( * , <£>, p, d')) * A iff there is a name j8 of V such that d'(0) e £ ( * , <A p, d')).

Proof: The proof proceeds along the lines of the proof of Lemma 5.
N = <J81? . . ., ftj, . . .> is a nonrepeating sequence of all names in A. F =
(0!, . . ., 0W, . . .> is a sequence of all degree-one formulas of V such that
(1) E((j)l, (D, p, d)) =£ A and with condition (2) as before. The first element of
sequence (Au . . ., Any . . .) = K/Jj, x>: x e £(0!, <A p, d))\. An is defined as
before. The same holds for A, P(A), sequence (du . . ., dn, . . .) and den. Sub-
lemmas 7.1-7.9 are the same as Sublemmas 5.1-5.9 except that ' £ (* , (A p, A)) '
is everywhere replaced by 'E(^, (A p, d))\ 'the first n names in N' is every-
where replaced by 'the names in L and the first n names in N\ "V is everywhere
replaced by ' I " and 'A' is replaced by 'the set of names in L U A'. Sentences
7-9 of the proof of 5.7 are replaced by the following:

Next note that if x is a name of Z/, then x is a name in L or for some
/ > 0, x = fy. By Lemmas 7.2 and 7.5, for each/, df is defined for the
names in L and the first/ names in TV and thus for 0/. Thus, den is defined
for all names in L and, for all/, for j3/.

From Sublemmas 7.8 and 7.9 it follows that <A p, derc> is an interpretation of
l! such that for every sentence Va}& of L\ E(ty, (A P, derc)) =£ A iff there is a
name jS of Z/ such that den (|3) e E("$?, <A p, dew)). This completes the proof of
Lemma 7 and thus also of T2.

5 Skolem's strong submodel theorem says this:

SST For each interpretation <A p, d) of Ly there is at least one interpreta-
tion (Df, p', d) such that Df C D, D' is countable, p is the limitation ofp to D',
and for each sentence 0 of L, 0 is true in (D, p, d) iff (p is true in (D'y p\ d).
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In conversations about T2, we have invariably encountered this reaction: T2
and SST have essentially the same content and thus have essentially the same
consequences for the relation between objectual and substitutional quantifica-
tion over indenumerable domains. We think it is worthwhile to show why this
reaction is in error.

Recall that an interpretation is countable or indenumerable as its domain
is countable or indenumerable, and that an interpreted language is any pair
(L, I) for interpretation / of L. Put in present terms, substitutional quantifica-
tion is deviant for interpreted language (L, I) iff, for some Vote of L, VoC& is
true in / and for each name j3 e L, "iff is not true in /; substitutional quantifica-
tion is irreducibly deviant for interpreted language (L, I) = (L, (D, p, d)) iff, for
every d* such that d C d* and the range of d* C D, substitutional quantifica-
tion is deviant for <!*, /*> = (ZU the domain of d*(= ^(d*)), CD, p, d*».

Since for each interpreted language (L, I) - (L, (D, p, d)) with countable/,
there is a d* such that d C d* and the range of d* = Dy there is a </,*, /*) for
which substitutional quantification is not deviant; namely, for each "complete"
d*, the interpreted language <L*, /*> = ( I U #(d*), CD, p, d*». Thus, substitu-
tional quantification is irreducibly deviant for no interpreted language (L, I)
with countable /.

Assumption (Q) noted at the start of this paper is that the class of in-
terpreted languages (L, I) with indenumerable I does provide cases of irreduc-
ible deviance. T2 refutes this assumption, for T2 directly asserts that for each
indenumerable interpretation (D, p, d) of any L there is a d*, d C d*, range of
d* C D, such that CD, p, d*> is an interpretation of I* = L U ,#(d*) and
substitutional quantification is nondeviant for <£*, CD, p, d*)). SST does not
directly assert the above result and thus does not refute assumption (Q), for it
asserts only that for each indenumerable interpretation CD, p, d) of L there is a
countable subinterpretation CD', p , d) such that for each sentence 0 of L, (j> is
true in (D, p, d) = <f> is true in CD', pf, d).

SST is a reduction theorem and T2 is not, and that is a fundamental
difference between them relative to assumption (Q).

Is there yet some route from SST to the above T2 result? If there is, then
it must lead from the existence of the countable submodel CD', p\ d) estab-
lished by SST to the appropriate d* function. The whole problem, then, comes
to this: whether there is some way to utilize CD', p'f d) to construct the desired
d* function. The only plausible construction we can think of would be this: to
so construct d* from d as to make it complete with respect to Df. That con-
struction yields CD', /?', <i*>. Two points plainly hold with respect to CD', p\ d*\
First, CD', pf, d*) is an interpretation of L such that for every sentence 0 of Ly

0 is true in CD, p,d) = (j) is true in CD', p , d*>. Second, substitutional quantifica-
tion is nondeviant with respect to <!,*, CD', pf, d*», I * = I U ^ (d*). The hope
would be that since this second point holds, substitutional quantification will
also be nondeviant for (L*, CD, p, d*».

