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Calculi M C V and ECV+1

of A. Bressan

ALBERTO ZANARDO*

Part I General interpretations for the modal language MLV

1 Introduction The modal calculus MC (based on the language MLV) and
the extensional calculus ECV+1 (based on ELV+1) are presented and investigated
in [2]; and in Section 15 of that work the translation Δ ->• Δ η of MU into
ELv+ι is defined (on the basis of the semantical rules for MLV). The main result
concerning the function 77 is proved (syntactically) in [2] (Theorem 63.1). The
theorem asserts that, for a suitable version of MCV,

(1.1) tjj^P i f f ^ + i P η > f o r e v e r y formula/? of MLv.

Obviously, the only relevant part of (1.1) is the implication from right to
left, since its converse is the very goal aimed at in defining 17.

Now, in [8] MCV is proved to be complete with respect to general
MZ/-interpretations (cf. Section 3) and an analogous result for ECV+1 can be
easily achieved by adapting the proof of Theorem 2 in [4], Therefore (1.1) is a
trivial consequence of

g g

(1.2) f = = p iff I v+1p
η, for every formula/? ofMLV,

g g

where f = ~ p [ 1 v+ι pη] expresses that p[pη] is true in every general model of
MC EC

the considered version of MCv[ECv+ί).
In this work the structures of the general interpretations for MLV and
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ELV+1 are investigated, mainly in order to give a simpler proof of (1.1) and in
order to extend it to a stronger result (Theorem 10.3). This theorem asserts
that every given maximal consistent set K of (totally closed) formulas of MLV

can be embedded, by means of η, in exactly one maximal consistent set of
(closed) formulas of ELV+1, in which the constants (of ELV+1) occur only in
formulas of the form qΆ{c[ e K).

The language MLV is based on a type system τv and a QI structure for an
ML ̂ -interpretation 3 is a set J = { JLJ-t'- t e ^ where l_Λt is the set of the
designata (in 3) of the expressions of type t. The semantical rules for MLV are
expressed in an extensional metalanguage and every element of JLΛt — quasi-
intension of type t—(t e τv) turns out to be an (extensional) object of type
tv (e τv+1, the type system on which ELV+1 is based). Thus every β/-structure J
can be obtained from a suitable 0Z?-structure S = \Obs: s e ? + 1 ! for an ELV+1-
interpretation /, by setting JLJt = Obtη, for all t e rv. In this case we say that J
is the β/-structure induced by S (J = Sι). Furthermore, the correspondence
S -» Sι can be extended in a natural way to a correspondence / -* I1 between
ELV+^interpretations and ML "-interpretations (cf. Definition 2.1).

The version of MCV considered in this work is the minimal calculus for
which (1.1) is provable (cf. Section 7); it has two additional axioms—MA4.1
and MA5.1—besides the basic ones (MA3.1-3.18) which are true in every
general ML "-interpretation.1 In Part I, Sections 4 and 5, necessary and sufficient
conditions on a given general ML "-interpretation 3 are determined for MA4.1
and MA5.1 to be true in it. In particular, if these axioms are true in J , then
certain quasi-intensions can be considered in the ^/-structure J of 3, which can
represent the sets Du . . ., Dv of individuals and the set Γ of possible cases on
which J (and the 06-structure S determining J) are based. Therefore, the
construction of S and the correspondence S ~+ Si can be expressed in J, and the
restriction of this correspondence to objects of type ^(t e τv) turns out to be
expressed by an embedding of J into itself (cf. Section 8).2 This is substantially
a modal analogue of the embedding Obt -* Obtη (= JLJ-t) which mirrors the
transition from an extensional semantics (or object system) to our modal
analogue.

In Part II, Sections 6 and 7, the translation η of MLV into ELV+1 is con-
sidered, and some useful results are stated, which, for any expression Δ of MLV,
relate the designatum of Aη in an £Z/+1-interpretation /, with the designatum
of Δ in V. In particular, in Section 7 the easier part of (1.1) is proved.

The other part is a consequence of the following statement: for every
general Misinterpretation J, a general £Z/+1-interρretation / exists such that
J = I1. This is proved in Sections 8 and 9 substantially by defining /inside 3.
Let us remark that the abovementioned possibility of embedding the QI-
structure of 3 into itself is strongly used in the construction of/, as well as in
the proofs that 3-V and that / is general.

The procedures introduced in Section 8 are also used in Section 10 in
order to prove Theorem 10.1, on which the proof of the abovementioned
uniqueness result is based.

2 Semantics for the languages MLV and ELv+ι The language ML" (y e Z+,
the set of positive integers) is based on a type system rv which is the smallest
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set s u c h t h a t ί l , . . ., vx C τ

v a n d (tu . . ., tm t0) e τv w h e n e v e r tu . . ,,tneτv a n d
t0 e fv = τv U {01. For every t e τv, the constants ctn and the variables υtn(n e Z+)
are primitive symbols of MLV in addition to the usual logical symbols: =, ~, Λ,
D, 7, comma, and left and right parentheses. The set &t(t e τv) of the well-
formed expressions (wfes) having type t of MLV, is defined recursively according
to the following rules (/i)-(/8), where t, tl9 . . ., tn run over τv and to[n] runs
overP[Z + ] .

(/i) υtn e &t and ctn e &t

(f2) if Δ 1 ? Δ 2 e &u ^ e n Δ 2 = Δ 2 e <%
(/3) if Δ, e ^ (/ = 1, . ..,/i) and Δ e <*<flf...ff||fr0>, then ( Δ ( Δ l 5 . . . , An))e ά>tQ

(Λ-?) if P, q e <%> then (~p), (p Λ #), ((ϋ ί π )p), and (Dp) e &0

(/8) if p e έ>o, then (iυΐn)p e &t?

The extensional language ELV+1 can be defined as the extensional part of
MLV+1; that is, the wfes of ELv+ι are those of MLU+1 in which the modal
operator D does not appear. The set of wfes of type s(e τv+1) in ELU+1 is
denoted by Es.

Following Carnap we denote <θl9 . . ., θn, θ0) (in τv or τv+1) by (θl9.. ., βΛ)
or (0 l 9 . . ., θn: θ0) according to whether θ0 is 0 or not. For every θ e τv[Tv+ί]
the elements of &$ [Eθ ] are called well-formed formulas (wffs) when θ = 0,
relation terms when θ = (# 1 ? . . ., Θn), function terms when 0 = (0 l 5 . . ., θn: θ0),
and individual terms when 0 e ίl, . . ., v \ [ {1, . . ., v + 1}].

The symbols v, D, (3vtn), 0, and other metalinguistic abbreviations are
understood to be introduced in the usual way. In particular, we often write
Δ e A' instead of Δ'(Δ), and (3χx)p, (Vx e F)p, and (ix e F)p will stand
respectively for (3x)(p Λ (y)(p[x/y] I> x = y)), (x)(x e F D p), and (ΊX)(X e
i 7 Λ p), in both MLV and ELv+ι. Furthermore, every expression used in the
sequel is assumed to be well formed. This makes several explanations
unnecessary.

A formula p (in MLV) will be said to be modally closed if it is constructed
from wffs D/?!, . . ., Upn by means of ~, Λ, (υtn)9 and D if p is also (exten-
sionally) closed, then we say it is totally closed.

For every choice of v + 1 sets Dl9 . . ., Dv+1 we say that the set S =
\Obs: s e rp+1} is an Ob-structure (for ELv+ί) in case the following conditions
(2.1-2.3) hold.4

(2.1) Ob0=\0, Π; 0 6 Γ = Z > Γ ( r = l , . . . , i > + l )
(2.2) O6( J l > . . . f,π)C^(Π?O6 ί .)
(2.3) 06(, l f... f j Λ: J o ) C ((Πf 06,.) -^ ObSQ).

If α^+1 is a function, of domain τv+\ such that (a»+1 =d)^+ 1(^) e OZ?S (for
all s e rv+1), then we say that (S, av+1) is an Ob-system. av

s

+1 is called the
nonexisting object of type s, since it will be assumed to be the designatum of
every description (in Es) which does not fulfill its exact uniqueness condition
(cf. rule (d8) below).

An ELV^-interpretation is an ordered triple / = (S, av+1, I) in which / is a
valuation of the constants of ELU+1 in S, that is, a function assigning each
csn e Es an object I(csn) in Obs. If in (2.2, 3) the relation C holds as an equality,
then / is said to be standard.



370 ALBERTO ZANARDO

The set of all valuations of the variables of ELv+ί in / (briefly, /-valuations)
will be denoted by Valj. The following rules (djMdg) define the designatum
desjy(A) of the arbitrary wfe Δ in ELv+ι in correspondence with the ELV+1-
interpretation / and the /-valuation V. In these rules we assume n e Z+, s e τv+1,
and desjv(Δ') = Δ' for every subexpression Δ' of Δ; furthermore, in (d3)[(d4)]
R(AU . . ., An)[f(Au . . ., ΔΛ)] denotes a formula [a term]. Note that V(υsn/ξ)
is an /-valuation just like V except V(υsn/ζ)(vsn) = £.

