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The Axiom of Choice in Topology

NORBERT BRUNNER*

1 Introduction and definitions In this paper we are concerned with soft
applications of the axiom of choice {AC) in general topology. We define 16
properties which hold in ZF for each T2 space, if and only if AC is true, and
we investigate what implications between these axioms are provable without
AC (in the presence of AC there is nothing to prove). Our results are sum-
marized in two diagrams. In Figure 1 the 61 valid implications are listed.
Counterexamples in three models prove 188 of the possible implications to
depend on the axiom of choice, as is shown in Figure 2. Some problems remain
open.

Our positive results are proved in ZF°, Zermelo-Fraenkel set theory
without the axioms AC and foundation. Our counterexamples are constructed
in models of ZF ( = ^ ZF° + foundation). We shall use Levy's axiom MC of
multiple choice: If F is a family of nonempty sets, there is a mapping / o n F,
such that φ Φ fix) C x and f{x) is finite for each x in F. Rubin's axiom PW
asserts that the power set i°{x) of each well-orderable set x is well-orderable.
In ZF°, AC implies MC which implies PW, and there are permutation models
which show that in ZF° the implications cannot be reversed. But AC,
MC, and PW are equivalent in ZF. Similar axioms are studied in [6].

If P and Q are topological properties, A(P) is the assertion that each T2

space is P and A{P, Q) says that each T2 space which is P also satisfies Q. While
for the properties P defined below we do understand the position of A(P) in
the hierarchy of choice principles, the same questions for A{P,Q) remain
unanswered in many cases, although as we have already noticed A{P,Q)
depends on AC in general.

*The author wishes to express his gratitude to the referee and to U. Feigner (Tubingen) for
their many useful suggestions.

Received February 8, 1982; revised March 17, 1982



306 NORBERT BRUNNER

X is a space, X its topology; f'{X) = \f(x):x e X\. We abbreviate "well-
ordered" and "well-orderable" by w.o. and Dedekind-finite by D-finite.
"Space" always means T2 space.

Wl: X is w.o.
W2\ X is w.o.
Dl: X is covered by a w.o. family of closed, discrete sets.
D2: X is covered by a w.o. family of discrete sets.
Bl: X has a w.o. base.
B2: There is a function /: X X W -* X such that W is w.o. and f'{x\ X W is

a neighborhood base at x.

B3\ There is a mapping/: X X if -> Jlf such that W is w.o. and \x\ = Π/'({χ{ X

L7: Each open cover of X has a w.o. subcover.
L2\ Each open cover of X has a w.o. refinement.
S: X has a dense, w.o. subset.
C: Each family O ^X of pairwise disjoint sets is w.o.
A1: If O C X covers X, there is a mapping f:X-+O such that x e f(x).
A2: If 0 C X covers X, there is a mapping f: X -> X such that c e /(x) and

/'X refines O.
HI: X is hereditarily Al.
H2\ X is hereditarily A2.
F: X is a continuous finite-to-one image of an 4̂ 7 space.

57, L7, 5, and C naturally appear in the study of cardinal functions in the
sense of Juhasz in ZF°. The introduction of L2 is motivated by a result, due to
Jech (Pennsylvania), that R is not Lindelδf, but R obviously is L2.

Topologically most interesting is A2, which is both a weakening of meta-
compact and w.o. local weight. The following theorem was proved by Fritsch
(Munchen): A CW-complex is paracompact if and only if it is A2. But it
should be noted that none of the properties defined in the section imply any
classical topological notion. D2 is a weakening of W2. Rubin (Purdue) proved
A(D2) =• PW. Another natural consequence of W2 is K:X = ΌW where W is a
w.o. family of compact sets. We do not study K, since it has no applications.
For the same reason we consider B2, B3 instead of B2f: Each point has a w.o.
local base and B3f: Each singleton is an intersection of a w.o. family of open
sets. We mention some further properties. B3a: There is a mapping /: X X W -*

X, W w.o., such that ίxj = Π /(*,w)~. K': X = UW, where W is a w.o.
" weW

family of compact sets, such that each compact set is contained in some
Ve W.

