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The Nature of Reflexive Paradoxes:
Part Il

LEONARD GODDARD#*

A number of unsolved problems were left hanging in Part I. In particular,
there is the problem of finding precise formulations of the general condition
for a formula to be a reflexive contradiction C, and of the corresponding
general condition for a resolution R;. Secondly there is the question of what
exactly a resolution amounts to since the removal of the contradictions cannot
change paradoxical items such as the Russell class, the barber, the catalogue,
etc. from inconsistent concepts to consistent concepts. Thirdly there is the
question of what would count as a minimal resolution and whether such a
resolution is possible. These are the main points, though there are a number of
related subsidiary questions. I shall first take up these questions in a general
way and then apply the conclusions to the familiar paradoxes and to the
problem of constructing a consistent set theory.

1 The general criterion for a reflexive contradiction It was argued in Part I,
Section 2.4, that a formula QA of quantification theory is a reflexive contra-
diction in case A entails an inequality condition and the quantifier arrangement
is such that permissible instantiation cases of QA presuppose the denial of
that condition. In the special case where QA4 contains just two distinct variables
and is of the form (3x)(¥)A(y,x), the criterion can be given precisely: the
formula is a reflexive contradiction in case A D (y # x) is a thesis (condition
C). In the general case, however, not only is the intuitive criterion C, imprecise,
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but it has the disadvantage that since A is not precluded from containing bound
variables, or free variables which are not bound by the quantifiers in Q, the
inequality condition may contain a choice operator (Part I, Section 2.5). This
last difficulty is easily met, however, by formulating the criterion in terms of
formulas in prenex or Skolem normal form; and once this is done, the first
problem, of stating the criterion in a precise form, can also be met. It is simpler
to begin with the Skolem normal form (Snf).

1.1 Consider a formula QA4 in Snf;ie., let QA4 be of the form
(axl) LR (3xn)(y1) LR (ym)A(xl, e ,mely L] ’ymach e ’cr)>

where ¢y, ..., c, are individual constants. Q4 may contain predicate param-
eters or constants and sentential variables or constants, but no schematic
letters; i.e., QA is a formula not a schema.

By an extension of the two-variable case, QA will be a reflexive contra-
diction if A entails an inequality between a variable which is existentially
quantified in QA (an e-variable), say x;, and one which is universally quantified
(a u-variable), say y;;ie.,if A D (x; # y;) is a thesis. For whatever instantiation
value is given to x;, the same value is available as an instantiation for y;. Hence
a permissible instantiation case of QA presupposes the equality x; = y; for some
value of x;,y;, while A entails x; # y; for all values of x;,y;. So one condition
for QA to be a reflexive contradiction is:

(i) A D(x;#y;)forany i,j.

By a similar argument, QA will be a reflexive contradiction if 4 entails an
inequality between any two distinct u-variables, i.e., if

(ii)) A D (y; #y;) for any i,j such that i #].

However, the same is not the case if A entails an inequality between two
e-variables. For given that x; has been instantiated by some value x7, then by
the ordinary restrictions on an existential instantiation, this value is not then
available as an instantiation value for any other e-variable. Hence, even if
A D (x; # x;) holds there is no incompatibility involved since the equality
x; = x; is not presupposed in permissible instantiation cases of Q4.

Suppose now QA contains individual constants ¢, . . . , ¢,. Since ¢; occurs
in A, it is not available as an instantiation value for any e-variable. Hence, even
if A entails x; # ¢; for some i, j, this is not incompatible with permissible
instantiation values for x;. On the other hand, if A entails y; # c;, where y; is
a u-variable, then there is an incompatibility since ¢; is available as a value for
v;; i.e., a permissible instantiation presupposes y; = ¢; for some value of y;. So,

(iii) A D (y; #¢;) forany i,j.

Consider now cases in which A D (a # a), where a is any variable or
constant, i.e.,

@iv) A D(y;#y;) forany i

(v) A D(x;#x;)forany i
(vi) A D (¢; # ¢;) for any i.
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If these conditions are adopted, the formal concept of a reflexive contradiction
is extended well beyond the intuitive concept. Intuitively, QA is a reflexive
contradiction when two or more variables are instantiated with a common
value and the resulting formula is self-contradictory, or when a u-variable is
instantiated with a constant already in the formula (e.g., in the move from
N(f(y,x0) = ~f(3,¥)) to flxo,xg) = ~f(xo,X0), Where x, is a constant). It
is the choice of a common value or of an existing constant which characterizes
the reflexiveness. But there is also a second feature, namely that if the reflexive
cases are excluded, no other instantiations lead to self-contradictory formulas.
Where A contains predicate constants and no predicate parameters, these other
instantiations may be rejected as being false by meaning (Part I, Section 2.1)
but they are not formal contradictions, and indeed in the plausible cases all
instantiations other than the reflexive ones are presumed to result in true
sentences. Intuitively, therefore, a formula is a reflexive contradiction just
in case its reflexive instantiation instances, but no others, are formal contra-
dictions. Now consider a formula QA4 such that any one of (iv)—(vi) is satisfied.
We conclude immediately F~A, from which it follows that all instantiation
cases of QA are self-contradictory. A trivial example is (x)(fx & ~fx). In
fact, if any of these conditions is satisfied by a wff of 4 which contains no
quantifiers, then F~QA, where Q is any arrangement of quantifiers which
binds the variables in 4. To classify such formulas as reflexive contradictions,
therefore, is to obliterate the distinction between reflexive contradictions and
others. On the other hand, there is some point in recognizing them as limiting
cases since reflexive cases occur among their self-contradictory instantiation
instances.

