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Submodels and Definable Points in
Models of Peano Arithmetic

ZARKO MIJAJLOVIC*

1 Introduction In this paper we consider some definable sets and elements
in countable nonstandard models of Peano arithmetic (abbreviated by P).
Definable elements and their properties were considered by Jensen and
Ehrenfeucht [5] and McAloon [7]. We investigate other properties of these
points, and relate them to intersections of submodels of countable nonstandard
models of formal arithmetic. When in this paper we speak of nonstandard
models of Peano arithmetic we assume that they are countable.

We now introduce some terminology and notation. By Lp we denote the
language of P. By M, N, ... we denote models of Lp or simple expansions of
this language, and by M, N, ... we denote their domains respectively. The w
stands for the standard system of natural numbers. We shall abbreviate
ag,...,an€e M by @ e M. 1f a € M then a denotes the name of a.

As usual, by M S, N M <, N, M C. N, M <. N) we denote respectively
that N is an end extension (elementary end extension, cofinal extension,
elementary cofinal extension) of M.

Let T" be a set of formulas of a language L, and let 4, B be some models
of L. A formula ¢ of L is a I'-formula if ¢ € I". Assume 4 € B. Then 4 Cr B
iff for all I'-formulas ¢ of L and all @ € 4, A F ¢@ implies B = ¢@. We write
A <r B if “implies” is replaced by “iff” above. An element a € 4 is a
I’-element (in A) iff a is defined by a I’-formula in 4. In the case of P this is
equivalent to M F a = ux¢x, ¢xel. The set T N T' is sometimes denoted
by Tp.

*I presented some of my early results at the Logic Conference in Marseille, 1981 (Corollary
2.9.1). There I had a short but inspiring discussion on these matters with D. Marker, who
informed me of a generalization belonging to him and A. Wilke (Corollary 2.7.2).
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If I(x,9) €T, @ € A and II(x,2) is finitely consistent over 4, then we
call TI(x,@) a I-type. In most cases I' will be one of these sets: Z, IT9, A% We
note the following facts concerning these sets:

Proposition 1.1 Let A, B be models of P. The following are equivalent:
(DA BiQA<9B; (A<, B@HACe B

If M is a model of P and S €M, then S defines the least segment of M
which contains S; this is Jy(S) = {x e M: (Iy € S) x < y}. We omit the sub-
script M if there is no ambiguity. We recall the fundamental theorem on cofinal
extensions.

Gaifman’s Splitting Theorem If M, N are models of P, and M C N, then
]l_l <c JN(M) g—e ]_y

We have the following hierarchical refinement of Gaifman’s Theorem:

Theorem 1.2 Let M, N be models of P, M <, K C, N, and M <22 N
Then K <z;° N.

Proof: Let ¢Xy be Zf, @ € K, and assume N E 3yg¢ay. We can choose m e M
such that @ < m. By the Replacement Scheme in P there is a b € M such that

M EVX<m@y¢xy > Iy <boxy).

It is easily seen that VX < m(3y¢xy - Iy < boXy) is Af4y, and as

M< A0 N we have
k+1

N EVX <m@y¢xy ~> 3y <boxy).

Therefore, N = 3y < bgay, i.e., there is a ¢ € K such that N F ¢ac. By
the Zg-version of the Tarski-Vaught Theorem we obtain K <2,?, N.

An extended version of A. Robinson’s Overspill Lemma will be used
throughout. This property might be considered as a partial saturation of
nonstandard models of P (cf. [12], [8]).

Theorem 1.3 For every k € w, every nonstandard model M of P realizes
every recursive Ty-type over M.

One of the main embeddability criteria is given by H. Friedman’s
Theorem. As usual, SSy(M) denotes the standard system of M, i.e., the
collection of all sets of the form {x e w: M E oxb} forbeMand Lp formulas
@.

Friedman’s Embeddability Theorem Let M, N be countable models of P.
Then:

(a) N is embeddable into M iff Tha(M) € Th3(N) and SSy(M) S SSy(N).
(b)N is isomorphic to an initial segment of M iff Th 0(N) C Th O(M) and
SSy(M) = SSy(N).

We observe that by a hierarchical refinement (cf. [12], p. 268) we obtain
=9 elementary embeddings in the theorem if =9 and 3 are replaced by Zj.
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2 Definable elements In this section we shall consider definable elements
in nonstandard models of P, and relate them to intersections of submodels
(of a model M of P). This enables us to characterize those models of P which
are Tf elementary extensions of w.