(dj) desIV(υsn) = V(υsn), desJV(cin) = I(csn)
(d2) desjy(Aί = Δ2) = 1 if Ax = Δ 2 L 0 otherwise
(d3) desIV(R(Au . . ., ΔΛ)) = Πf <Δl5 . ._., An) e R, 0 otherwise
(d4) desIV(f(Au . . .,_ΔΛ)) = / (Δ 1 ? . . .,An)
(d5.6) desIV(~p) = 1 -p;desIV(p *q) = p - q
(d7) desIV((υsn)p) = min%eObs(desιv%(p)) where V% = V(υsn/ξ)
(d8) desjv((ivsn)p) = the only £ e Obs such that desjy'(p) = 1 for V' =

V(vsn/ζ), if such a unique £ exists, av

s

+ι otherwise.

As usual a formula p is said to be true [satisfiable] in / if desjy(p) = 1 for
every [some] V e Valj. It is a matter of routine to prove that desjy(A) does not
depend on V when Δ is a closed wfe; in this case we shall often write desj(A)
for desjv(A).

In order to define the semantics for MLV we first consider the translation
η o f P i n t o r ^ 1 :

(Oη = (ϊ>+1), rη = O + \:r) (r = 1, . . ., v)

(2.4) htu...9tnr = ( t n

l 9 . . . , % , ' > + l )
Wu...,tn:tor = ( t l . . . , φ φ ;

and, secondly, we say that a structure of quasi-intensions (briefly, Qlstructure)
for MLV is a set J = \2_jLt'. t eτv\ such that, for some 0&-structure S =

{Obs:seτv+ι\,

(2.5) JLJίt = Obtη, for all ί e ? .

The (v + l)th basic set for a β/-structure, i.e., Z),,+1, is denoted by Γ and
its elements are called possible cases. Furthermore, for all t e lv, every £ e JLJt

is said to be a quasi-intension (briefly, QI) of type t.
Analogously to the extensional case, an MLV-interpretation is an ordered

triple, J = (J,av,<l) in which: (1) J is a β/-structure, (2) av is a function of
domain τv, such that av

t e JLJt for all t e τv, and (3) J is a valuation of the
constants oϊMLv mj.s

Definition 2.1 Let / = (S, av+\ I) be an £Z/+^interpretation and let J =
U,av,J) be the ML ^-interpretation determined by the equalities (2.5) and:
a\ = a%\ J (ctn) = /(c,η n), for all t e τv and n e Z+. Then we denote J by V and
say that: (i) 3 is induced by /, and (ii) / is an extensional correspondent of J .

Definition 2.2 Let J be an Misinterpretation and let ξ, f e i J f ( ί e τv).
Then ξ and ξ are said to be equivalent in the case y(e Γ) (briefly £ = 7 ξ) if one
of the following conditions holds:

(a,b) ί = 0 a n d £ Π { 7 i = f Πί 7 } , t e ίl, . . ., v\ and £( 7 )= «7),
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(c) t = (tu . . ., tn) and f Π ((Πf i J f . ) X ίT!) = f Π ((ΠfiJt,.) X ίγϊ),
(d) ί = (ί!,. . ., tn: ί0) and, for all α e Π?id, . , f(α) = 7 f(α).

Let J(= (J,av,Jl)) be an Misinterpretation and let T e Valj. Then the
designatum des3η/(Δ) of the arbitrary wfe Δ (with respect to 3 and Ψ) is
defined by means of the following Rules (δj) to (δ9), where the analogues of
the hypotheses for (δ^ to (δ8) are assumed.

(δj) deswiυtn) = V(vtn), desw_(cm) = Λ(ctn)
(δ2) d « , y ( Δ 1 = Δ2) = l 7 c Γ : Δ 1 = τ Δ 1 J
(δ3) desw(R(Al9 . . ., Δrt)) = [7_β Γ: <Ah . . ., An,y)eR\
(δ4) ^ ^ ( / ( Δ ^ . . ., Δn)) =/(Δ1 ? . . ., Δπ) _
(δ5-6) d e s w ( r - p ) = Γ - p \ d e s n ( p A q ) = p Π q

(δ7) deswdυ^p) = Π desJVJp), where r^ = ^(ι;frt/ξ)

(δ8) rfejjy (Dp) = Γ[^] if p = Γ[p * Γ]
(δ9) (i^jy ((ivtn)p) = the only β/ f such that

(a) 7 e desw^xvtn)p) and 7 e desjη/>(p) for ^ ' = y(vtn/ζ) => f = 7 {,

(b) 7 e Atfj^(~(3ii>r,,)/0 =* f =7 <.

The exact uniqueness of the QI ξ fulfilling (a) and (b) is proved in [2],
Nl 1 let us remark however that ξ (as well as other designata) may fail to be in
U J. In any case this unsatisfactory situation does not happen when general
ML ^-interpretations (cf. Definition 3.2) are dealt with, and these are sub-
stantially the only ones we shall investigate.

A formula p is said to be true in 3 if desj^(p) = Γ for every V e Valj. If
a V e Valj exists such that dessr{q) Φ φ, then q is said to be satisfiable in 3.

From now on we assume that every interpretation of MLV[ELV+1] fulfills
the following (usual) conditions on av[av+1]:

(A) %1,...,ίw)^(s+

1!...,^)] is the empty set

(B) Theimageof4 1 , . . .^ : / o ) [4; : . . . , ί π : s o ) ] i s ί^ 0 } [ ί< 1 ! ] .

These assumptions are conventional and could be chosen otherwise; we adopt
them substantially because they will render certain proofs simpler.

3 The calculi ECV+1 and MCv

t general interpretations, and completeness
theorems for ECvArl and MCV The following list shows the basic axioms for
the calculus ECv+ι, based on ELv+ί. In it p and q denote wffs, Δ denotes a
term, and x, y, z, xlt. . ., xn, F, G, /, and g denote variables of suitable types;
furthermore, in EA3.14,15 we use the symbol αf as an abbreviation for
(ivsn)(υsn Φυsn).

EA3.1-6 The axioms of the predicate calculus
EA3.7-9 x = x;x=yhy=zDχ = z;x = yD A[z/x] = A[z/y]
EA3.10 F = G = (Vx,,. . ., xn)(F(xu . . ., xn) = G(xu . . ., xn))
EA3.11 f=g = (Vxl5 . . ., xn)f(xu . . ., xn) = g(xl9 . . ., xn)
EA3.12 (3F)(\fxu . . ., xn)(F(xl9 . . ., xn) =p)(Fnot free in/?)
EA3.13 (3/XVxj, . . ., xn)f(xl9 . . ., xn) = Δ (F not free in Δ)
EA3.14 (a) (^υ^q ι\q[υsn/y] Dy = (wsn)q

(b) ~(3xυsn)q D (iυsn)q = a?
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EA3.15 (a) ~a?(xu . . ., xn) (where s = (su . . ., sn))
( b ) af(xl9 . . ., x n ) = afQ ( w h e r e s = (su ...,sn: s 0 ) ) .

If we regard the symbols occurring in EA3.1-EA3.15 as ranging over ML",
then (for i = 1 to 15) EA3.i also represents a schema of wffs of MLV, which we
denote by EA3.i'. Thus the axiom schemes for the calculus MCV (based on MLV)
can be introduced briefly as follows.

MA3.i EA3.l'forze ίl, . . ., 8, 10, . . ., 15!.
MA3.9 Ox=y D A[z/x] = Δ[z/y],
MA3.16J7 Π(pDq) .D.ΠpDΠq; Up Dp.
MA3.18 p D πp, where p is modally closed.

In addition to EA3.1-EA3.15 [MA3.1-MA3.18], we assume:

(i) the closure [total closure] of an axiom of ECU+1 [MCV] is an axiom
of ECV+1[MCU]

(ii) the only deduction rule in ECV+1[MCV] is the modus ponens.

Definition 3.1 The QIξ[ζ] of type (tu . . ., tn)[(tu . . ., tn: t0)] is said to
be definable (in the ML "-interpretation J) if there exist: (i) a V e Valj, (ii) an
^-tuple X = (xu . . ., xn) of variables of type tί9 . . ., tn, respectively, and
(iii) a wff p [a term Δ e ό>tQ\ such that (3.1) [(3.2)] below holds.

(3.1) ξ = d(p, X, J , V) = \<ξu . . ., ξn, τ>: it e JLJlt.(i = 1, . . ., ή) and y e
deswip), where V = V(Xl/iu . . ., xjξn)l

(3.2) ξ = d(Δ, X, J , V) = {«?!, . . ., ξn\ desw>(A)): ff e ZΛφ = 1, . . ., Λ)

andr '=nJCi/f i , . . . ,W?ιι)K

Here we omit the analogous definition for the£Z/+^interpretations, since
it is quite similar to Definition 3.1; the only relevant difference is in the cor-
respondent of (3.1), which is

(3.3) d(p, X, /, V) = {<*!, . . ., W e Πf 06,.: desIV>{p) = 1, where F' =

n x i / ^ i , . . . , ^ / ^ ) ! .