We have not yet exhausted the standard cases, however, for some reflexive
contradictions depend on two or more successive instantiations—e.g., the
cyclic paradoxes (Part I, Section 2.5). These will be covered if

(vii) ADD

where D is any disjunction of inequalities of the kind indicated in (i)—(iii), i.e.,
a disjunction formed from any inequalities of the form x; # y;,y; #y; (i #J),
yi # ¢;. Allowing D to stand also for single inequalities (one-termed disjunc-
tions), (vii) includes (i)—(iii). The limiting cases (iv)—(vi) do not give rise to
disjunctive conditions, however, for if, say, x; # x; occurs in D, it can be
deleted, and if there is a disjunction of several inequalities all of the form a # a,
all but one can be deleted.
We can now state the general criterion in terms of Snfs as follows:

C, Where QA is as above and D is any single inequality or any disjunction
of two or more inequalities in the set

{(x;#Fypalli,j,1<i<n,1<j<m;
(yi#Fyp),i#Fjand 1 <i,j<m;
(vi#Fcp),alli,j, 1<i<m,1 <j<r}

then QA4 is a reflexive contradiction, and consequently ~QA is a thesis, if
A D D is a thesis for any such D.
Where D’ is a single inequality of the form a # a, where a is any variable
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or constant, then QA is a limiting case of a reflexive contradiction if 4 D D' is
a thesis for any such D'.

Since A D D and A D D' are quantifier-free formulas, we can apply a
decision procedure to test whether or not they are theses. Hence we can
determine for any given formula in Snf whether or not it is a reflexive contra-
diction in terms of C,.

It should be noticed that a given formula may satisfy more than one
condition for being a reflexive contradiction. In fact, if A entails a single
inequality, then it also entails every disjunction which contains it. But this is
a trivial case. More important is the situation which arises if A separately
entails two or more single inequalities, say A O (x; # y;) and A D (y; # ¥;),
for this tells us that two distinct instantiation instances of QA are self-
contradictory.

1.2 Consider now the formulation of the criterion in terms of prenex normal
forms (pnfs). There are two advantages in using Snfs: the first is that QA
contains no free variables; the second is that condition (i) above can be stated
generally as a relationship between any e-variable and any u-variable since the
order of the quantifiers in Q requires the e-variables to be instantiated first,
and the values used are always available as values for the u-variables. With a
pnf, of course, this is not so. If a u-variable is instantiated before an e-variable,
the value chosen for the u-variable is not available as a permissible value for the
e-variable. In this case there is no presupposed equality between the two values
in permissible instantiation cases and therefore no incompatibility even if 4
entails an inequality between the two variables. On the other hand, since logical
equivalence holds between an arbitrary formula and the pnf obtained from it,
and not simply mutual provability as in the case of Snfs, it is advantageous to
formulate the criterion in terms of pnfs.

To meet the second point, the only change required when QA is in pnfis
that condition (i) be replaced by:

() AD(x; # y;) for any i,j such that the existential quantifier in which
x; occurs precedes the universal quantifier in which y; occurs in Q.

The occurrence of free variables in A is more of a problem. In nonformal
contexts it is unlikely that formulas containing free variables would be pre-
sented as paradox-generators because of their ambiguity, but such formulas
can arise in formal contexts (e.g., (3x)(»)(y € x = ~(y € z)) as a case of the
abstraction schema in naive set theory) and they therefore have to be included
in the general criterion. The question is whether or not such a formula should
be classified as a reflexive contradiction if its matrix entails an inequality
between two free variables or between a free variable and a bound variable. In
the example given, the matrix entails x # z and we have to decide whether or
not it is a reflexive contradiction on the basis of this.

The fact that the matrix entails x # z tells us that (3x)(¥)(y € x =
~(y € z)) is a reflexive contradiction if x and z are instantiated with the
same value. But such an instantiation is not permissible since if we move to
(Y € xg = ~(y € 2)), x, constant, we cannot now take x, as a value of z
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since this amounts to generalizing on the free variable in a formula which has
arisen by existential instantiation. Such a move would amount to treating the
initial formula as if it were (3x)(2)(¥)(¥ € x = ~(¥ € z))—which certainly is a
reflexive contradiction in terms of C,—but this is not derivable from the initial
formula. If, on the other hand, we make the permissible generalization on z
to get (2)(AxX)(¥)(¥ € x = ~(y € z)), we do not have a reflexive contradiction
since no permissible instantiation presupposes x = z. Here the proviso on (i)
fails to be satisfied.

In general, if QA is such that 4 entails an inequality between a free
variable and an e-variable, this is not incompatible with permissible instantia-
tions. For if the e-variable is instantiated first, the value chosen cannot sub-
sequently be used to instantiate the free variable since such a move would
amount to generalizing on the free variable in a formula which has arisen by
existential instantiation. On the other hand, if the free variable is instantiated
first, the ordinary conditions on existential instantiation prohibit the use of
the same value to instantiate the e-variable.

If we think of free variables as if they were u-variables bound by quan-
tifiers which precede Q, then the conclusion that an implied inequality between
a free variable and an e-variable is not incompatible with permissible instantia-
tions follows immediately since the proviso on (i') is never satisfied. By the
same token, an implied inequality between a u-variable and a free variable or
between two free variables is incompatible with permissible instantiation
cases. So, for example, (xX)(¥)(¥ € x = ~(y ez))and (¥)(¥y ex =~(y € z)) are
reflexive contradictions since in either case we are entitled to take the same
instantiation value for both x and z.