2 Equivalents to AC We start with the observation that if P1 =>Λ Q =* Q'
A(P,Q) => A(P',Q'). If P is hereditary, A(P,Ai) * A(P,Hi). PW implies A(P,Q)
for P e \W1, W2, Bl, S\, since P-spaces are Wl in ZF° + PW (c.f. [2]). More-
over we note that ACWO {AC for w.o. families) implies A(L2, LI).1

2.1 Lemma In ZF° the implications of Figure 1 hold.

Proof: Let X be Wl. Since X is Tu {X\{x\ :x e X\ is w.o. and so Xis W2.
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W2 • Dl • D2

/ \ >

/ S ^ C s '

/ ^^^*r Bl • B2

Wl ^ HI ^ ^ * ^ ^ • H2 ^ ^

^ LI ^\r — £ L2 • A2

Al • F ^

Figure 1. Implications.

Bl and LI are clear and we shall prove below A(L1, Al) thus yielding
HI. A(W2, S) and A(W2, Dl) are obvious. So are A(D1, D2), A(L1, L2),
A(Hi,Ai),A(AliF\A(Al,A2),A(Hl,H2),and-usingT1-A(B2,B3).

If X is" Di, there is a w.o. covering W by closed, discrete sets. Since
w\{x\ is closed for each w e W, f: X X W -+X,

f(x9w) = X\(w\{x\)

is a^J-mapping.
Let X be Bl and W be a w.o. base. We define a 52-mapping through

f(x,w) = X if x £ w and f(x,w) = w otherwise. If O C X covers X,

P= \w e W:w Co e 0}

is a w.o. refinement; i.e. L2. Fix a well-ordering < of W. If A is a family of
nonempty, pairwise disjoint open sets,

f(a) = min \w e(W,<):φΦw Ca\

is one-to-one, whence A is w.o. So A{B1, C) and similarly A(S, C).
Let /: X X W -> X, where W is w.o., be a function assured by 52. If

O is an open cover, w(x) = m/« lw e W: f(x,w) ^ Q e O\ is well defined,
since f \x\ X W is a neighborhood base at x, whence /(x,w(x)) is an A2-
mapping. A(B2, H2) follows.

If X is LI and O is an open cover of X, a w.o. subcover defines a mapping
as required for A1. If X is Z2, we similarly may conclude that X is A2.

It remains to prove A(F,A2): Let /: F -> X be continuous, onto and
finite-to-one, where Y is Al and let O cover I , O C I . Then /"^(O) is an
open cover of Y, and g: Y -> f~\O) an yli-mapping; g(^) = /"K^) for some
F e O such that /(>;) e V. As / is onto, / Γ\V) = F, and so because f~\x)
is finite, G(x) = {/ ° g(y):y e f~\x)\ is a finite subset of O, such that
x e ΠG(x) e X. Therefore h(x) = ΠG(x) is an ,42-mapρing.

We note for later use that in ZF° + ACfin {AC for families of finite sets)
A(F, Al) holds. Moreover, orderable covers of F-spaces have ,47-mappings.
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2.2 Lemma In ZF°, A(P, Wl) *> PW for P e \W2, B1,S\ andA(C, Wl) =»
PW.

Proof: In view of the remarks at the beginning of this chapter, it suffices
to prove A(P, Wl) => PW. Let X be w.o. and let X be the discrete topology.
Then X is W2, Bl, S, and C, and if X is W7, X = P(Z) is w.o.

2.3 Lemma Λi ZF°, Λ(P, Q) ̂  AC, when P e Wl9 D2, B2, B3,H2,A2\,
Qe \W1,W2,B1,L1,L2,S,C\.

Proof: Let X be a set, X = P(X). (X,X) is P and if (*,X) is Q, AT is w.o.,
thus yielding the well-ordering theorem.

2.4 Lemma Λi ZF°, Λ(P,β) ^ 4̂C, w/zere P e {LI, L29 H2, Al, F, A2\,
Qe iWl,W2,Bl9S9Cl.

Proof: Let X be a set with the discrete topology and I + = I U j l ! its one-
point-compactification. Then X+ is LI and since each subspace is Y+ or
discrete, X+ is H2. If Z + is C, 4 = ί ίx f :x e X\ is w.o. and so JT is w.o. This
and 2.1 conclude the proof.