Definition 3.2 Let J[I] be an Λ/L^-interpretation [ELV+^interpretation].
We shall say that J [I] is general if, for all t e τv[s e τv+1], every QI [object] of
type t[s], definable in J[/], belongs to JL<Ht[Obs].

Theorem 3.1 below is proved (by a Henkin's method) in [8], whereas the
proof of Theorem 3.2 can be easily deduced from that of Theorem 2 in [4].

Theorem 3.1 (Completeness for MCV) For every p e ό>0 and K C <%,

Theorem 3.2 (Completeness for ECv+ι) For every p e Eo and K C Eo,

Kt-trlPiffK\φip.

In this work the expression d(A, {χu . . ., xn), J , 1/) will be often replaced
with its equivalent des$y(£kxl9 . . ., xw)Δ). It is worthwhile remarking, however,
that the operator λ is defined in MLV by means of the operator 1:
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K ' } \(Kxl9 . . ., xn)A =d Of)(Vxi, , XnMxi, - •> **) = Δ,

and hence the two expressions are equivalent only if 3 is a general Mis-
interpretation. Analogously we shall write desjv((λxu . . ., xn)A) instead of
d(Δ,<xu...,xn),It V).

4 Isomorphic MLV-interpretations and an additional axiom for MCV

Definition 4.1 Let 3 and 3' be two Λ/ZΛinterpretations and let w[wt(t e

τu)] be a one-to-one correspondence between Γ and Γ' [JLΛt a n d i ^ Π Then

w = (J wt U w is said to be an isomorphism between J and J ' if the following
teτV

conditions hold:

(a) t»!Z2eJLJtr(r=l,...,v)** Ul) = UΎ) iff £?(7W) = ̂ ( 7 W )
(b) i€^JQ^ξw^{yw:j€ξ\
(c) ξ e £cί(, l f ... i ί π ) =* Γ = ί<ξ^ . , ̂  7 W ) : <*i, , ξ«, 7> e ξ}
(d) { β zΛ(tl,...,tn:t0) => r α r , , ^ ) = ^ « i 3 , &» for aii

(e) α"' = w(α^), We*) = w(cί(cm)) (ί e Λ n e Z+).

As usual, two ML ^-interpretations are said to be isomorphic if an iso-
morphism between them exists. Conditions (b) to (e) above correspond to the
ordinary isomorphism conditions between arbitrary structures; whereas the use
of (a) depends on the fact that we are dealing with Λ/ZΛinterpretations. The
basic entities for these structures are not individuals, but individual concepts,
i.e., functions, and hence the lowest level relation is not the equality between
individuals, but the equality between individual concepts in a given possible
case. On the basis of this remark it is clear why no correspondence is assumed
between the sets Dr and D[ (r - 1, . . ., v).

If J and 3' are isomorphic ML ^-interpretations and Ύ e Valj, then the
J'-valuation defined by V{ytn) = w(V(vtn)) will be denoted by Ψw. The proof
of the following theorem is based on an easy induction on the length of Δ.

Theorem 4.1 Let w be an isomorphism between the MLV-interpretations 3
and 3', and let Δ be any wfe ofMLv. Then

(4.1) w(desn (Δ)) = desyv w(Δ), for all 1/ e Val3.

Corollary 4.1 (i) Any formula p of MLV is true [satisfiable] in the MLV-
interpretation 3 iff it is true [ satis fiable ] in every MLV-interpretation iso-
morphic to 3.
(ii) // J is a general MLV-interpretation, then every MLV-interpretation
isomorphic to it is general.

In the remainder of this section we shall consider an example of iso-
morphic MZΛinterpretations to be used later; it refers to those ΛίZΛinterpreta-
tions in which Axiom AS25.1 in [2] holds. Before writing this axiom we need

n

to recall some definitions; in them F is a term of type t = (t1,...,tn) and /\ pi

denotes pγ Λ . . . Λ pn.
 ι
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(4.2) Mconstt(F) =d (Vxu . . ., xn)(OF(Xι . ., xn) = DF(x,, . . ., *„))

(4.3) Msep,(F) =d (\/xlt yυ . . ., xn,yn)lF(xu . . .,*„) nF(yu. . .,yn)ι\
n n . \

oΛ χi=yi^ Λ nxi=yΛ
i i /

(4.4) Abst(F) =d Mconstt(F) Λ Msept(F)

(4.5) F<e\xl9 . . .,xn)=d O>Ί, .,>>«)(A *i=yi Λ ^ i > >^>)

For any given MίΛinterpretation J we shall say that the relation R (of
type t = (tu . . ., tn)) in J is modally constant or modally separated ox absolute
if desJV(Mconstt(R)) = Γ or desJΨ(Msept(R)) = Γ or dω j y(i4fo f(Λ)) = Γ,
respectively, when des3ηf(R) = /<ί.

In the sequel we shall use the convention of writing "(£ l 5 . . ., £rt) e ί ? " for
"(£IJ •> ^«, 7̂  β R for all 7 e Γ". In case n = 1, we shall often write ^e R for

Axiom AS25.1 in [2] is

MA4.1 Π(3F)[Absir)(F) Λ F(a?) Λ D(x)F ( e )(x)] (r = 1, . . ., *;)..

Let J be an ML ̂ -interpretation in which MA4.1 is true. Then, for every
r e {1, . . ., v\, there exists a QIFn of type (r), that satisfies the following
conditions:

(4.6) <£, γ> e Fr for some 7 e Γ => <£> ? F r

(4.7) <^>, <ξ2) i F r and ̂  =y ξ2 for some 7 e Γ =• ^ = {2

(4.8) ξ e i J r and 7 e Γ =* ξ = 7 ξ' for some <{'> e F
(4.9) <α?>iFr,

Let us assume α?(γ) = ar{e Dr) for all 7 e Γ; in this case the set Cr, defined

by

(4.10) Cr = {<{, 7>: ξ is a constant function in (Γ -* A-), 7 e Π ,

fulfills Conditions 4.6-4.9. Since we are dealing with arbitrary (and not
standard) Misinterpretations, we cannot know whether Cr is in i J ( r ) or not;
however we can show that the assumption Cr e -2~<t(r) ( i n addition to (a?) e Cr)
does not cause loss of generality. Intuitively, we can do this since the basic
relation in an Λ/ZΛinterpretation is the equality between individual concepts in
a given possible case, and the comparison between the values of individual
concepts at different cases has in general no meaning. Thus, for every 7 e Γ we
can change the values at 7 of the elements of JLJ>r (taking care to preserve the
equalities) in order to render the Qh ξ such that <£> e Fr, constant functions.

Theorem 4.2 Let 3 be an MLV-interpretation in which MA4.1 is true, and
let Fr be an element of 2^Λ{r) satisfying (4.6-4.9) ( r e ίl, . . ., v\). Then there
exist an MLV-interpretation J' and an isomorphism w between J and J', such
that w{Fr) = Cr.

Proof: LetDί = Dr(r= 1,. . ., i>), Γ = Γ and w(y) = 7 for all 7 e Γ. For every
£ e JL<lr and 7 e Γ, let £τ be the unique element of i J r such that <£7> e Fr and
£7(7) = £(Ύ) ( s e e (4.8)). Now we fix (once and for all) a 7 e Γ and we set
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ξw(yw) = ξy(y) for all 7 in Γ. Condition (a) of Definition 4.1 holds for this w,
indeed ξ(y) = ξ(y) «=* ξ7 = ξΎ *=* ξy(y) = ξy(y) *=* ξw(yw) = ξw(jw) Hence, if
we extend w to Q/s of higher type-level, by means of (b) to (e) of Definition
4.1, then it turns out to be an isomorphism between 3 and the resulting
interpretation 3'. Let us consider the Qh £w(e JLJt'r) for <ξ> e Fr. For these £ we
have £Ύ = £ and £w(γw) = £(γ) for all y e Γ; that is, ξw is a constant function
from Γ' into D'r.

Constant functions from possible cases to individuals are called subsis-
tents. By Theorem 4.2, it is natural to extend this notion and call subsistent
every QI ξ such that, for some Fr fulfilling (4.6-4.9), <£> e Fr (see, e.g., [ 1 ]).

5 Representatives of the possible cases in a given general MLV-interpretation
and a further axiom for MCV Let 3 be any given general Λ/ZΛinterpretation.
In order to make our investigation easier, first note that by the designation
rules (δj) to (δ9) (Section 2), for every wfe Δ and every If e Valj, des^(A)
does not change if we replace X J 0 with an arbitrary QI0 D \desw(p)\ p e &0

and If e Val3]. On the other hand, desn(p) e JLJ 0 for all p and V. Therefore
without any loss of generality we can adopt the following hypothesis.

Hypothesis 5.1 -2_J0

 = \desjγ(p): p e &oand Ψ e Valβ.