This is not to say, however, that in testing whether QA(z) is a reflexive
contradiction, where z is free, we should replace it by the surrogate formula
(z)QA(z). This would defeat the purpose of providing a criterion for formulas
in pnf, since it involves trading in logical equivalence for mutual derivability,
but it would also yield an incorrect condition in the case of an implied
inequality between a free variable and a constant. For suppose 4 entails z # ¢,
where z is free and c¢ is a constant in QA. If z were a u-variable this inequality
would be enough to determine QA as a reflexive contradiction; but where z is
a free variable, this is so only in case ¢ has not arisen in QA by previous
existential instantiation.

We can now state the general criterion in terms of pnfs as follows:

C; Let QA be a formula in pnf such that x,,...,x, are e-variables,
Yi,...,Ym are u-variables, z,,...,z; are free variables, and c,,...,c, are
individual constants. As in C,, QA may contain predicate parameters or
constants, but no schematic letters.

Standard Case. Let D be a formula consisting of any single inequality or any
disjunction of two or more inequalities in the set:

{(x; #Fyp),alli,j, 1 <i<n,1<j<m,such that (3x;) precedes (y;) in Q;
i#y;),i#Fjand 1 <i,j<m;

(ciFyp,alli,j, I<isr,1<j<m;

(zi#Fyp)allij,1<is<k, I <j<m;
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(z; # zp),all i,j, 1 <i,j<m;
(zi#¢),alli,j,1<i<m,1<j<r,provided ¢; has not arisen in Q4 as
the result of existential instantiation}.

Then QA is a reflexive contradiction, and consequently ~QA is a thesis, if
A D D is a thesis for any such D.

Limiting Case. Let D' be a single inequality of the form a # a, where a is
any variable or constant. Then QA is a limiting case of a reflexive contradiction
if A D D' is a thesis for any such D',

As before, since A D D and A D D' are quantifier-free formulas, we can
apply a decision procedure to determine whether or not any such formula
is a thesis for all the possible inequality conditions D or D' which can be
formed from the specified set of inequalities. The final condition concerning
inequalities between free variables and constants makes for a slight complica-
tion, but this can be met by introducing a tagging device to mark constants
which arise by existential instantiation. Hence we can give a recipe for deter-
mining whether or not an arbitrary formula B satisfies C; by putting it into
pnf QA and applying the procedure to all possible cases of A DD and 4 D D'.
If, in terms of this test, QA is a reflexive contradiction, then by the logical
equivalence between QA and B, so is B. It should be noticed, however, that
since no provision is made for descriptive terms in QA, it is necessary, before
applying the test, to eliminate any definite description occurring in B by
means of its contextual definition before putting B into pnf. For heuristic
purposes descriptive terms can be treated as constants to test the application
of C; (see the discussion of Aut in Section 1.3 below), but a strict application
requires their elimination. The reason for this is explained in Section 4.4.

1.3 The proposal I now wish to put forward is that, for the standard cases,
FA D D is a necessary and sufficient condition for an arbitrary formula in
pnf QA to be a reflexive contradiction (correspondingly F4 D D' for the
nonstandard cases). This claim cannot be proved formally since we do not
have an alternative and independently justified formal criterion for a formula
to be a reflexive contradiction which can be proved equivalent to 4 D D.
The position is, rather, that -4 D D is being offered as a formal expression
of the intuitive concept of a reflexive contradiction.

What can be proved is that if 4 D D then F~QA. The proof is
essentially a generalization of the argument following the two-variable
condition C in Part I, Section 2.4, taking into account the additional cases,
and a nonformal outline of it has already been given in the previous section
in the preamble leading up to C;. But this is not a proof of sufficiency in the
above sense, though it confirms the claim indirectly. Thus, the claim of
intuitive sufficiency is: (1) if =4 D D then QA is a reflexive contradiction;
and we should also expect: (2) if QA is a reflexive contradiction, then
F~QA; hence 4 D D then F~QA. A direct proof of the latter, however,
bypasses the intuitive claim.

Similar remarks can be made about necessity. Here the intuitive claim
is: (1')if QA is a reflexive contradiction then =4 D D. But we should not
expect to prove the formal analogue: if F~QA then k4 D D (or the missing
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premiss: (2') if F~QA then QA is a reflexive contradiction), since this amounts
to identifying every contradiction as a reflexive contradiction.

Direct proofs of intuitive sufficiency and necessity are not possible,
therefore, but a refutation of the claim is possible in terms of counterexamples.
And there are some simple cases which might seem to show that the claim is
false, at least in respect of necessity. In fact, however, they fail to do so and
instead illustrate different points.

Consider a formula (y)A(y) where y is the only variable in A and no
constants occur in 4. Suppose that 4 D (y # y) is not a thesis. Since this
is the only relevant condition in terms of Cj, (»)A(y) is not classified as a
reflexive contradiction by C;. Now suppose that 4 D (y # c), where c is
a constant not occurring in 4; then F~(3)A(»). Moreover, this thesis arises
directly from an incompatibility between the inequality y # ¢ implied by the
matrix and the presupposed equality y = ¢ in a permissible instantiation case.
Further, no other instantiations yield a formal contradiction, and indeed we
may suppose that such instantiations are satisfied in some model. So, it may
seem, (¥)A(y) under these assumptions is a standard case of a reflexive
contradiction which is not covered by C;. Hence F4 D D, for D defined in
C,, is not a necessary condition.