2.5 Lemma In ZF\ A(P9Q) <* AC, where P e Wl9 D29 B29 B3,H2, A2\,
Qe {HI,All.

Proof: Let F be a family of nonempty sets. We construct a choice function
c. We set

X = FU(UF)

and give it the discrete topology. X is P. If X is Al, the cover

0 = \\x,V\:xe VeF\

has an ̂ 41 -mapping /. We set

\c(V)\ =/(F)\ίn.

Thenc(F)e V.

2.6 Corollary In ZF°,A(P,H1)*> AC,Pe U19L29A19F\.

Proof: Let X be the space of 2.5. Then X+ is P and if X+ is HI, X isAl and
F has a choice function.

MW is the assertion that each set is covered by w.o. family of finite sets. As
was shown in [9], MW is equivalent to MC in ZF°.

2.7 Lemma In ZF° + MC,A(P) holds, P e \D1 ,D2, B2,B3,H2,A2\.

Proof: In virtue of 2.1 we need only prove Dl and B2. Dl is immediate from
Tx and MW. B2 follows from an application of MW to X, where X = U W, and W
is a w.o. family of finite sets (E Π F = 0 when EΦF).\iEeW,xe UE9 we set

/<>,£)= Π ί F e £ : x e Π

and f(x,E) = X otherwise. If x e 0 e Z, there is an E e W containing O, whence
x e f(x,E) C 0 5 proving 52.
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2.8 Lemma In ZF\MC*>A(P,Q), where P e {D2,L1,L2,H2,A1,F,A2\,
Qe ίDl9B29B3\.

Proof: "=*" follows from 2.7. Let X be an infinite set with the discrete
topology and X+ its one-point-compactification. We show that X satisfies MW
iίX+ is Q. Clearly X+ isP (for H2 c.f. 2.4).

If W is a w.o. family of open sets such that {X\ = Γ)W, then

X=U{X\V:Ve W\

and each set X\V is finite. Hence A(P,B3) => MW.

If Z + is Dl, there is a w.o. family W of closed, discrete sets covering
X+. Since X+ is compact, each D e JV is finite, proving MW.

2.9 Lemma Λi ZF°9Aφ29 Q) ̂ MC, Q e {H2,A2\.

Proof: Let G be a family of nonempty sets. We construct an MC function.
Obviously we may assume that each g e G is infinite, and that g Φ g' implies
g Πgf = φ (otherwise consider G' = {g X \g\ :g e Gl). Let

g+ = gU {g\

be the Alexandroff compactification of the discrete topology on g and

X = U\g+:geG}

be the topological sum which is locally compact. G and UG are discrete and
X=U{G,UG\,soXisD2.

O = {g+\{p\: p e g e G\ is an open cover of X. I f/ is an A 2- mapping
for 0, then: (i) g e f(g) e X and (ii) f(g) C h+\\p\ for some p e h e G. It
follows from (i) that M(g) = g\f(g) is finite. As g e f(g) and h = g in (ii),
p e M(g) and M is the desired ΛfC-function.

2.10 Corollary In ZF°, the following assertions hold

(i) A(P,H2)*>MC,Pe \L1,L2,AI,F,A2\
(ii) A(P,F)=*MC,Pe \D1,D2,B2,B3,H2,A2\.

Proof: Let X be the space of 2.9, X its topology.
(i) Since X is locally compact, we may form the one-point extension X+.
It is LI and if it is H2, G has an MC-function.
(ii) Consider the discrete space (X, P(X)) which is P. If it is F, then (X, X)
is F, since the identity is continuous, and therefore (X, X) is A2 (2.1) and G
has an MC-function.

It follows from the proof of 2.10 (ii) that MC is equivalent to: Continuous
one-to-one images of B2 spaces are A2. A similar argument in 2.8 shows
MC is equivalent to: Continuous one-to-one images of /?2-sρaces are B3. In
contrast, continuous images of ///-spaces are Li and as in 2.1 continuous
one-to-one images of Al spaces are Al in ZF°.