Lemma 2.1 Let M be a model of P. If ¢x is P and M &= Ix¢x, then
there is a ARy, element d € M such that M F ¢d.

Proof: Let ¢x = Ayyxy, Yxy is I}, and 6z = U((2)g, (2)1). Then 0z is g,
since

PFOzoQuuv<z)u=(2)gAv=(2); A Yuv).

AsM FE 3x¢x, we have M 320z, so let b € M be such that M E b = uzfz.
Then b is T1§, and d = (b) is Af,, since

ax =Vy(y =pzP((2),(2)1) > x =(¥)o)
Bx =3y (¥ =uzy((z)e,(2)1) N x =(¥)o)

define d, and ax, Bx are IIR,;, R4, respectively. Obviously P F ax < Bx. Then
M E¢d, since M EIyydy.

Definition 2.2 AY = {x e M: x is A} definable in M}.

In general, for any set of formulas I', '™ denotes the set of all I-definable
elements in M. Some of these numbers were considered in [5] and [7]. The
following property of Aﬂ” elements is established in [5]: The code set of
Th(w) N Z9 belongs to SSy(M) iff AY is bounded below in M — w. We note
that the code set S of Th(w) N Z¢ belongs to SSy(M) iff every recursively
enumerable subset of w belongs to SSy(M). First, if S € SSy(M), then for
any recursively enumerable 4 C w there is a X9 formula ¢x such that
A=1imew: w E¢m}, hence A ={me w:"¢m' e S} AsSSy(M) is closed
under relative recursion (cf. [10]), it follows that 4 € SSy(M). Further, if
every recursively enumerable subset of w belongs to SSy(M), then S € SSy(M)
since S is itself recursively enumerable. Therefore, we have the following
corollary:

Corollary 2.2.1 Every recursively enumerable subset of w belongs to
SSy(M) iff AY - w is bounded below.

By Lemma 2.1 we have also
Corollary 2.2.2 A?f is cofinal in the set of all =f elements of M.

We shall need the following lemma to describe intersections of some
submodels of M.

Lemma 2.3 Let M be a model of P and \ € M. If \ is not AR.,-definable
in M, then there is a sequence by, by, . . . such that

(@) For each n ¢ w, N\ is not Agﬂ-deﬁnable in M with parameters in
{bg, ..., bnt.

(b) For all TR, formulas ¢xy...%Xn, M E day...a, = ¢b,. .. Dby, where
g, a4, . . . is an enumeration of the domain M,ay= 0.
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Proof: We prove (a) and (b) by induction on n. Define by = a,, and assume
be, . . ., by—y have been constructed. Let
W= {ddg...an> 0bg. .. by W: OXg. .. Xpnis Zhe}
U {N# uxyxbg . .. by_yw: YXy is a ARy, formula of Lp .

We prove that I'w is a type over M. So choose formulas

Gidg. .. an > Giby. .. byw, i<r,

NF uxyjxby. .. byyw, j<s

from I'w. We may assume M F /\ ®iaq - - . an; thus
i<r

M F3x A $ido - - - Ap-1X.

i<r

The formula 3x /\ 0idg - - . Ap—yX is >9.1; thus by the inductive hypothesis

i<r
ME3x N\ ¢ibo.. . b
i<r
By Lemma 2.1 it follows that there is a AR, (b, . . . , by—,;) element d such that
MENoiby. .. byd.

i<r

Assume M F N = pxy; xb,. .b,,_,d for some j, <'s, i.e., Yjoxb,
.bp1d defines \. Let 0Xxygo...Yn-1 be a ARy formula of Lp Wthh defines
d,i.e, M Ed=puz0zb,. .. b,y Then

oax =3y(y =pz0by. .. bp-1z A Yjyxbg. .. bp1¥y)
Bx =Vy(y =uz0by...bn1z > Yj Xxbg . . . byp-1»)

define \, and ax, Bx are TP, IIf,,, respectively. As P F ax < Bx, it follows
that X is AR, definable in M with parameters in tbos . .., bn_y}, contradicting
our assumption on A.

Let b, € M realize the recursive g, type 'w.