This fails as a counterexample, however, simply because there is no
reflexivity involved. The case is no different from that which would arise
if someone were to say “Everyone is happy” and then discover a person Tom
who is unhappy. The assertion is thereby falsified, but it is not self-falsified.
Consider, by contrast, the quite different situation which would arise if
someone were to say “Everyone is happy’ while being aware of the fact that
he himself is unhappy. Here the reflexivity is in the context but it could be
represented as part of the utterance since in effect what is being said is
“Everyone is happy (including me), but I am unhappy’. Once this is done,
however, Cj is satisfied. Reflexivity is characterized in C; by the requirement
that all the variables and constants involved in the implied inequalities should
also appear in the formula.

What is true about the proposed counterexample is that the other con-
comitant intuitive conditions which are satisfied by standard cases of reflexive
contradictions (namely, an incompatibility between an implied inequality and
a permissible instantiation, and a presumption that all other instantiations are
true) are satisfied by it. Since it lacks the essential reflexivity, however, what
the example illustrates is that these concomitant conditions are not themselves
sufficient to characterize reflexive contradictions. Instead they characterize a
wider class which includes reflexive contradictions and some near-relatives.
These additional cases would need to be taken into account in a more compre-
hensive analysis of contradiction in terms of identity.

A different kind of case which might seem to count against necessity is
the following version of Grelling’s paradox (cf. Part I, Section 1.1(d)).

We suppose that there is an adjective Aut such that, for any adjective y,
¥ has the feature described by Aut (d(y,Aut)) iff y has the feature described
by y (d(y,y));ie., we adopt the meaning postulate

®) My, Aut)=d(y,y)).
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Now introduce Het by

(i) (¥)d(y,Het)=~d(y,Aut)).
From (i) we get

3ii) (¥)(~d(y,Aut) =~d(y,y))

and this together with (ii) gives the Grelling sentence

Gv) ((d(y,Het)=~d(y,y)).

If we now apply C; in a heuristic fashion by treating Aut and Het as
constants, then it is easily seen that neither (i) nor (ii) satisfies it. The matrix
of (i) does not entail y # Aut, y # y, or Aut # Aut, the only relevant cases;
and similarly the matrix of (ii) does not entail either y # Het or y # Aut or
their disjunction, nor does it entail @ # a where a is a variable or constant in
the formula. The matrix of (ii) does entail Het #* Aut, but this is irrelevant
since an implied inequality between two different constants is not incompatible
with any permissible instantiation. The position then is that neither (i) nor (ii)
is a reflexive contradiction in terms of C;, yet together they imply (iv), which
we know is a reflexive contradiction and which is in fact identified as such
by C; since the matrix entails y # Het. Hence, if it is thought that either (i)
or (ii) should be classified as a reflexive contradiction because they jointly
imply a reflexive contradiction, then, since neither satisfies C5, the condition
4 D D (or FA4 D D') is not necessary.

But this example would count against the necessity of 4 D D only if
there were independent grounds for claiming that one or other of the meaning
postulates (i) and (ii) is a reflexive contradiction. The fact that jointly they
imply a reflexive contradiction is not of itself sufficient for making such a
claim. What is justified in terms of the example is the weaker claim that the
conjunction of (i) and (ii) should be classified as a reflexive contradiction.
However this does not count against C; since in fact the conjunction is so
identified. When (i) and (ii) are conjoined and the quantifier is brought to the
front, the matrix entails y # Het. But there are no grounds for saying that
because the conjunction of two formulas is a reflexive contradiction, so one
or other or both of the components must be—any more than there are grounds
for saying that because p & ~p is a contradiction, so either p, ~p, or both
must be. To justify saying that either (i) or (ii) is a reflexive contradiction
it would be necessary to show that a reflexive instantiation case of one or
the other is a formal contradiction. But this requirement is not satisfied.
Instantiating the universal quantifier in (i) with Aut is innocuous; and similarly,
no contradiction arises if the quantifier in (ii) is instantiated with either Auf or
Het.

However, the example does illustrate an important point, namely that
C; stands as a test for determining whether or not a particular formula is a
reflexive contradiction. In terms of it, (i) and (ii) are not; but Cj; is satisfied
by the conjunctive formula (i) & (ii) and by the implied (iv), and it is these
which are the reflexive contradictions, however, they arise, whether as conse-
quences of (i) and (ii) or by direct stipulation. Thus C; is a test for individual
formulas and as such guarantees nothing about their consequences. On the
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other hand, their consequences are themselves testable, so there is no
weakness here. But the fact that reflexive contradictions can arise as conse-
quences of formulas which are not themselves reflexive contradictions does
raise some problems, especially in set theory. In set theory, too, the question
of necessity is different. These points are taken up in Section 5.

2 A general criterion for Curry paradoxes It is now a simple matter to
obtain a general criterion for Curry paradoxes in a form which illustrates
their family resemblance to reflexive paradoxes.

2.1 Suppose for the moment we have a formula QA such that F4 D (D v q)
where D is as in C; and ¢q is a sentential variable which does not occur in A.
This case raises no particular problem since if we can show F4 D (D v q), we
can substitute any contradiction for ¢ and hence show FA D Dj; so Cj is
satisfied and QA is identified as a reflexive contradiction. Suppose now,
however, that g does occur in A. The substitution of a contradiction for ¢ in
FA D (D vq) will not now lead to F4 D D, but instead to FA" O D where
A' is a substitution instance of 4 in which all occurrences of g are replaced by
the substituted contradiction. Hence, QA4' is identified as a reflexive contra-
diction but QA is not. This is similar to the Aut case, and again it may not
seem to be a problem since all such substitution instances, considered simply
as particular formulas rather than as consequences of QA, are classified as
reflexive contradictions by C;. There is, however, an important difference
between such cases and the Aut example due to the nature of the disjunction
Dvag.