2.11 Lemma In ZF\ A(P, Q) =* PW,

Pe {Bl9B29B39S9C9L29H29A2ϊyQe \W19W29D19D2\.
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Proof: Parts of 2.11 are covered by the simple 2.2. Let X be w.o. and con-
sider the product topology on 2X. For x e X and / e 2X we set px(f) = f(x).
A subbase for the topology is given by {p^MO}, px

l \l\ :x e X\ which is w.o.,
whence 2X is Bl. D is the set of all / e 2X such that f~ι\\\ is finite: D is
dense and w.o. and so 2X is S. Hence P holds. We next show that, if 2X is
D2, it is w.o., thus proving Λ(P, Q) =* PW. If D is discrete and d e D, there is
a finite £ C J such that Id] = l / e i ) : £*(/) = px(d), x e E1. Let £(d, £>) be
the least such E in the lexicographic w.o. Assume that 2X = ΌW, W a w.o.
family of discrete sets. For / e 2 1 we let /)(/) be the least D e W containing
/ and G(f) = (D(f), E(f, £>(/))). G is one-to-one and so it induces a w.o.
of 2*.

Considering Figure 2, we observe that 132 statements A(P, Q) are equiva-
lent to AC in ZF and 61 statements are provable in ZF°. The remaining 63
assertions are investigated in Section 5. We next summarize our results for
A(P).

2.12 Theorem

(i) In ZF, A(P) <*AC,Pe Fig. 1
(ii) InZF°,A(P)oAC,forPe \W1,W2,B1,L1,L2,S,C,H19A1\
(iii) InZF\A{P)<*MCJorPe \D1,B2,B3,H2,A2]
(iv) InZF°,AC=*A(F)^MC=*A(D2)=*PW.

The next two sections deal with D2 and F.

3 The position of A(D2) It follows from the results of the preceding
chapter that in ZF\ MC =* Aφ2) => PW. We show that in ZF° A(D2) does not

\
 Q

\ Wl W2 Dl D2 Bl B2 B3 LI 12 S C HI H2 Al F A2
P \

\\/l _ • _ > . - > . _ > _ » _ > . _> _ > _ > _ > _ > _ > _ > . _ > _ > . _ >

W2 P W - > - » - » ? ? ^ 9 2 ? -> -> 9 ? 9 9 ?
£ > ; ^ I C ̂ I C ^ -> AC 8 -> ΛC ΛC AC AC AC % AC MC %
D2 AC AC MC -• ^ C MC MC AC AC AC AC AC MC AC MC MC
Bl PW PW PW PW -* -> -» 6 -> 6 -> 6 -> 6 6 -*
52 ^ C y4C PW PW AC -^ -> >1C ^ C ^ C >1C ^1C -> AC MC -*
5 J ylC y4C PW PW ^4C 7 -> ^4C AC AC AC AC 1 AC MC 1
LI AC AC MC 5 AC MC MC -* -• y4C i C ^IC MC -> •+ ->
1 2 >4C y4C MC PW AC MC MC 6 -> AC AC AC MC 6 6 ->
5 PW P W P W P W 7 7 ? 7 7 - > - > 7 7 7 7 7
C P W P W P W P W 4 4 4 4 4 4 - ^ 4 4 4 4 4
HI 1 1 . 2 7 1 2 2 1 1 1 l - * - * - * - * - *
# 2 ΛC ΛC ΛfC PW y4C MC MC AC AC AC AC AC -> AC MC ->
^17 ^ C ^4C MC 5 ylC MC MC 1 1 ΛC y4C y4C MC -> -> -•
F AC AC MC 5 AC MC MC I 1 AC AC AC MC 3 -» ->
>12 >1C AC MC PW AC MC MC AC AC AC AC AC MC AC MC -•

Figure 2. A(P,Q) in ZF\
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imply MC and that A(D2) is not provable in ZF° + PW. We work in standard
permutation models of ZF° in this section.

Mt is the Fraenkel-Halpern model, determined by a set Uγ of urelements
(which is countable in the real world), the group Gx of all bijective mappings
on Uί and the ideal Ix of all finite subsets of Ut. M2 is the Mostowski model,
where U2 is ordered by < like Q, G2 is the group of order-preserving per-
mutations and 12 is the ideal of finite sets. We refer to [5] and [7] for more
information. A(e) = \x\sym x 5 fix e\ is the class of sets supported by e,
supp (x) is the least support for x p supp (x) = supp (px). Counterexamples
are transferred to ZF-models with similar properties.