Definition 2.4 If M is a countable model of P, then
PY=n iN:y<22M,ygﬁ_4}.
Theorem 2.5  P{' = Al

Proof: First we prove P C AY,;. By Lemma 2.3 for each N e M — A},
there is a sequence by, b, ... such that (a) and (b) of the lemma hold. Then
= {bg,b;,.. .} isa submodel of M, and A ¢ N. Also N<z° M, since we have
the following. Assume N FE @b, ... b,-;, where ¢X is Ek“ As the mapping
f:a; > b; defines an isomorphism of M onto N, it fo]lows that M F ¢a,
. ay_y. Then, by (b) of the lemma, we have M F ¢b, ... b,_,. Therefore,

Ngzk Miie, N <go M.
+1

Now we prove A¥,, CPY. Let N < oM, and f:N = M be an isomorphism.
Iface A%H is defined, say, by a Af,; formula ¢x, then M = a = ux¢x. Hence,
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N E f'a = ux¢x, and as y = ux¢x 1s AR+, it follows that M Ff~'a = uxox;
so fa =a. _Thusae N, and therefore A;m CN.

In [5] Al elements are called recursive numbers in M. By above we have
the following characterization of recursive numbers:

Corollary 2.5.1 N{N:NCM,N=M} =

Theorem 2.5 enables us to find the intersection of those initial segments
of M which are =9 embedded in M. For that reason we introduce the following

Definition 2.6 QO =N {K: K <exgM, K =M},

Recall that H;}c” = {x e M: x is definable in M by a II{ formula}. This set
is considered in [7] and [5] for the case k = 1.

Theorem 2.7 If M is a countable model of P, then Q3 CJ(IIY).

Proof: The proof of this theorem which we shall present is a variant of the
proof of Friedman’s Embeddability Theorem.

Let X € M be such that for all x € 77%, x <A, and let ag,ay,...,a9 =0,
be an enumeration of M. We shall define a new enumeration ey, ey, . .. of M,
and find a sequence by, by, ...<A such that the map e; = b; defines an
isomorphism f:M = N, N = {bo,by,...} and N <e,_2 M. The construction is

done by the use of the back and forth argument maintaining

(1) M E Ixbxey...e, > Ix < NOxb,...b,, where 6x¥ is an arbitrary
ZR.; formula.

Define ey = by = a,. Suppose €, . . ., €m_y, bg, - . ., byy—y have been deter-
mined.

Stepm=2n+1. Casen=0. Then:

(1) M E 3Ix6x - Ix < N6x, where 0x is an arbitrary =9, formula of Lp
(with only one free variable x). So let Ox be Z9,; and assume M E Ixbx.

Then there is a II§ formula yxy such that
() M EVx(6x < 3yyxy)
3) M E3IxOx < Iw3x,y <w)yxy.

As the formula ¢w = (Fx,y < wlyxy is I, and as M F Iwew, there is
an element ¢ € M such that M E ¢ = ux¢x;soce Hk and, by the choice of A,
¢ is a witness to M FE (3w < \)¢w. Therefore, by (2) and (3) it follows that
M E@x <N)bx.

Case n> (0. Let e, be a; with the least index i such that a; #F ey, ..., €51
To determine by, consider
'w={w <A}
U {3xOxeq. . .ep, > Ix <NOxbg . .. bp_yw: 0xY is Thyyl.

Obviously, I'w is a recursive set of X§,, formulas of Lp. We show that I'w is a
type over M.
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So let
Ix;0;ixie .. .m > Ix; <NOiXiby...bpyw, i<s,

be from I'w (we may assume that for i #j the variables x; and x; are different).
We show that all these formulas are realized in M together with w <\, We
may assume M E /\ Ix;0;xieq. . . €m. Thus

i<s

M F3y A Ix;0;x;e,. . - €m-1Y;

i<s
i.e.

M E3z(3y <z2)(Ixo...x5-1 <2) N Oixieo. . . em_yy.
i<s

As the above sentence is Zp, 1, we have by the inductive hypothesis

ME@z<N@y <2)@xq. .. x-1<2) N 0ixibg. .. b1y
i<s

Therefore,

ME@y <N A\ @x <Nbixibg...bpy;

i<s

i.e., I'w is finitely consistent. Therefore, by Theorem 1.3 I'w is realized in M
by some b,,.

Step m=2n+ 2. We distinguish two cases:

Case 1. There is no ¢ < A such that ¢ # e, ..., e,y and ¢ < b; for some
i <m. Then we proceed to the next step, taking e,, = €, 1, by = bpy_;.

Case 2. There is a ¢ < X such that ¢ # ey, ..., e,-y and ¢ < b; for some
i <m. Then b,, is chosen to be the first such c in the enumeration ay,a;, . . .