To see this, consider the general two-variable case of a formula
(Ax)(»)A(y,x) such that =4 D. (» # x) v q. As we have seen, the interesting
case arises when g is a wf part of 4, but the initial argument is independent
of this. Thus, since A4 D. (y # x) v q, we have FA(x,x) D. (x # x) v q; hence
FA(x,x) D q. But we also have F(¥)A(y,x) D A(x,x), hence H(»)A(y,x) Dgq.
Consequently, F(3x)(¥)A(y,x) D q. Now if A does not contain g then as we
have seen it is identifiable from the beginning as a reflexive contradiction;
ie., we have F~(3x)(»)A(y,x), and the conclusion we have arrived at is
immediately derivable from ~p D (p D q). But if A does contain g, the con-
clusion F(3x)(¥)A(y,x) D q still stands. Hence even though (3x)(¥)A(y,x)
is not identifiable as a reflexive contradiction, its assumption leads immediately
to absolute inconsistency. In this case, however, (3x)(y)A(y,x) is certainly a
paradoxical formula even though it is not a simple reflexive contradiction.

The limiting cases as defined in C; and extended to include FA4 D (D' v q)
are now no longer trivial but instead lead to the same result. Thus we
can pass immediately from FA(y,x) D. (@ # a) vq to FA(y,x) D ¢; hence
FExX)(NAW,x) D 4.

Similar considerations in respect of both standard and limiting cases
apply, however many variables or constants occur in A. Hence we have in
general,

C, Where QA, D and D’ are as in C; and B is a sentential variable which
occurs in A, QA4 is a Curry formula if either 4 D (DvB) or A D (D' v B) are
theses.
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This, too, provides us with a recursive test.

It should be noticed that no argument has been given to show that if QA4
is a Curry formula then F~QA; and in general this will not be so. On the other
hand if F~QA then FQA D B. Hence, trivially, every reflexive contradiction
is also a Curry formula.

In case B is a nonvalid sentential wff rather than a single variable, weaker
kinds of Curry formulas arise in some instances, though in other cases QA4 isa
straightforward Curry formula. For example, let A(y,x) entaily #x v (p & q);
then A(x,x) entails p & g, hence g, in which case (3x)(»)A(y,x) is a Curry
formula. On the other hand, if A(y,x) entails (¥ # x) v (p v q), then we have
F@Ex)(»)A(,x) DO (pvg), which is not reducible to a Curry formula by,
say, substituting ¢ for p, without changing 4. Such formulas are, however, as
equally damaging in their consequences as the simple Curry formulas. Similar
considerations apply if B is any nonvalid wff which occurs as a wf part of 4.
Hence,

C; Where QA, D and D' are as in C5 and B is a nonvalid sentential wff all
of whose variables occur in A, or a nonvalid wff which is a wf part of 4, then
QA is a weak Curry formula if either FA D (D v B) or 4 D (D' v B).

We therefore have the position that Csincludes C, as a special case (where
B is a single variable), C, includes C; (where B does not occur in 4), and
C; includes C, (where Q is regimented), which in turn includes C.

2.2 Toillustrate the application of C, consider the formula,
G ,x)=(f(r,») D 9).

A special case of this, namely (Ix)(¥)(¥ € x = (¥ € ¥ D ¢q)), which arises as
an instance of the naive abstraction schema, is shown to lead to a Curry paradox
in Meyer, Routley, and Dunn [4]. It is identified as a Curry sentence by C,
as follows:

=x)D2(f(¥»,x)=f(y,»)

y=x)&~q D.(f(y,x)=f(»,y)) &~q
(f,x)= L f(y,y) &~q)
(f,x)=E~(f(y,y) D q)
AN x)=ES,Y) D 9);

ie, (f(rx)=(f(y,y)29) D (y#xvq).

This condition tells us that if we postulate any case of (Ix)(¥)(f(y,x) =
(f(»,¥) D q)), with a predicate constant for f, we shall obtain a contradiction
if we instantiate x and y with the same value and then substitute a contradic-
tion for ¢. And this is so even though the formula itself is not contradictory;
ie., we do not have F~(3x)(¥)(f(y,x) = (f(y,y) D q); essentially, however,
the moves which are made yield an instance which is a reflexive contradiction.
Neither substitution step need be made, however, because we know from
Hf(y,x) = (f(»,¥) D g)) D (¥ # x vq) and C, that we can pass straight to
absolute inconsistency since (3x)(¥)(f(y,x) = (f(»,¥) D q)) D q is provable,
by the argument preceding C,.
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3 The general criterion for a resolution The intuitive criterion R, given
in Part I, Section 3.1, is vague in two respects. First because it contains a
reference to C,; in which the actual inequalities involved in a reflexive contra-
diction are not specified; secondly, because the actual modifications which
have to be made to remove the value given to one variable from the range of
a quantifier over another variable are not specified. The first point can now
be met by formulating the criterion in terms of C,~Cs. The second vagueness
will remain, however, simply because there are alternative techniques which
can be applied to achieve an appropriate quantificational restriction. At the
general level, therefore, no precise uniform specification is possible. But given
a restriction to a particular kind of technique, a precise recipe can be given.
One such technique is examined in the following Sections 4 and 5.