3.1 Lemma In ZF°, if X is D2 and P(X) is D-finite, then X has isolated
points.

Proof: The assumptions imply that X is a finite union of discrete £>,-, i e n.
We apply induction on n. If n = 1, X is discrete. If X = (J Dj, we choose

ien+l

x e Dn, O e X, such that O Π Dn= ix!. If O = ix !, we are finished. Otherwise
O\Dn is an open subset (in X) of (J Dn which has an isolated point by the

ien
inductive hypothesis.
3.2 Example A (LI, D2) is provable neither in ZF nor in ZF° + PW. Hence
PW does not imply A(D2).

Proof: In M2 a closed interval X = [a,b], a < b, of urelements with the order
topology is compact and so LI. Since P(X) is D-finite but X has not isolated
points, X is not D2 by 3.1.

3.3 Theorem /« ZF°, A(D2) does not imply MC.

Proof: We show that A(D2) holds in Ml9 where MC is known to fail. Let e be
a support of the T2 space (X, X). Since

X=U{orbx: xeX\

where

of& x = {px : p e fix e\ e A(e),

X is D2, if each orb x is discrete. We prove this fact.
We set for x e X a(x) = supp(x)\e. When a(x) = φ, orb x = {x! is finite.

I f α ( x ) = {α/ z'erc! Φφ, we se t/= {p(fe)/e w,x)):p e/bc e! e Δ(e). We observe
that / is a function since if p((fl/)/eΛ) = q((ai)ien)> Q~ιP e /ϊx (e U α(x)), i.e.,
px = φc. Since Λw / = orb x, dom f C t/π + 1, and / )(ί/Λ + 1) is D-finite (c. f. [ 11 ]),
P(prb x) also is D-finite.

We now prove by induction on |α(jc)|, that orb x is discrete. We assume
that orb x is discrete whenever e supports (X,X) and \a(x)\ <n and we assume
(n = 0 is trivial) on the contrary, that orb x is not discrete for some x e X
such that \a(x)\ - n + 1.

If O e X\orb x is nonempty (X\. is X relativized to.) and / 2 e supports
0, there is a >> € 0 , such that supp y Cλf^e.

Otherwise (supp y\e) Π / Φ φ for y e O. As / 5 e, Iswpp jΛ/| <



312 NORBERT BRUNNER

\supp y\e\ = \a(y)\ and since y e orb x, \a(y)\ = \a(x)\. Hence \supp y\f\ < n
and

o(y)= \py\pefixf\ e Δ(/)

is discrete by the inductive assumption. Since

O = U{o(y):yeO\,

O is Z)2. Therefore, by Lemma 3.1, it has isolated points. Hence orb x has
isolated points and since fix e fixes X, orb x is discrete, contradicting our
assumption.

We next derive a contradiction to T2. If 0/, i e 2, are nonempty open
subsets of orb x, O0Γ) OXΦ φ.

Let / 5 e support Oj. There are p\ e /be e such that supp (PJX) Π / C g
and PiX e 0, , as follows from the above remark. We define q: supp(pox) U/->
£Λ by q(t) = ί for ί e / and q(po(t)) = px(t) otherwise. As p, e //x e and
/ Π pz (supp(x)\e) = φ, q is injective and so can be extended to a bijective
q on E/j. Then q e fix f and q po(t) = p^ί) for t e supp x. Therefore, q(pox) =
pxx and pjX eq O0C\ Ox = OλCλ Ov

We note without a proof that if Z is a Z)-finite T2 space in M l5 Z is covered by
a countable family of discrete sets.

4 The cardinality of Ai-spaces In Mu Ux is amorphous: Infinite subsets
are cofinite. Uί with the discrete topology is not P for P e {Bl, LI, L2, S, C,
Wl, W2\. Also Ut is amorphous and since Ux is not MW (if P(X) is /)-finite
and X is infinite, X is not MW), U\ is not P, for P e {̂ 2, B3, Dl\ (c.f. the
proof of 2.8). More interesting are Al and A2. We shall prove that amorphous
spaces are Al and if P{X) is ZMinite, X is ^42. We also give an application of
this result, demonstrating the use of A2. The cardinality behavior of ^/-spaces
depends on the model. In M2 there is a space with a D-finite power set, which
is not A2. When G is the family of all two-element subsets of Ux, which is
known to have no choice function, the construction of 2.5 yields a space with
a D-finite power set which is not Al. The construction of 2.9 applied to the
family of infinite subsets of Ux gives a D-finite space which is not A2. So our
results on the cardinality of A /-spaces in Mx cannot be improved.