To find e, we consider the following recursive set of 2§, formulas

I'w= {W <g,~}
U {3xOxeq. .. emyw = (3x <N)0xbg. .. bm: 0x7 is 2Py}

We show that I'w is a type over M. Assume I'w is not consistent; so there
is a j such that

METBww<enr N\ Gxirxes. .. emaw—>3x <N Yx,by. . . b))

r<j
where Y, xy are Xf,, formulas (we may assume that the variables Xgp oo v s Xjo1
are different). Let Y € {0,1,...,j— 1} be such that

re Y implies M E (Vx, <N) W,x,bg. .. bm
r ¢ Y implies M F (3x, <N, x,bg . . . by

Observe that Y #¢. Let Y = {r,, ..., r:}. Then

MEWNw<eg) V Ix Yrxreq. - - Em-W-
reY
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By Replacement Scheme in P we have

MEIZ(Vw<e)3xg, ..., %, <2) V Urxreq. .. emoiw.
reY

As the above sentence is Zf.,, by the induction hypothesis we have

ME@z<NOW<b)Fxrg, 5% <2V Uxrbo. . bnogw.
reY

Hence, as b,, < b;, we have for somere Y
M E@x < DYrxpbo - - - bm

contradicting our choice of Y. Therefore, I'w is a recursive Z§,, type; thus it is
realized by some e, € M.

Let N = {bg,b;,...}. Then N S, M, and f(e;) = b; defines an isomorphism
from M onto N. We show that N <>:g M. Let ¢x, . .. x, be a Zf,, formula of

Lp, and assume N E @b, ... b, Then for some 1Y formula ¢, ¢ = Ixyx;

hence N kE Axyxbg ... by i.e., N EIxyxfe,y. .. fe,. So M EIxyxe,. .. en.

By (1) it follows that M F (3x < A)Yxbg . . . by Therefore N ng M. As for
+1

all x e N, x <\, we have Q¥ C J(I1¥).
Another proof of the last theorem is possible. For that it suffices to prove:

Theorem 2.8 If X\ e M and for all x € wf‘f we have x < \, then there is a
model M, such that M, = M, M, <22 M, and x <\ for all x e M,.

The proof of this theorem is given at the odd step of the proof of
Theorem 2.7. So let A € M, such that for all x € 77{1 we have x < A, and
M, <22 M, M, = M. Let M,be such that M, <, M, S, M. Such an M, exists by

Gaifman’s Splitting Theorem. Therefore, by Theorem 1.2 it follows that
M, <22 M. As Th(M,) = Th(M) and as SSy(M) = SSy(M,), we may apply the

hierarchical refinement of Friedman’s Embeddability Theorem, i.e., there
isN <e22 M, such that N = M. Then N <eE?CM and x <A forall x € V.

Corollary 2.7.1  Q=J(Py) = J(A%) = JAI).
Proof: By Theorems 2.5 and 2.7 we have
oY C A, € o Caah) CIa ).
Corollary 2.7.2 (D. Marker, A. Wilkie) ~ N {K: K C, M, K = M} =J(I.

Proof: We have M = I so by Theorem 2.7 Q, SJ(=¥). But =Jdefinable
elements are preserved under embeddings /: M - K.

Corollary 2.7.3  Forallke w, TIY C, =¥,
Proof: By Corollaries 2.2.1 and 2.7.1.

Since J(H;jc”) is a proper subset of M whenever M is a model of P (observe
that {x > uy¢y: ¢y is II}} is a recursive T, type over M), we have also:
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Corollary 2.7.4 For every k € w there isa J <e):g M such that J = M and
J#F M.

Now we are able to characterize Z§ extensions of natural numbers.

Theorem 2.9 The following are equivalent for all k € w and all models M
of P:

@ w<zo M:(b) A= w; (@) T = w; (@) Pr= w3 (e) Q= w.

Proof: According to the theorems above, it suffices to prove the equivalence

(a) © (b):

@->0b) Ifw <2,‘3 Manda e Ajkwﬂ, then there is a AR, formula ¢x such
+1

that M Fa = ux¢x. Thus M F Ixéx. Hence w F Ixpx. So for some n € w,

M Eo¢n,ie.,a<n.

(b) > (a) Assume A%,l = w. Let ¢ be any 9., sentence and assume there
is a I formula 6x such that M kE ¢ < 3IxOx. Thus, for some b € M,
M E b = ux0x. Hence b € Aﬁq, i.e., b € w. Therefore, we have proved: for any
T4y formula ¢x, if M E Ix¢x, then M k ¢n for some n € w.

By a hierarchical refinement of the Tarski-Vaught Lemma it follows that

Corollary 2.9.1 w <2(1) MIiffON{N:NC, M, N= M} = w.
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