There are variants of R, corresponding to each of the conditions C,~Cs
but they do not differ in essentials. We can therefore formulate a general
condition R; in terms of C;, 2 <i<S.

Let QA, D, and D' be as in C;.

Consider first the case in which D is a single inequality between an
e-variable and a u-variable, say x; # y, where (3x,) precedes (y;) in Q. The
contradiction involved in the reflexive case will arise in case QA is instantiated
in such a way as to presuppose x; = y, i.e., by taking the same instantiation
value for (Ix,;) and (y,). To achieve this it is necessary to instantiate the
existential quantifier first. To avoid the contradiction therefore, some tech-
nique has to be found such that the value chosen to instantiate the existential
quantifier is no longer available as a permissible instantiation value for the
universal quantifier. Thus, the value given to the e-variable must be removed
from the range of the universal quantifier.

Similar considerations hold in respect of inequalities between free vari-
ables and u-variables, and between constants and u-variables. That is, in each
case, the initial value chosen must be eliminated from the range of the
relevant universal quantifier. In the different case in which there is an implied
inequality between two u-variables, the order of instantiation is unimportant.
In this case too, of course, every instantiation value of the first quantifier has
to be removed from the range of the second-effectively, that is, the two
quantifiers must be restricted to different sorts. Similarly, in the case of
inequalities between two free variables, the removal of permissible instantiation
cases which are incompatible with these inequalities effectively restricts the
variables to different sorts.

The general condition which is required, therefore, in the case in which
only one inequality occurs in D (neglecting Curry formulas for the moment) is:

(i) (a) Let D be of the form a # b where b is a u-variable. Then, ifaisa
constant, or if a is a free variable, or if @ is an e-variable where the
quantifier over a precedes the quantifier over » in Q, orifaisa
u-variable, the contradiction is removed if the value chosen to
instantiate a (or the value a itself if a is a constant) is removed
from the range of the quantifier over b.

(b) Let D be of the form a # b where b is a free variable and a is either
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a free variable or a constant which has not arisen by existential
instantiation in QA. Then the contradiction is removed if the value
chosen to instantiate a (or the value a itself where a is a constant)
is removed from the range of b.

It is not necessary to specify separately that in the case of an inequality
between two u-variables or two free variables all possible instantiations on one
variable have to be excluded from the range of the second, i.e., that the vari-
ables have to be restricted to different sorts, since this is implied by (i) and
the ordinary conditions of instantiation. It is worth noting, however, that this
implication holds only in such cases. Hence a general restriction of all variables
involved in inequalities to different sorts represents overkill (e.g., type theory).

Consider now the case in which D is a disjunction of two or more in-
equalities, say D is (x; ¥ y,) v (x, ¥ y,) where x,, x, are e-variables and y,, y,
are u-variables. Here the contradiction involved in the reflexive case depends
on two successive instantiations, one of which presupposes x; = y; while the
other presupposes x, = »,. Thus we have to take a common instantiation value
for (3x,) and (¥,) and a different common value for (3 x,) and (y,)—the value
has to be different since the value chosen to instantiate (3x,) cannot subse-
quently be used to instantiate (3x,). In the special case in which the same
variable occurs in both disjuncts, e.g., D is (x; # ;) v (x, ¥ »,), the first
instantiation involves taking a common value for (3x,) and (y,) while the
second involves taking a different common value for (3x,) and (y,) (cf. the
cyclic paradoxes, Part I, Section 2.5). In either case, however, since both
instantiations are required to derive the contradiction, it is only necessary to
block one of them in order to block the contradiction. And in general, when-
ever D contains two or more distinct disjuncts, only one need be considered
and it is unimportant which one. A unique resolution can be given, however,
by utilizing a lexicographical ordering and choosing the first inequality in D.
Hence this case is already covered in (i) above.

Similarly, (i) also covers the case of Curry formulas (ordinary and weak)
where the matrix A entails D v B (not D' v B, see below). The reason for this
is that the derivation of the contradiction, as well as the argument to show
that if 4 entails D v B then QA4 entails B (see the discussion preceding C,),
depend on an initial instantiation which is incompatible with an inequality
in D. Hence these moves are blocked if restrictions are imposed which prevent
such instantiations. We can therefore neglect the disjunct B and include Curry
formulas of this type under (i).

These last cases in which D contains two or more disjuncts are quite
different from those cases which arise if A entails two or more different dis-
junctions. For example, suppose we have A DO D, and A D D,. In view of the
above, we can restrict attention to the case in which D, and D, are each single
inequalities distinct from each other (though they may have a shared variable).
A double condition of this kind will tell us that two independent contradic-
tions are derivable from QA. Hence each has to be blocked separately by
applying (i) twice. By contrast, if A entails a disjunction which contains two
or more independent disjuncts, only one contradiction can be derived by
making successive dependent instantiations. Hence only one application of (i)
is necessary here.
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Consider now cases for which F4 D D', where D' is of the form a # a.
We know that all instantiation cases of QA are formal contradictions. For if
A D (a # a), we also have A D (b # b), etc., for each variable and constant
in A. It would therefore be perverse to express a resolution of these cases
along the lines suggested for standard cases, e.g., by saying that the contra-
diction will be removed if the value used to instantiate the quantifier over a
(b, etc.) is removed from the range of the quantifier over a (b, etc.), for that is
simply another way of saying that no value can consistently be given to any
variable. Such contradictions can in fact be removed in terms of particular
techniques (see Section 4 below) but in a trivial and uninteresting way. We
shall not therefore include them in the general form of resolution.