Second, suppose that a subset Γ; of Γ exists such that, for all p e &0 and
all V e Val3, Γ C desw(p) or desn(p) C Γ - Γ\ In this case all elements of Γ
behave in the same way with respect to the designata of wffs oϊMLv in J , and
hence we can replace Γ' with the singleton \y\ for an arbitrary y e Γ' (which
means in particular that y is substituted for every element of Γ' in all Qh of J) .
Hence no loss of generality is practically afforded by the following:

Hypothesis 5.2 // yu y2 e Γ and yx Φ y2, then there exist a wff p and a
V e Valj such that yx 4 desJη/(p) and y2 e desjψ(p).

Now we consider a new axiom for MCV which allows us to construct in 3
a β / Γ that will be shown to correspond to the set Γ of possible cases. This
axiom is A14'"(II) in [6] and Definitions 5.2 and 5.3 below of "Modally
minimal property" and ''Actual Elementary Case" are introduced in that paper
too.

(5.1) FCH=d (Vxj, . . .,XnKF(xu . .,*„) =>#(*i, .,*„)).
(5.2) Mmint(F)=d(H)(FCHDΠFCH), (whereFe &t).
(5.3) AEC(c) =d Mminω(c) Λ (vn)c(vn).

MA5.1 Π(3c)AEC(c).

The meaning of (5.1-5.3) is easily understood; in particular, for F e &(t)
and des3η/(F) = F, we have

(5.4) y e des3Ψ(Mminit)(F)) «=* for all ξ e i J ω , F Π (ZΛt X \y\) C ξ Π
( i J ϊ ί X {7}) implies F C £ .

The extension of (5.4) to other cases (in which Fhas an arbitrary relation
type) is obvious; thus the above restriction o n F is also assumed in the following
lemma.
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Lemma 5.1 Let us assume: If e Valj, F e &(t)(t e τv), des3η/(F) = F, and
ξ = des3y{Mmin{t){F)). Then: (1) F = Φ and ξ = Γ, or (2) F Φ φ and ζ = φ, or
(3) F Φ φ and ξ = {y\, for some 7 e Γ.

Proof: If F = φ, then (1) holds trivially. Let F Φ φ and let us suppose 7 l , y2 e
ζ (Ti ΦΎΊ)- Remark first that F Π (JLJίt X {jι\) is nonempty: otherwise we
could substitute a\t){= φ) for ξ and y1 for 7 in (5.4) and obtain F = φ. By
Hypothesis 5.2 there exist a p e &Q and 3.V e Valj such that yx $ dessη/r(p) and
y2 e desjψ'(p). Let x be any variable of type t not free in p and let ξ be
d(p AX = x, (x), J, V); by (3.1), ( £ J f X ί72}) C ξ and ( i c ί f X {71O ̂ ί = Φ
Hence (^_Jr X f72{) Π f C ( i J ί X | 7 2 J) Π f and ( i J r X {710 Π ξ C ( ^ J , X
ίTiS) n ^, which contradicts (5.4).

The proofs of Lemma 5.1 and Definition (5.3) imply the following

Lemma 5.2 For every V e Val3 and 7 e Γ, desw(AEC(c)) = \y\[φ] iff
V(c)=[Φ](£JίιXiy\).

Theorem 5.1 MA5.1 is true in 3 iff\y\ e ZJ0for all 7 e Γ.

Proof: Let des3η/((Bc)AEC(c)) = Γ and let 7 e Γ. Then there is a 1f such that
7 e desjψ'(AEC(c)) and, by Lemma 5.2, {7} = des3η/'{AEC{c)) which belongs to
i J o Conversely, suppose [7! e JLJ0 f°r a ^ 7 ̂  Γ. By Hypothesis 5.1, for every
7 e Γ there are a p e &0 and Ά If e Valj such that des3η/(p) = {71. Let x be a
variable of type 1 not free in p and let c = d(p Λ X = x, <x), J , V). Obviously
c = (JLJi X {7}), so that desn>(AEC(c)) = {7! for V'(c) = c. Since 7 was
chosen arbitrarily, ι̂Sj<^((3c)^4£'C(c)) = Γ for all V, and hence MA5.1 is
true in J.

Corollary 5.1 // i J o (in J) is a finite set, then MA5.1 is true in J.

Proof: Let 7 be any element of Γ and let Y = {£ e -2_J0

: 7 β ξ!. By Hypothesis
5.1, ξ, f e F implies £ Π f e 7 and, by Hypothesis 5.2, f| F = [7!. But 7 is
finite and hence {7! e Y.

In what follows JLJ^ X [7! will be denoted by 7. Since des3η/(AEC(c)) =
{y\ implies V(c) = 7, an immediate consequence of MA5.1 is that every 7 e Γ
has a representative 7 in JLJ(i). Now, in order to construct a representative (in
JLJai))) of the set f, let us consider the QIY = d(OAEC(c), (c\J, V), which
does not depend on If since c is the only free variable in AEC(c). Γ is a modally
constant relation (since OAEC(c) is a modally closed wff) so that, by
Lemma 5.2,

(5.5) f = {((ZJ, X i 7 !), T>: 7, 7 e Γl = K7, 7'>: 7, 7' e Γί.

In particular, (7) e Γ for all 7 e Γ; thus Γ can be thought as a representative
(in JLJ((i))) of the set Γ. Finally remark that 7 l =7 y2 implies 7 l = y2 and hence
f is an absolute relation.

Theorem 5.2 // the variable c(e #d)) ί/oe5 not occur free in the wffp, then

(5.6) {MA5.1! \—rv0p = (3φ(AEC(c)*p)

(5.7) {MA5.1} h^Πp = (c)Π(AEC(c)Dp).
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Proof: Remark first that (5.6) implies {MA5.1} h ^ ; -0-p = ~(3c)0(AEC(c) Λ

~p), which is equivalent to (5.7). As for the proof of (5.6) we use Theorem 3.1
and we prove that, for every general Λ/ZΛinterpretation J in which MA5.1 is
true, and every Ψe Val3, desJV(Op = (3c)0(AEC(c) Λ p)) = Γ. Let des3η/(Op) = Γ
and let y e desn{p). Then (by MA5.1) y e desJΨ>(AEC(c) Λ p) for V =
V(c/y), and desn>{O(AEC(c) Λ p)) = Γ; hence desJV((3c)0(AEC(c) Λ p)) = Γ.
Conversely, des3η/ ((3c)<>(AEC(c) /\p)) = Γ implies des3ψ'(AEC(c) Λ p) Φ φ for a
suitable ^ ' = ^(c/£). But c is not free in p and hence desw(Op) = Γ.

Theorem 5.2 shows that the elements of Γ behave just like case variables.
A similar result is achieved in [2] (NN.47-49) by using a concept (lw) analogue
to AEC(c). The proof of Theorem 49.2 in [2] (which is the analogue of
Theorem 5.2) uses an axiom asserting the existence of a contingent proposition
and the strong axiom of "extensional comprehension":

(5.8) Π(3F)(\/xu . . .9xn)(F0cl9 . . .,xn)=p.N.Mconst(F)).

The former (of these axioms) will not be used in this work since we do
not exclude the possibility that Γ may have one element. Instead, (5.8) seems
to be necessary in order to express the set of possible cases. Indeed in [6] the
equivalence (in MCV) between (5.8) and the conjunction of MA5.1 with
D ( 3 F ) ( V Λ : 1 5 . . ., xn)D(F(xu . . ., xn) = p) is proved, and this last formula is
provable from MA3.1-MA3.18 (see [2], N40); so that the calculus based on
MA3.1-MA3.18 and MA5.1 is equivalent to that based on MA3.1-MA3.18 and
(5.8).

Part II. An extension of the equivalence theorem

6 Translation of MLV into ELV+1 In [2] Nl5 a function η, which translates
MLV into ELV+1, is defined on the basis of the semantical rules for ML1\ sub-
stantially by assuming a particular variable χ = vv+lil of ELV+1 to represent
possible cases; thus, the modal operator D shall be translated into the universal
quantifier (χ).

In the translation rules (Tλ) to (T9) below the following (metalinguistic)
abbreviations (6.1-6.4) are used, in them χ denotes υv+liί, a, b e Er q(r e
ίl, . . ., v\), F, G e £ ( f l ί π ) η, and/, g e £(f1,...,r,I:f0)η, where t0, tu . . ., tn e τv

(cf. (2.4)).

(6.1) a = x b =d a(χ) = b(χ).
(6.2) F=xG=d (\fxu . . ., xn)(F(xlf . . ., xn, χ) = G(xu . . ., xn, χ)).
(6.3) f=x g =d (Vxl5 . . ., xn)f(xu . . ., xn) = x g(xu . . ., xn).
(6.4) (d\x)p =d (3x)(p Λ (y)(p[x/y] D x = x y)).

Let us remark that the written occurrence of χ in Aι = x Δ 2 is free, and hence χ
has at least one free occurrence in (3lx)p.