4.1 Theorem Let X be a space in Mx. If X is amorphous, X is Al and if
P{X)isD-finite,XisA2.

Proof: Let e be a support of X, X, O, where O is open cover of X. If X is
amorphous, there is a mapping m: Ux\e -> X, such that X\Im(m) is finite [3].
Hence we may assume X = Ux. Because P(UX) is D-finite, the mapping n(a) =
min \\supp (V)\:a e V e O\, a e Ux, which is in the model, has an upper
bound N. f 2 e is a subset of Ux with \e\ + N + 1 elements. Consider the map-
ping G e Δ(/), defined through G(a) = [V e O:a e V e Δ(/U [a\)\.

We show: G(a) Φ φ. For, let a e V e O and \supp V\ = n(a). As

\eΌsupp(V)\<\f\,

there is a permutation p e fix e U {a\, such that p supp(V) C / u {α J , whence
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a = pa e V e 0 = pO and

pVeA(fU \a\).

ΎhuspV e G(a). We now apply a lemma from [6], p. 116, and get:

There is a function g e Δ(/) such that g{a) e G{a). Since this means a e g(a) e 0,
g is an A1 -mapping.

If P(X) is infinite, we define n(x) as above and there isaiVeω, such that
always \supp x\ + \n(x)\ <N. When/2 e is a subset of ί/withN + \e\ elements,
as above G(x) = {V e O:x e V e A (f U supp x)\ is nonempty. Since P(X) is
D-finite and G(x) is w.o., G(x) is finite and f(x) = dG(x) is open, /is the
desired A2-function.

We note that the following improved result holds: If Y is a subspace of
X, P(Y) is £>-finite, and O C X covers Y (X the X open sets), there is a
mapping f:Y -* X, such that x e f(x) and / ' 7 refines O. The proof uses [6],
which provides us with an O(RX) e G(x) for each ordering Rx of supp x and
fix) ~ Π OiRχ)- A similar improvement is valid, if Y is amorphous.

It follows that Uγ and U\ are HI. The following application of 4.1 is less
obvious:

4.2 Example A discrete F-space in M1 which is not Al.

Proof: L e t r = ( ί / U {ί/})2 be discrete. As in 4.1 Y is Al.

X=UU \U\U \\a,b\ :aΦb'mU\

with the discrete topology is not Al, as follows from the proof of 2.5. But
X is F, since f\Y-*X, where /(£/,£/) = ί/, f(a9U) = /(£/,fl) = /(α,Λ) = a,
a e U, fia,b) = fib9a) = U,Z?!, ̂  ^ ?̂ in /7, is finite-to-one, onto, continuous,
and open.

The following example gives an application of A2. As is well-known, in
ZF° + AC metacompact countably compact spaces are compact [1]. If X is
infinite and P(X) is D-finite, X with the discrete topology is countably
compact, paracompact and metrizable, but not compact. Need metacompact
spaces with a D-finite power set be paracompact?

4.3 Example In Mx there is a metacompact space with a Z)-finite power
set, which is not paracompact.

Proof: Let U\ = Uι U {UJ be the one point compactification of the discrete
space Uv

Z = (t/t)2\ί(f/ljί/1)!

is T2 and not Γ4, as was shown in [3]. Therefore, in ZF° X is not paracompact
[4]. It follows from [11], that P(X) is Z)-finite.

Let O e Δ(e) be an open cover of X. As was shown in 4.1, there is an
,42-mapping G for O.

We next observe that X is metacompact if X is A2 and there is a mapping
g: X -* X, the topology, such that x e g(x), and
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\yeX:xeg(y)\ =g'(y)

is finite. Let O be an open cover and G be an^42-mapping. h(x) = g(x) Π G(x)
defines a refinement # = 7ra(/z) of O and i/ is point-finite, since h'(x) C g'(χ)
is finite.

X is ̂ 42 by 4.1 and g is defined as follows: g(a,b) = \{a,b)\, when α,£ are
in Ulig(Uub) = U^X ib\,g(fl,Ux)={a\ X ί/J.

InM2 the situation is quite different: ^42-sρaces are rare.