In the case of Curry formulas which are such that 4 D (D' v B), D' can
be eliminated and we have A4 D B. Nontrivial resolutions can be given for
these cases, though not in terms of quantificational restrictions. These too,
therefore, will be excluded from the general form and considered separately
within the framework of a particular technique.

The general condition is then as follows:

R; Standard Case. Let QA and D be as in C; where 4 D D,and leta#b
be the first disjunct in D under a lexicographical ordering.

(a) If b is a u-variable and either
(i) aisa constant
or (ii) a is a free variable
or (iii) a is a u-variable
or (iv) a is an e-variable where the quantifier over a precedes the quan-
tifier over b in Q;
(b) If b is a free variable and either
(i) ais a free variable
or (ii) a is a constant which has not arisen in Q4 by existential in-
stantiation;

then the contradiction is removed if the value chosen to instantiate a (or the
value a itself if a is a constant) is removed from the range of b.

Repeated Standard Case. Let =4 D D, F4 D D,, ..., +A4 D D,, where none
of Dy,...,D, contain a common disjunct (though they may have shared
variables). Then the contradictions arising from QA are removed if the standard
case is applied separately in respect of each distinct D;.

Modified Standard Case. Where Dy, ..., D, each have at least one disjunct in
common, only one such disjunction need be considered provided the standard
case is applied in respect of the common disjunct (or any one common disjunct
if there is more than one) whether or not it is first in lexicographical ordering
in any D;.

4 Resolution by redefinition I now want to look at one particular appli-
cation of R; where the value chosen to instantiate one variable is removed from
the range of a second by means of an explicit formal restriction in a quantifier
or the matrix. This seems to be the most natural and obvious way of applying
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R;. Given classical quantification theory in which restricted quantifiers have
to be introduced by means of antecedent conditions, we can confine ourselves
to modifications in the matrix. That is, if QA4 is a reflexive contradiction or
a Curry formula, this application consists in constructing formulas of the form
Q(S D A) where S is the appropriate restriction. Any formula which entails
0(S D A), eg., Q4 & S), will also be regarded as a resolution by explicit
restriction.

Any technique which consists in replacing Q4 by QA™* where A* is a
modified form of A will be called a resolution by redefinition. The reason
for calling this kind of technique a resolution by redefinition is obvious in
terms of the simple cases. Thus, let QA4 be (Ix)(¥)(c(y,x) = ~c(y,y)) where
¢ is the predicate constant ‘is catalogued in’. Given the usual context the
assumption is that the existential quantifier is satisfied uniquely and what is
being presented, therefore, is an implicit definition of a unique individual C
(the catalogue of all catalogues which do not list themselves) where C is
(x)(¥)(c(y,x) = ~c(y,y)) (Part I, Section 1.1). Hence if the contradiction is
removed by replacing QA4 by, say, (3x)(¥)(S(y) D (c(y,x) =~c(y,»)), where
S(y) is some condition on the universal quantifier, a different individual C* is
being implicitly defined by (1x)(»)(S(y) D (c(py,x) = ~c(y,»)). That is, C is
being redefined.

This bears on a question raised at the beginning, namely what exactly
does a resolution amount to since the removal of reflexive contradictions
cannot change paradoxical items such as the catalogue, the barber (B), the
Russell class (R), etc., from inconsistent concepts to consistent concepts.
Since we have a formal proof that C, B, R, etc., do not exist, there can be no
technique which will enable us to define these items in such a way that it is
no longer inconsistent to postulate their existence. If, for example, C is defined
by (1x)(¥)(c(y,x) = ~c(y,y)), then it does not exist and it is inconsistent to
postulate its existence; and if it is not so defined then it is not C. Hence if
redefinition is the aim, the most we can hope for is a definition of a different
catalogue C* which, so far as entries are concerned, is as close to C as it is
possible to be without running into inconsistency. That is, C’s counterpart
C* must list as many as possible of those catalogues which C was intended to
list while satisfying the condition that it is not inconsistent to affirm the
existence of C*. To require that it should not be inconsistent to affirm the
existence of C*, however, is not the same as saying that we should be com-
mitted by the resolution to affirming its existence. This distinction relates to
the earlier discussion of plausibility (Part I, Section 2.2).

Thus it was suggested in Part I that, in the case of the simple paradoxes
at least, since the postulational definitions of C, B, R, etc. have the same
formal structure, any resolution should apply equally to all the paradoxes.
Hence if redefinition is to provide a uniform resolution, there must be a general
technique for defining counterparts P* of paradoxical items P (defined by
X)) (fo(y,x) = ~fo(y,y)) for a given predicate constant fy) such that
E'P* is not inconsistent. But there is a difference between a definition of P*
such that E!P* is not inconsistent and a definition such that E!P* is true.
Given that E!P* is not inconsistent, we may perhaps wish to affirm it; but
that is a separate matter which has to be separately motivated. For if there is
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a general technique for constructing consistent definitions of counterparts,
we shall be able to define, say, L*, a counterpart of L (the ultimate left-most
object) such that E!L* is consistent; but there could be no motivation for
affirming E!'L*. The existence of a neoultimate left-most object can be ruled
out as false by meaning even if the assumption of its existence is no longer
formally inconsistent by virtue of the reflexive case. Hence, as was noted
earlier, it should not be expected that whatever technique is employed to
remove the formal inconsistency should result in a modified sentence which
is true. This would be to conflate the problem of paradoxicality with that of
plausibility.