This hope comes to the following claim: // CD', p', d) is a Skolem sub-
interpretation of interpretation CD, p, d) of L and d C d* and substitutional
quantification is not deviant for (I*, CD', p', d*», I* = I U ^(d*) , fAew
substitutional quantification is also nondeviant for CL*, (A p, d*)).

But this claim is incorrect. Indeed, it fails to hold even for cases of
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countable / and thus, trivially, for cases of indenumerable /. A simple example
establishes the point.

Let,

L ={'FM
h = \(x, y)\ for some prime p and n > 1, x = pn and>> = pn+1\
D = the field of h
p = K'F',/z>i
d = A

g = \(x, y)\ for some prime p and 72 > 1, x = p " and j> = p " + 1 !
Z>' = the field of g
p =\<iF\g)\
d* - {(x, y)\ y e the field ofg and x = the arabic numeral fory\
L*=L U<#(d*)

then,

(1) (Df, p\ d) is a Skolem subinterpretation of (D, p, d)
(2) d C d*
(3) substitutional quantification is nondeviant for (L*, (Df, p\ d*))
(4) substitutional quantification is deviant for (L*, (D, p, d*».

(3) is trivial since d* is complete with respect to Dr. By construction D ' C D
and p ' = the limitation of p to D'. (1) may then be established by a simple
inductive proof. (2) also is trivial since d = A. (4) is established by noting that
'VxFx49 of L* is true in <£), p, d*> since <2, 4)ep( 'F ' ) = A and yet for each
name J8 e L*, r>i84"1 is not true in <A p, cf*> since (x, 4> e p('F') only if x = 2
and 2 ^ the range of d*.

Thus, it is not only the case that T2 and SST sharply differ in content, it
also appears that the T2 result with which we here are concerned just isn't a
consequence of SST at all. If this is so, then T2 is stronger than SST, for SST
is an elementary consequence of T2 (see the Appendix).

Appendix T2 can be used to derive SST. First we need to establish the
following lemma:

Lemma 8 For any language L and interpretations (D, p, d) and (Dr, p\ d)
such that D' C D and p is the limitation ofp to D': if, for each sentence Vocfy
of L, Vocfy is true in (D, p, d) iff, for some name (3 of L, ^ff is true in (D, p, d),
then, for each sentence <t>of L, 0 is true in (D, p, d) iff<j> is true in (Dr, p', d).

Proof: By strong induction on £(0) = the number of occurrences of TV and V in
0. Cases 1 and 2 are obvious.

Case 3. C(0) -n, n> 0 and 0 is Vo&.

1. By antecedent of the lemma and hypothesis of induction, if Va}$? is
true in (D, p, d) then Vaty is true in <£>', p , d).

2. Suppose VoCfy is true in (Df, p, d). Then tyot/0 is true in some
(D\ p, 4). Since d is into D\ for some j3* of L, dg(|3) = d(|8*) = a e Df. Thus,
(Df, p, df > differs from <D', p, d) at most in assigning to j3 what (Df, p\ d)
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assigns to |8*. Also ^ * has |3* wherever ^a/|3 has ]3. Thus, by Lemma 2, ^ | * is
true in (D*, p, d). By hypothesis of induction, ^~* is true in (d, p, d). Thus
F a ^ is true in (D, p, d).

The proof of SST from T2 and Lemma 8 proceeds as follows:

Proof: Let (D, p, d) be an interpretation of L. (A) By T2, there is a set A of
names not in L such that V - L U A; and there is a function d', d C d', such
that (£), p, d1) is an interpretation of L\ and, for each sentence 0 of Z,, 0 is true
in <A /?, d) iff 0 is true in (D, p, d')\ and, for each sentence Va& of V, Vocfy is
true in <D, p, d') iff f̂- is true in (D, p, d'>, for some name ft ofL'. (B) Now let
Dr be the range of d! and/ / be the limitation of p toD'. (C) By Lemma 8, (1) if
{D, p, d1) and (D'f p', d1) are interpretations of V such thatD' C D and/ / is the
limitation of/? to Z)', and if (2) for each sentence Vaty of L\ VaSif is true in
<A p, d'> iff, for some name |8 of I ' , * | is true in (D, py d'\ then (3) for each
sentence 0 of L\ 0 is true in (D, p, d') iff 0 is true in (D1, p , d'). (D) It follows
from (A), (B), and (C) that, for each sentence 0 of L, 0 is true in (D, p, d) iff 0
is true in (D'f / / , d') and Df is at most a denumerable subset of D and/?' is the
limitation of p toD'. SST follows from this by Lemma 1.

NOTE

1. As the referee pointed out to us, not all of Quine's remarks in connection with substitu-
tional quantification are the same in character as the one we quote. Often enough his
concern is not with purely formal logical considerations, as in the quoted remark, but
turns instead to more pragmatically or epistemically oriented considerations as in [3]. In
this paper we limit ourselves to the formal issues.
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