(TO (VtnY* = Vt%, (Ctnr = Ct%

(T2) (Δx = A2T = Δ? = χ Δ5
(T3) (R(AU . . ., Δπ))* = R«(AΪ, . . ., Δ2, χ)
(T4) (f(Au...,ΔnW=frι(Aΐ,...,Δϊl)

(T 5- 6) (~P)η = ~Pn;(p*q)η=pηΛ qη



378 ALBERTO ZANARDO

(T7-8) (WPT = (χn)pv (ΠpY* = (χ)pη

(T9) (fyx)pY* = (Ίxn)(χ)[G\z)p^[x^/z] Λ {z)(p^[x^/z] D
X* = χ z) .V. -OIZ^IJCV*] Λ Xη = χ <η].

These translation rules imply that: (1) if Δ is a term of MLP, then Δ η is
closed with respect to the variable χ, and (2) if p is a formula of MLV, then pn

is closed with respect to χ iff p is modally closed.
In [2] the definition of "extensional correspondent" of a given Mis-

interpretation is slightly different from Definition 2.1 in any case the proof of
Theorem 16.1 in [2] can be easily turned into a proof of the following
theorem.

Theorem 6.1 Assume that: (1) / is an ELv+1-interpretation and V e Valj,
(2) 3 = Γ and V(e Val3) satisfies: V(υtn) = V((υtn)

η) for all teτv,ne Z + , and
( 3 ) p is a wffofMLv and A is a term ofMU. Then

(a) desw (Δ) = desIV (Δη),
(b)for every γ e Γ, γ e desw(p) iffdeswip71) = 1 when V = V(χ/y).

By (3.1-3.3), a corollary of Theorem 6.1 is that, if its assumptions hold,
then

(6.5) d(p, (xl9 . . ., xn), J, V) = d(p\ (xl . . ., xl χ>, /, V)
(6.6) d(A, (xu . . ., xn), J, V) = d(A\ (xl . . ., x%), I, V),

which prove (cf. Definitions 2.1, 3.2):

Theorem 6.2 // / is a general ELv+1-interpretation then V is a general
MLv-interpretation.

Corollary 6.1 // the formula p of MLV is true in every general MLV-
interpretation, then pη is true in every general ELv+1-interpretation.

Proof: If pn is not true in the general ELV+^interpretation /, then (by Theorem
6.1) it is not true in/*, which is general by Theorem 6.2.

7 On the equivalence between MCV and ECP+1 From now on we assume
the calculus MCV to be based on MA3.1-MA3.18, MA4.1, and MA5.1, and by
general ML ̂ -interpretation (in the second sense) we mean a general MLV-
interpretation in the first sense in which MA4.1 and MA5.1 are true (that is, a
model of the considered version of MCV).

Theorem 7.1 // the formula p is a theorem of MCV, then pη is a theorem
ofECv+\

Proof: By the completeness theorems Theorems 3.1, 3.2, and Corollary 6.1,
we have only to prove that the translations (by η) of MA4.1 and MA5.1 are
true in every general ELV+^interpretation. Let / be any such an interpretation
and let q be the wff (in ELV+1) ((3x)(w)/(w) = X)ΛW = W, where x, /, and w are
variables of type r(e{l, . . ., v\), (v + 1: r), and v + 1, respectively. Obviously
d(q, (f vv>, /, V) (which does not depend on V) is the set of all ordered pairs
(f γ> such that / i s a constant function from Obv+1 into Obr and 7 e Obv+U and
hence the translation (by 77) of MA4.1 holds in / (cf. Section 4). In a similar
way the translation of MA5.1 can be proved to hold in /, by identifying q with
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x = x Λ 2 = Zγ (where x, z, and z1 are variables of type lη, v + 1, and v + 1,
respectively).

Let us remark that, since MA4.1 is independent of MA3.1-MA3.18,
Theorem 7.1 implies that its converse does not hold if we let MCV be based
on MA3.1-MA3.18. As for MA5.1, in this paper we assume that it is indepen-
dent of MA3.1-MA3.18 and MA4.1 (and actually I think the proof of Gallin
(cf., footnote 1) could be extended to prove this), so that this axiom is
effectively needed to prove the converse of Theorem 7.1. This fact has an
intuitive justification in remarking that in MLV no expression denotes an
individual or a possible case, whereas in ELV+1 this happens; and hence it is not
surprising that the new axioms needed are those which allow us to have expres-
sions (and hence Qh) that represent in a certain sense the elements of
Dr (re {1,. . ., v\) and Γ (cf. Sections 4, 5).

The proof of the converse of Theorem 7.1 (carried out explicitly in the
next sections) is based on the statement that every general Misinterpretation
has a general extensional correspondent, and this result will be achieved by
defining a suitable extensional correspondent / of an arbitrarily fixed general
ML "-interpretation J and by verifying that / is general. Of course, the crucial
point concerns the definability in /; indeed, since the sets Obtη(t e fp) are
uniquely determined by means of (2.5), the remaining sets Obs (s Φ tη, for all
teτv) must be small [large] enough to fulfill condition (1) [(2)] below:

(1) every object of type tΆ(t e τv), definable in /, has to belong to Obtn and
(2) every Obs has to be closed with respect to definability in /.

In order to overcome this difficulty, we shall define the sets Obs(s e τv+ί)
by means of certain representatives of them in 3 itself; in this way the problems
concerning the definability in / turn out to be reducible to similar problems in
J, which are trivial since J is general.

Unless otherwise stated, from now on J will denote a general Mis-
interpretation, fixed arbitrarily except that

(7.1) C r e l c l w , <αpϊCr(cf.(4.10)) (r e {1, . . ., p\),
(7.2) JLJ0 = \desn.(p): p e &0 and V e Val3i

which causes no loss of generality by Theorem 4.2 and Hypothesis 5.1.

8 Construction of an extensional correspondent I of J For all s e τv+i, the
type 5*(e τv) is defined recursively by

( r* = r ( r = l , . . . , i / ) , i / + l * = ( l)
(8.1) h s u . . . 9 s n ) * = ( s ΐ , . . . , s * )

((sl9 . . . 9 s n : so)* = (st, . . .,s%:sξ).

In order to define every set Obs(s e τv+1) for the extensional correspondent
/ of J to be constructed, we first consider the representative Xs of it (in J) ,
which turns out to be a subset of JL Js* '

(8.2) Xr = iξ: φ eCr\ (r = 1, . . ., v) Xv+1 = {£: φ e f! (cf. (4.10) and (5.5))
(8.3) X(slt...,sn) -\R e -2-^(si,...,s«)*: R is modally constant and

£e^((Π?J\yXΓ)i
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(8.4) XiSι,...,sn:s0) = \fe icί(S l >...> S / I:S o ) : for all a e Π? i J , , . , α e [*] n < % =*

7(α) β Z,0[/(α) = < * ] ! .

The elements of Xr(r = 1, . . ., v) are constant functions from Γ intoD,.,
and those of Xv+1 have the form {7} X JLJj (7 e Γ), so that a natural bijective
correspondence σ exists between X l5 . . ., Xv+ί and the sets Du . . ., A,+i(= Γ)
which the Misinterpretation 3 is based on: for all £ in -Yr (r e U, . . ., i>}) and
all 7 = {7} X i J j in Xv+l9 we set

(8.5) σ(£) = the only element of the range of £; σ(7) = 7.

Now the function σ can be extended in a natural way to every Xs, by setting

(for arbitrary R e XiSlt...tSn) and/e X(Sί,...,Sn:s0))

(8.6) σ(Λ) = Kσfo), . . ., σ(&,)>: <$l9 . . ., $„> eΛI,
(8.7) σ(/) = Waft,), . . ., σ($π)>, σί/fo, . . ., *„))>: fc e *„.(/ = 1, . . ., *)}.

The sets σ(Xs)(s e τv+1) fulfill conditions (2.1-2.3) for ̂ -structures. Thus,
if we assume

(8.8) Obs = σ(Xs) ( se? + 1 )

(where σ(X0) = 10, 1} is obviously understood) then the set S = \Obs: s e τu+1\
turns out to be an O5-structure which is sound for the definition of an exten-
sional correspondent / of 3, since it is based on the sets Du . . ., Dv, and Γ.
Now we have to prove that JLΛt = Obtη, for all t e P( in addition to defining in
a suitable way the function av+1 and the valuation / of the constants of ELV+1).

Lemma 8.1 The function σ, defined by means 0/(8.5-8.7), is one-to-one.

Proof: We have already observed that σ is a bijective correspondence between
Xr and Dr(r = 1, . . ., v + 1). Let us assume inductively σ to be one-to-one on
the sets XSQ, XSv . . ., XSγι. Then, by (8.6), £ l 5 £2 e X{s^..^n) and σ(ξj) = σ(£2)
imply ξ1 = ξ2 since they are modally constant. Assume now ξί} ζ2

 e X(sh. . sn:s0)
and σ(ξx) = σ(ξ2). By (8.4), ^(a) = μά) = av

s% for all a in (Πf ZΛS* ~ UfXSi);
hence ξ t = ξ2 by (8.7) and the inductive hypothesis.