4.4 Example In M2 there is a space X with a Z>finite power set which is
C, but not B3,A2,D2, S.

Proof: Let (X9X) be C/2

 w ^ h the order topology. As was shown in [3],
X is hereditarily C. Because P(X) is infinite and X has no isolated points,
X is not D2 (3.1) or 2?J. Since in permutation models S spaces are well-
orderable [3], X is not S. We prove not A2.

Consider the open cover 0 = {(a,^):a e U2\ ("-»" means "<»"). Let
/ be an A2 mapping for 0. Since Im(f) refines O, for each a there is a & e ί/2,
such that /(#) C (&,^), and because a e f(a) e X, there are c <a in f(a). There-
fore g(a) = inf f(a) exists and it satisfiesg(a) <a. But then \gn(a): n e w\ is an
infinite countable subset of U2, contradicting Z)-finiteness.

4.5 Lemma M2satisfiesA(B3,Dl)andA(HI,W1).

Proof: Let X be B3. As was shown in [2], X = U W, where W is a w.o. family
of sets y, such that P(Ύ) is £>-finite. But then from [2] and B3 each F e W is
closed and discrete and therefore A(B3, Dl).

By PW A(H1, Wl) *> A(H19 W2). Suppose X is not W2. Then it follows
from [3] that X contains an infinite subset Y which is a copy of an interval
iβ,b) C U2, a < b, and X\ (a,b) is finer than the order topology (X: topology
of X) which is not AI by 4.4. Hence X is not El.

5 Conclusion We complete the proof of Figure 2. If A(P,Q) is provable
in ZF°, we insert a "->", and if A(P,Q) implies PW, MC, or AC in ZF°, we
write this form into the matrix. The corresponding results were proved in
Section 2. We show by counterexamples that the remaining A (P, Q) also depend
on AC with some exceptions.

Xx is Uί with the discrete topology in Mx. It was studied in Section 4.
X2 is U\, the one-point-extension of Xx which was already constructed

in Section 4.
X3 is the space of 4.2.
Z 4 is the space of 4.4.
* 5 is 3.2.

The following counterexamples are constructed inΛf3, the Cohen-Halpern-Levy
model, where an infinite set A of Cohen-generic reals are adjoined to a ground
model of ZF + AC. The arguments of [7] show that we may assume that A is
an infinite, D-finite subset of R, such that inf A = +~ and A has no isolated
points. It is well-known that M3 satisfies ACβn (cf. [5]). If B C A is infinite,
B is not a w.o. union of finite sets (MW), otherwise B is w.o. by ACf{n (or
use the ordering of R). There is no mapping f:B-*B such that fφ) < b,
b e B, since this contradicts D-finiteness (cf. 4.4).
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5.1 Example X6 is A with the subspace topology of R. X6 is Bl but not
D2 or Al.

Proof: Since R is second countable, X6 is Bl. We conclude that discrete
subsets are C (2.1) and therefore finite (D-finiteness). A is not MW, whence
X6 is not D2. Since ACfin holds in M3, not F follows from not Al. Let
O = {(α,-*): a e A\ . Because inf A = <-, O is an open cover of Z 6 . If / is an
y47-mapping, f(x) = (gix),-*) defines a function g, such that g(x) <x. This was
already shown to be impossible.

5.2 Example XΊ is R2, the topology is an extension of the Euclidean by
the complements of end-point-free straight-line segments. XΊ is S and B3, but
not D2 or A2.

Proof: A basic neighborhood at p is an open ball around p from which
finitely many lines through p have been removed. T2, S, and B3 are obvious.
Since the subspace topology on the unit circle coincides with the usual, X6 is
a subspace of XΊ which therefore is not D2.

XΊ is not A2: Let Lpa be the straight-line containing (p,0) and (α,l),
p e R,α e A. Ep(V) = la e A :Lpa Π V- {(p,0)]\ (i.e.,LA f l has been removed).
If V is open, Ep(V) is finite. It follows from the definition of the topology
I ( R X \O\ is discrete), that O_x= \V e X:(p,O) e 0 =» \Ep(V)\> p\ is an open
covering of R X {0}, and 0 = Oj U {R2\(R X {0})} C Z covers XΊ. L e t / b e an
,42-mapping. Since (n,O) e f(n,O) C F e 0 yields |£Λ(/(w,0)) | > | £ Λ ( K ) | > w
because V e Ou it follows that B = (J En(f(n,O)) is an infinite ΛW subset of

^4, a contradiction, proving not A2.