In order to avoid frequent repetitions, the following conventions are
assumed from now on (it is easy to realize that they do not cause any loss of
generality): (1) Cr denotes v^r)λ(r = 1, . . ., v), (2) c denotes υ^)2 and the formula
AEC(c) is defined by means of (5.3), (3) for every V e ValJt V(Cr) =
Cr(r = 1, . . ., v), (4) no wfe contains free occurrences of C l 5 . . ., Cv, and c,
except those written explicitly.

Propositions 8.1-8.4 below concern the use of the Qh Cu . . ., Cv, and Γ
as representatives of the sets Du . . ., Dv, and Γ; in them we assume that
(1) r e ίl, . . ., v\, (2)xί9 . . . ,*„, x, y, and / are variables of type tu . . ., tn, r, r,
and ((1): r) respectively, (3) p, q(c) e &0 and q(c) is modally closed, (4) V e
Valj, a n d ( 5 ) ^ e i J , . ( / = l , . . . , / 7 ) .

Proposition 8.1 £ = desSΨ{{\xx, . . ., xn, c)0(AEC(c) Λ p)) is a modally
constant relation and (ξ1? . . ., %n, c) e ξ iff there is a 7 e Γ such that c = 7 and
7 e des3r (p) where V = Vίxjξu . . ., xjξn).
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Proof: £ is modally constant since O(AEC(c) ι\p) is modally closed. Assume
now <£l5 . . ., ζn, c) e £; this is equivalent to the existence o f a γ e Γ such that
7 e dessη/>(AEC{c) Λp) for V' = ^ ( V £ i , . . .,*„/£,,, c/c) and, by Lemma 5.2,
this holds iff y e desjψ>(p) and c = y.

Proposition 8.2 // ξ = desw((λxl9 . . ., xn)(3c)(AEC(c) Λ qr(c))), then ξ =

K*i, , έΛ, T>: *Wjir'(?(c)) = Γ/or ̂  = n * i / £ i , . . ., xn/ξn, c/y)l

Proof: Since q(c) is modally closed, for every If e Valj, desjV(q(c)) is Γ or φ.
Assume <£l5 . . ., ξn, y) e £; this holds iff there is a c such that y e
desjη/>(ΆEC(c) Λ q(c)) for V = ¥(Xι/ξu . . ., χnlζny c/c), that is, by Lemma 5.2,
iff ? = y and desyV'(q(c)) = Γ for ^ ' as above.

Proposition 8.3 Let V(χ) = ξ (e JLΆΐ), V(c) = c, and let ξ =
desjη/((iy)O(AEC(c) /\y eCr/\y = x)). Then:

(i) c e" f (say c = y)=>ζίsa function with range \ζ(y) \
( i i )c?f =»£ = *?.

Proof: (ii) is trivial since c e f iff desn(OAEC(c)) = Γ for V(c) = c (cf. (5.5)
above). Assume now c = γ. In this case, since <ies irG4£C(c)) = ίγ}, the equality
A?Sj^(0G4£C(c) /\y eCrf\x=y)) = Γ where ^ A = ̂ ( ^ / f ) , implies ζ' e Cr and
?'(Ύ) = ?(τ) Such a f; is unique and hence ξ' = ξ.

Proposition 8.4 Let V(f) = ξ e X(v+1:r) and let ξ = des)V((ix)(3c)(AEC(c) Λ
xeCr/\x=f(c))). Thenσ(ξ) = ζ.

Proof: By (8.5 and 8.7) we have to prove that, for all y e Γ, ξ(γ) is the
only element of the range of ζ(y). To this end we first remark that
des3ψ{Ίλx){Ίc)(AEC{c) Λ X e Cr hx = f(c)) = Γ, so that the QI £ is determined
on the basis of part (b) of designation rule (δ9) in Section 2. Assume y e
desjη/>((3c)(AEC(c) Λ X e Cr Λ X = f(c))) where V = ^ (*/£ ' ) . Then y e
desn»{AEC(c) Λ X e C Λ X = f(c)) for V" = V'(c/y); hence ξ; =y ξ(y). Thus,
since by (δ 9 )$ '= τ $,$= 7 ?(7) .

Theorem 8.1 For (2// / β P, ί/ẑ  function σ is a bijection between Xtη and

Proof: σ is one-to-one (Lemma 8.1), hence we have to prove the equality
σ(Xtη) = ̂ L<lt{t e τv). Let us remark that for every QI ξ in J there exists a wfe
Δ and a If e Valj such that £ = dessv(A). Conversely, desw(A) is in JLJt ^or
all Δ e &t and ^ , since J is general. Therefore the equality above is a
consequence of the following statements:

(1) for every wfe Δ o (of type tη*) and every ¥ e Valj such that
des3V(A0) e Xp, there is a wfe Σ(Δ 0) (of type t) such that
o{desn (Δo)) = desw (Σ(Δ 0));

(2) for every wfe Δ (of type t) and every If e Valj, there is a term Σ'(Δ)
(of type ίη*) such that desJV(Σ'(Δ)) e Xtn and σ(desjη/(Σ((A)) =
desjΎ (Δ).
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Case 1. t = 0. Let Σ(Δ0) be (3c)(AEC(c) Λ Δ 0(C)). By the hypotheses, f =
des3η/ (Δo) is a modally constant QI of type ((1)) in Xon and, by Proposition 8.2,
7 e ξ = fifejjy(Σ(Δo)) iff 7 e f that is, σ(f) = ξ. Thus (1) holds.

Let Σ'(Δ) be (kc)O(AEC(c) Λ Δ). By Proposition 8.1, c e f = desJV (Σ'(Δ))
iff c = 7 for some 7 in £ = cfesj^(Δ), which is equivalent to σ(ζ) = £. Thus (2)
holds.

Gise 2. t = r (e {1, . . ., v\). (1) follows from Proposition (8.4). Let Σ'(Δ) be
(λc)(iy)O(AEC(c) /\ y e Cr/\y = A), ζ = desw(Σ'(A)) is a function in icί(( 1 ) : r )
and, by Proposition 8.3, it belongs to Xrn and σ(ζ) = des3η/(A), which proves
(2).

Now the thesis, as well as (1) and (2), are assumed to hold when t is any
of t0, tu . . ., tn.

Case 3. t = (tu ..., tn). Let Σ(Δ0) be (λxl5 ..., xn)(3c)(AEC(c) Λ A^Σ'ix^ ...,
Σ'OH), C)), where xu . . ., xn are n variables (not free in Δo) of type tu . . ., tn

respectively. By Proposition 8.2 and the inductive hypothesis, for all
<*i, - ., &,> e n?ZΛti and 7 e Γ, <ί ls . . ., «Λ, γ> e £ = <to j r(Σ(Δ 0)) iff
(σ-^ξO,. . ., σ " 1 ^ ) , 7> e ζ = desw(A0), which proves (1) by (8.6).

Now let Σ;(Δ) be (\yu . . ., yn, c)0(AEC(c) Λ Δ(Σ(^i), . . ., Σ(yn)))9 where
yu - >yn a r e n variables (not free in Δ) of type ίj*, . . ., r̂ *, respectively. By
Proposition 8.1, for all (ξu ..., ξn)e Π? i J f η * and all c e i J? ( 1 ) , *<?!,. . ., fn, c)e

f = &jjy(Σ'(Δ)) holds iff c = 7 and 7 e dωjyrίΔίΣ^O, . . ., Σ(^π)))
for 1/" = ̂ (^i/fi, . . ., yj$n)> Hence by the inductive hypothesis (*) holds iff
(o(ζi)> J σ(?«)5 7^ e ^-Sj^(Δ), which in turn occurs iff σ(ζ) = desjη/(A). Thus
(2) holds.

_Case 4. t = (fl5 . . ., tn, ί0). By the inductive hypothesis and (8.7), Σ(Δ0) is
trivially (λχu . . ., xn)Σ(A0(Σt(x1), . . ., Σ'(xn))) where xu . . ., xn are as above.
Hence (1) holds.

Let Σ'(Δ) be (λ^1? . . ., yn)0y)Qxu . . ., xΛ)(Λ?DΛ/ = Σ ( ^ ) Λ D^ =
Σ(Δ(x1} . . ., xn)))> where yι, x/(z = 1, . . ., ή) are as above; and let ξ be
des3η/{Σ'{A)). Hence ζ is a function in -2LJrη* and, by the inductive hypothesis,
for all <ξl9 . . ., ξn) e {YΫ} LAtf - Π ? ^ ) , f(fi, . . ., ξn) = fl^ Conversely,

<?i, , fΛ> e Π? JΓf? implies r(fi, . ., L) = σ-ι(ξ(σ(ξx)9 . . .,°σ(ξn)))9 where

£ = des^ (Δ); that is f e Xfη and σ(f) = £. Hence (2) holds.

By (8.8) we have HJίt = Ob(η for all t e rv. In order to define the function
av+ι (for /), let us remark that av

r (in 3) is a constant function from Γ into
Z)r(= Obr) (cf. (7.1)); thus it is natural to assume av

r*
1 to be the only element of

the range oϊav

r(r = 1, . . ., v). As for av

vX
ι

v we fix a possible case 7* in Γ and we
let<:}=7*.

Now the function av+1 is determined by the above choice of a?+1(r =
1, . . ., v + 1) and the semantical conditions corresponding to the axioms on the
nonexisting object. It is easy to prove that aft1 = av

t for all t eτv and hence, if/
is any fixed extensional correspondent of the valuation J. of the constants in J ,
then the ELV+^interpretation /, defined by means of (8.8) and the above choice
of av+1 and /, is an extensional correspondent of J .
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9 Proof of the equivalence theorem The equivalence theorem between
MCV and ECv+ί follows from the assertion that the ELV+^interpretation /,
constructed in Section 8, is general. In order to prove this we shall use the
above-mentioned possibility (due to the construction of /) of turning any
problem concerning the existence of definable entities in / into an analogous
problem in 3.

The following lemma asserts the existence (in J) of certain Qh which can
represent the sets Obs(s e τv+1) in / (let us remark that, by the intensional
semantics for MLV, the sets Xs defined in Section 8 are not Qh in J).

Lemma 9.1 For all s e τu+\ the set Xs defined by

(9.1) XS = XSXΓ

is an absolute QI in JLJt(s*y

Proof: The thesis is trivial for s e ίl, . . ., v + 1} (cf. (8.2)) and hence it can be
assumed inductively to hold for s e ίs0, . . ., sn\. Every Xs is modally constant by
(9.1) and, for s = (su . . ., sn) the elements of Xs are modally constant by (8.3),
so that Xs is modally separated. Assume now s = (sl9 . . ., sn: s0), £, ξ' e Xs and
I =y £'; that is, $(α) =7 £'(α) for all a e Π ? £ J S . If ot 4 Πf Xs., then ξ(α) =
ξ'(a) = a"*; otherwise ξ(ce), ζ'(a) e XSQ, which is modally separated by the
inductive hypothesis. Thus £(α) = £'(α) for all a and hence ^ = £'.

Let now YS(y YSv . . ., YSn, R, and / be variables in MLV of type (̂ o),
(sf), . . ., (s%), (sl9 . . ., sn)*, and (su . . ., sn\ s0)*, respectively, and let
1f(YSi) = XSi(ί = 0, 1, . . . , « ) . It is a matter of routine to prove that

desw((KR)(Mconst(R) Λ (Vxl9 . . ., xn)(R(xi, ., xn)
 D Λ? nxt e Y5.))) and

desJV((kf)(Vxu . . ., xn)(A?Xi e YSi D f(xu . . ., xw) e r,0 .Λ. -M}XΪ e YSi 3

/(*!, . . ., xΛ) = α*j)) are respectively X(ίl,...,,„) and AχSl,...,S/I:S()). Hence X, e

i J s * for all 5 e τ"+1.

In Lemma 9.2 and Theorem 9.1 below the following conventions are
assumed: (1) for every variable vsn of ELv+\ v*n denotes the variable vs*)n+ί of
MLV, (2) for every s e τv+ι, Ys denotes υ^s*) u and (3) for every ¥ e Valj,
V(Ys) = Xs(cf.(9A)).

Lemma 9.2 Assume that: (1) Δ e Es(s e ? + 1 ) , (2) V e Valh and (3) no
constant occurs in Δ. Then, for every n-tuple X = (xu . . ,,xn) of variables in
ESv . . ., ESn, respectively, there exist a wfe Δ* of MLV and a If e Valj, such
that, for every <ξl5 . . ., ζn) e Π? Obs.,

(9.2) s Φ 0 =• desjV>(A*) = σ'V^/K'ίΔ))
(9.3) j=0=>dω j y /(Δ*) = W l iffdesίV>(A)= 1 [̂ ]

w/zere F' = F ί ^ ^ ! , . . ., xnlϊn) and V = nxί/o'K^X . . ., ̂ / σ ' 1 ^ ) ) .

Proof: We use an induction on the number Ί Δ of occurrences of Ί in Δ and, in
correspondence with a given value of 1Δ, we use an induction on the length of
Δ; however, this last part does not depend on ?Δ and hence it is carried out
explicitly in the initial step only.

Let Ί Δ = 0. If no quantifier occurs in Δ then we let Δ* be obtained from Δ
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by replacing in it every variable x with x* and we let V be any 3 -valuation
fulfilling the equality V(y) = σ(V(y*)) for every variable y of ELv+ι. In this
case the thesis follows from (8.6 and 8.7) and an induction on the length of
Δ. Let now Δ be (x)p (x e Eu)\ we assume inductively that the thesis holds for p
and the set X' = X U \x\ of variables. We let Δ* be the wff (Vx*j YU)P*> and
let V be any 3 -valuation fulfilling the inductive hypothesis. Xu is modally
constant and hence, by the inductive hypothesis, des3ψ>(A*) is Γ or φ. Further-
more, desw(A*) = Γ iff, for all ξ e Xu (that is ξ e Xu), desw»(p*) - Γ, where
^ " = ^'(**/?); but σ is a bijection between Xu and Obu and hence, by the
inductive hypothesis, des3ψ'(A*) - Γ iff, for all ξ e Obu, des/v"(p) - 1 for
V" = V'(x/O.

Let now Δ be (ix)p. We assume inductively that the thesis holds for all
wfe Δ' for which ΊA> < iΔ, and we let Δ* be 0^)((^(3ix)p)* ^> y = as Λ.
((Ξχx)p)* D y = (ix* e Ys)p*), where y and as are distinct variables of type s*,
not free in p* and different from xu . . .,xn. Furthermore, we assume If to be
any 3 -valuation fulfilling the inductive hypothesis (relative to p and the set
X' = X U {*!), for which V(ots) = σ " 1 ^ 1 ) . If Aw/κ'(Oi*)/0 = 0, then,
by the inductive hypothesis, des jy»(((3ix)p)*) = ^ and desn'{Δ*) =
V(as) = σ'Hd^/^'ίΔ)). Assume now desjy((31x)p) = 1 and desjy(A) = ξ,
which means in particular that desjy»(p) = 1 for V" = V'(x/ξ). Then
dωjy'αOiJc)^)*) = Γ, desn»(p*) = Γ for r " = 1f(x*lσ-\ξ)\ and
(ie5 jy'(Δ*) = desw>((ix* e Ys)p*). Now, the proof of the initial step implies
that ((3i*)p)* is equivalent to (3xx*)(x* e Ys Λ p*) and hence rfesiV'(Δ*) =

Theorem 9.1 Γ/zβ ELv+l-interpretation I, defined in Section 8, is general.

Proof: Let ξ be d(Δ, <x1? . . ., *„>, /, F) (cf. (3.2, 3)), where Δ e Eo, xl9 . . ., xn

are variables in £ ί χ , . . ., ESn, respectively, and V e Valj. Let us first remark that
no loss of generality is afforded by assuming that no constant occurs in Δ,
since, otherwise, we can replace every constant a in Δ with a variable x (free for
a in Δ and different from the others introduced in the same way), and consider,
instead of V, the /-valuation V - V(x/I(ά)). Thus Lemma 9.2 can be applied,
and a wff Δ* and a V e Val3 exist such that (9.3) holds for all (ξu . . ., £„> e
Ufθbsr Let Δ* be (AUi e YSi) Λ Δ* and let ζ be d(Δf, (xf, . . ., x£>,J, y). By
(8.3), ξe X(Sh...,sn) and, by Lemma 9.2, (ξu . . ., £n) e ξ iff ( σ " 1 ^ ) , . . .,
σ" 1 ^)) 6 f. Hence, by (8.6) and (8.8) ξ = σ(f) and { β 06^^...^).

In a similar way we can prove that, in case Δ e Es(s ΦO),ξe Ob(Sχ ... Sn:sy.
if we let Δf be OJ>)(~Λ?;C/ e ys. DΠy = a*, .Λ. Λ"X/ e Ys. DΠy = Δ*)','then it
is a matter of routine to verify that ξ = d(Af, ύcf, . . ., x*>, 3, V) is in
^1,...,5Π:s)andξ = σ(f).

Now, the converse of Corollary 6.1 is a consequence of the above results.
Indeed if a wff p of MLV is not true in the general Misinterpretation J, then it
is not true in a general MZΛinterpretation 3' fulfilling (7.1) and (7.2), which
has a general extensional correspondent / by Theorem 9.1; and hence, by
Theorem 6.1, pη is not true in /. Thus, by the completeness theorems,
Theorems 3.1 and 3.2, the converse of Theorem 7.1 holds, and (1.1) is proved.
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10 Uniqueness properties of the general extensional correspondent In this
section 3 and / still denote the interpretations considered in Sections 8 and 9
and / = ({0b's: s e τv+ι\, bv+1, J) denotes an arbitrary general extensional cor-
respondent of 3. A priori, the only known relation between / and / consists in
the equalities Ob'tη = Obtη(=JLJt)> f° r an" t e τv; however, if we take into
account that / and / are general, then it seems reasonable to ask whether some
stronger relation should hold, since in a general interpretation some connec-
tions between sets of objects of various types are determined by the required
closure of these sets with respect to definability.