5.3 Example X8 is R X Q, where a basic neighborhood at p is an open
ball around p and countably many straight-lines not containing their endpoints
are removed. X8 is Dl but not A2.

Proof: Dl is obvious since R X ίg} for q e Q is closed and discrete. Not A2
is proved as in 5.2 because A is /)-finite and Ep(V) is finite when V is open.

Other remarkable spaces are R which is Bl + S, but not A1 (improving
[7]), RA which is S [ 10] and not B2, and the Moore-Niemytzky plane, which
is S and B2 but not L2. XΊ and Xs are B3a, but 2Λ is not B3a, since it is
compact (BPI holds in M3) and compact B3a spaces are B2.

We conclude with some words on A(B1, W2), which was the starting
point of this paper. As follows from 2.11, in ZF° A(B1, W2) «• PW. Hence in
ZF A(C, W2) «• AC, thus answering in part a question from [3]. A{her 12, W2)
is—in ZF°—weaker than A(L2, W2) ̂  AC. For as was shown in [3], D2

 ==>

^4(/zer L2, W2). D2 is the axiom that a set is well-orderable if each infinite
subset has a Dedekind-finite power set. In ZF\ D2 =• iW but D2 f> .4C,
/W Φ> D2. In contrast, Λ(λer 17, W2) does not imply AC in ZF. Dt is the
axiom that a set is well-orderable if each infinite subset is Dedekind-infinite.
Dx holds in the Cohen model and therefore it does not imply AC in ZF (cf.
[3]).

5.4 Remark In ZF°9D1 **AQιerLl, W2).
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Proof: "her LΓ is "hereditarily LL" Let X be her LL If X is not w.o.

there is an infinite Z)-finite Y C X. We show that 7 is compact. Then Y is

hereditarily compact and therefore finite, a contradiction. If Y is not com-

pact, there is a w.o. cover (LI) without a finite subcover. Hence there is a

sequence (On)neω of open sets such that On C 0 Λ + 1 and #„ =£ OΛ + 1. We set

y' = U °«> Γ« = ίO Λ + Λίpϊ : p e On+ι\On\ and F = U Vn. V is an open
neω neω

cover of Y' and so it has a w.o. subcover (Pa)aeβ^ β a n ordinal number. We set

n(ά) = mm ί« e ω:Pae Vn\ and U J = On^)+i\Pa. T h e n c e On(a)+1\ \J On
n<n(oί)

and Pa C OΛ(α)+1. Because Y" is Z)-finite, A = ίαα:o: e /3i C 7 is finite, and

therefore there is a n e ω such that (J P ^ O ^ F ^ a contradiction.

5.4 is the reason that questions concerning A (HI, Q) are difficult.

NOTES

1. Added in proof: A(L2, Aΐ) *> ACWO. "<=" is obvious and for "=»" let (Fα)αe/3 be a w.o.
family of nonempty sets such that FaΠ Fat = FaΠ β = φ,aΦa' inβ. We setF = (J F a

αeβ

and X = F U 0 U \p\ for some p φ FU β. Points x e F U 0 are isolated, while neighbor-
hoods of p are of the form ίpi U F\E, E finite. This defines a Γ 2 + D 2 topology on X.
It is L2. Let O be an open cover. There is a V e O such that p eV. Since F \ Fis finite,
{ F | U { { x i : ; t e ] 3 U F \ F ! is a w.o. open refinement of O. By ^(12,Λ7) the following
cover O has an ,47-maρρing a:X-*O;O= {\p\ U F\ U{{a\ UF α \{x! :aeβ,x e F α J .
{/(α)! = Fc^a(oi) defines the required choice function (since α e a(ά)).

2. Xq = Q in Λf3. Let ^ C R be D-finite and ίnf A = «-. O = ίQ Π (Λ,^ ):Λ e ̂ 4} is an open
cover. If/:Q -> O is ̂ 41} then α(jc) = inff(x) eA;B = a'Q. C ̂ 4 is countable and unbounded.
Therefore X9 is not 4̂ x and not F(ACβn).
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