In what follows we shall give an exhaustive answer to this problem by
proving that Obs = Ob's, for all s e τv+1. Therefore, since/ is chosen arbitrarily,
we have that all general extensional correspondents of a given general MLV-
interpretation, are based on the same 0&-structure.

The proof of the uniqueness theorem is substantially based on the
possibility of expressing the function σ (cf. (8.5) to (8.7)) inside/ and/ (let us
remark that for every s e τv+\ Xs (cf. (8.2) to (8.4)) is a subset of

Ob8rt(rOb's*n = JLJίs*)).
In Lemma 10.1 and Theorem 10.1 below we consider only the cases

s e {1, . . ., v + 1! and s = (s1, . . ., sn) because, since/ and/ are general, every
object of type (su . . ., sn: s0) corresponds to exactly one object of type
{Si, . . ., Sn> So).

Lemma 10.1 For every s e τv+1, there exists a wfe ΣS(Z) (in which Z is a
free variable of type s*n) such that, for every V e Valj[U e Valj], V{Z) e
XS[U(Z) e Xs] implies desIV(Σ\Z)) = σ(V(Z)) [deSju(Σ\Z)) = σ(U(Z))].

Proof: The proof is quite similar to and simpler than that of Theorem 8.1;
therefore we only consider the wfe ΣS(Z). In what follows x, y, k, xu . . ., xn,
Zu . . ., Zn are distinct variables of type r, I17, v + 1, su . . ., sn, s*77, . . ., s*77,
respectively.

Case I. ί = r ( e | l , . . .,v\). Σs(Z) is(ix)(k)(Z(k) = x)
Case 2. s = p+l. ΣS(Z) is (ik)(y)Z(y, k)
Case 3. s = (sl9 . . ., sn). ΣS(Z) is (λχl9 . . ., xn)(3Zl9 . . ., ZΛ)(Λ?x/ = Σsi{Zt) Λ
(k)Z(Zu...9Zntk)).

Theorem 10.1 For every s e τv+\ Obs = Obf

s.

Proof: By (8.8) and Lemma 10.1, Obs C Ob'5. If s e ίl, . . ., v + l\ then the
thesis holds trivially; thus, in considering the case s = (su . . ., sn), we can
assume inductively Obs = Obf

s.(i = 1, . . ., n). Let ξ e Ob's and let ξ be
desjV((kZu . . ., Zn, k)(3xu . . .,xΛ)(Λ?x/ = Σ'^Z^A y(xu . . .,*„))), where;/
and k are variables of type s and v + 1, respectively, and U{y) = ξ. By Lemma
10.1, for every <f1? . . ., ξn) e II?Ob'sfη, <ξu . . ., ξn)Ί f iff < a « U •, σ(ξn)) e ξ,

that is, ξ = σ(f). Furthermore, ξ e Ob's*n = -2LJS* and, by the inductive
hypothesis, (ξu . . ., fπ> ϊ ξ °* f,- e Xs.(i = 1, . . ., n)\ by (8.3) this implies ξ e Xs

and hence ξ e Obs.

The above result implies that the only possible differences between / and
/, arise from those between the valuations / and / of the constants and those
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between av+1 and bv+ι (the functions determining the nonexisting objects in /
and /, respectively). However the latter differences can be disregarded without
loss of generality (cf. Theorem 10.2 below).

Let us remark that av+1 and bv+1 are different iff av

vX\ Φ bv

vX\\ indeed, for
s e SI, . . ., v\, av

s

+ι is the only element of the counterdomain of α<£"+i:s)(= as)
and hence it is equal to b"+i, and, for s of a level larger than zero, a^+1 and bv

s

+ι

are uniquely determined by means of EA3.15.

Let us assume av

vX\ = a and bv

vX\ = 6, and let us consider the function w, of

domain U Obs, which substitutes a for b_ in every object in /; in other words,
seτv+1

w is the jdentity on Obr(r = 1, . . ., v + 1) except that w(q) = b and w(b) = a,
and, for R and/ of type (su . . ., sn) and (su . . ., sn: s0) respectively:

(10.1) w(R) = KwίfO, . . ., *($„)>: <ξ1?_. . ., £„> e Λl

(10.2) w(f) = WwttO, , w(fei)λ w ( / « l 5 . . ., fπ))>:

Lemma 10.2 For every 5 e τv+1 and ξ e Obs, w(ξ) e Obs.

Proof: For all s e τv+1, we define a wfe H/(x) e Es (in which the variable x, of
type 5, is free) such that, for a suitable V e Valj, (*) desjy(W(x)) = w(ξ), where
K' = V(x/ξ). For s e ίl, . . ., v], W(x) is x. Let now s be ^ + 1 and let us fix two
distinct variables xίf x2 (of type v + 1) different from x. If we assume Kto be
any /-valuation such that V(xλ) = a and V(x2) = b_, then the definition of W(x)
is o b v i o u s : W(x) is (iy)(Afx Φxi D y = x ./\. x = X1'D y = χ2 ./\. x = χ2D y = x^.
Now we can assume inductively that (*) holds for V as above in case s e
{s0, su . . ., sn\. If we remark that w = w'1 (and hence, by the inductive
hypothesis, w is a bijection of Obs. onto itself (/' = 1, . . ., n)), then the defini-
tion of W(x) in the remaining cases turns out to be still straightforward. If s is
(su . . ., sn) then W(x) is (λxl9 . . ., xn)x(W(xλ),. . ., W(xn))\ if 5 is ( J 1 } . . ., sn: J 0 )
then W(x) is (λx l 5 . . ., xn)W(x(W(Xι), . . ., W(xn)).

By (10.1 and 10.2) and Lemma 10.2, for every s e τv+1, w is a bijection
between OZ?, and Ob's, and the equality w(< + 1 ) = bv

s

+ι holds. Thus, if the valua-
tions of the constants are disregarded, then w fulfils the obvious definition of
isomorphism between ELV+^interpretations. In particular, if V e Valj, U e Valj,
and U(x) = w(V(x)) for every x, then

(10.3) desIV(p) = desJU(p)

for every wff p in which no constants occur.
Thus the following theorem holds.

Theorem 10.2 Let I and J be general ELV*X-interpretations such that
V - Jι; then, for every closed wff p of ELV+1, desj(p) = desj(p), whenever no
constants occur in p or it is qv for some q in MLV.

In Theorem 10.3 below (which is the syntactical counterpart of Theorem
10.2) we use the term "constant-free ELv+ι-extension" of a set K C 6>0, to
denote every set H C Eo such that

(i) Kγi = {q'n:qeK\CHcmά
(ii) if p e H - Kn, then no constants occur in p.



THE CALCULI M C AND EC*+ 1 387

Theorem 10.3 For every maximal consistent set K of totally closed wffs in
MLV, there is exactly one maximal consistent set H, of closed wffs in ELV+1,
which is a constant-free ELv+1~extension of K.

Proof: The proof follows from Theorem 10.2 by remarking that every maximal
consistent set of closed [totally closed] wffs of ELv+ι[MLv] has a (general)
model (Completeness Theorems) and, conversely, every general ELv+ι—[MLv]~
interpretation ί[J] determines the (maximal consistent) set of the closed
[totally closed] wffs true i n / [ J ] .

NOTES

1. The independence of MA4.1 is proved in [2] (N25). As for MA5.1, it is equivalent to
AS 12.19 in [2] Gallin proved the independence of this axiom in a modal calculus having
some similarities with Bressan's, but which is simpler (identity between individual expres-
sions is noncontingent and the description operator is not considered) (see [3], Sections
9 and 15).

2. The syntactical counterpart of this procedure is introduced and used by Bressan in [2],
within his syntactical proof of (1.1).

3. The description operator Ί can be eliminated from the calculus MCV, by replacing MA3.14
with an axiom (As.3.17 in [5]) in which ? does not occur; however, in investigating the
problems considered in this work, it seems more convenient to refer to the original
version of MCV.

4. As usual, P{A) denotes the power set of A, Πfyl/ denotes Ax X . . . X An, and (A -*B)
denotes the set of functions from A into B.

5. The concept of g/-structure can also be defined independently (cf., e.g., [8]) by stating
the correspondents of (2.1-2.3), which are: i J 0 C ̂ ( Γ ) , i J r C (Γ ->!>,), i < J ( ί l tn) C
^ ( ( Π f i J f / ) X nZdith_tn:t0) C ( ( Π ? i c ί f / ) - i J f 0 ) ;

By (2.4) and (2.5) the two definitions are equivalent since every ^/-structure
defined in this way can be extended to an Ob -structure.
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