If we now add to the condition that E£!P* be not inconsistent the further
requirement that P* be as close to P as it is possible to be without being
inconsistent, then we are effectively requiring a minimal resolution, ie., a
resolution which eliminates just the contradictory instantiation cases of the
original QA and no others. That is, the permissible instantiation cases should
form a maximally consistent set when P is replaced by P*.

We now consider one general form of explicit restriction and then return
to the simple cases to illustrate its application.

4.1 If the value chosen to instantiate a quantifier over a is to be removed
from the range of a quantifier over b, the simplest form of antecedent restric-
tion is obtained by taking the antecedent to be a # b, i.e., by taking just that
inequality which creates the need for a restriction in the first place. This,
of course, is Frege’s resolution; but to meet the conditions for a general
resolution it has to be more complex than the form in which Frege gave it.

Consider first the case where QA is such that A entails a single inequality
a # b which satisfies the conditions of the standard case in R;. Let A’ be the
contradictory instantiation case obtained from A by taking the same value for
a and b, say a,, and arbitrary permissible instantiations for the other variables.
A' is contradictory since A’ D (ay # a,). No other instantiations are contra-
dictory, however (though they may be false by meaning). Consider now
Q@ # b. O A). By making the same instantiations which led to the original
contradiction, we obtain ay # a,. O A'. This is trivially valid and no other
instantiations are contradictory (though they need not be valid). For let 4"
be any other instantiation case of QA4 obtained by taking say a, for a, b, for b,
and arbitrary permissible values for the other variables. Then since A" is not
contradictory, neither is aq # bo. O A”. We thus have a minimal resolution
for this case since just exactly that instantiation which gives rise to the original
reflexive contradiction has been blocked.

In case A D D, where D is a disjunction of inequalities, the first of which
is, say, a # b, the antecedent restriction a # b is again sufficient to block the
contradiction (cf. R;). Here, the instantiation case A’ obtained by taking a,
for both a and b and arbitrary permissible values for the other variables is not
now a contradiction but instead an essential premiss in a chain argument which
leads to a contradiction. Hence since the corresponding instantiation case for
Q@ # b. DA)isag#ays. DA, A' can no longer be detached and used as a
premiss. As before, other instantiation cases remain acceptable even though
some of them also stand as essential premisses in the chain argument. To
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eliminate all such premisses QA4 has to be replaced by Q(D D A), but this
takes us beyond a minimal resolution. The similar case in which A4 entails

Dy, ...,D,, where each D; contains a common disjunct, is met by taking just
that disjunct as an antecedent restriction.
In case A entails Dy, ..., D, such that none of the D; contain a common

disjunct, it is necessary to select one disjunct from each (which can be specified
as the first in each in lexicographical order) and to take their conjunction as
the antecedent restriction. For here, contradictions arise independently in
respect of each D;.

With this type of resolution, it is possible to cover the nonstandard cases
in a similar manner. Thus, let A D (¢ # a). Then we have a trivial resolution
if we replace QA by Q(a # a. D A). Less trivial, however, is the nonstandard
case of a Curry formula. For if A D .(a #4a) v B, where B is a sentential wff or
a wf part of A, we have 4 D B. Here a minimal resolution is obtained if we
replace QA by Q(B D A). This does not restrict the quantification and it is
therefore a limiting case.

Thus the general form of a Fregean resolution is as follows:

FR; Standard Case. Let QA and D be as in C; where 4 D D, and let
a # b be the first disjunct in D in lexicographical order. Then the contradiction
is removed if QA is replaced by Q(a #b. D A).

Repeated Standard Case. Let VA D D,, A D D,, ..., -4 D D,, where
none of D,, D,,...,D, contain a common disjunct. Let a; # by, a, F* b,
...,a, ¥ b, be respectively the first terms in lexicographical order in D,
D,,...,D,. Then the contradictions are removed if QA is replaced by
Qa,;#b) &(a,#by)) &...&(a,#b,). D A).

Modified Standard Case. Where Dy, ..., D, each have at least one disjunct in
common, select one such common disjunct, say a # b. Then the contradiction
is removed if QA is replaced by Q@ #b. D A).

Nonstandard Cases

(i) Let A D D', where D' is a single inequality of the form a # a. Then
the contradiction is removed if QA is replaced by Q(a #a. D A).

(i) Let A D (D' v B), where B is a sentential wff all of whose variables
occur in A or a wff which is a wf part of 4. Then the contradiction
is removed if QA is replaced by Q(B 2 A). (Ordinary (and weak)
Curry formulas which are such that A D .D v B are included in the
standard case above—see the discussion preceding R;).

Where QA is a reflexive contradiction or a Curry formula and S is a
restrictive antecedent condition determined by FR;, the modified formula
Q@S D A) will be called a Fregean counterpart of Q4. The application of C;
followed by FR; therefore provides us with a recursive technique for con-
structing Fregean counterparts.

4.2 To construct a Fregean counterpart B of a given formula A is not thereby
to construct an acceptable formula. Whether or not B is acceptable (in the
sense that it can be affirmed) depends on whether or not the original reflexive
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contradiction A is plausible. We therefore have to provide a general condition
for plausibility to distinguish the cases. However, plausibility is an appropriate
concept only in the case of formulas which contain predicate constants and
no predicate parameters, no free individual variables and no sentential
variables. Consider, for example, the formula 44, (3x)(¥)(f(y,x) = ~f(y,»)),
which satisfies C,. Applying FR, we construct the Fregean counterpart B,,
G3x)O)(x #y.D .f(y,x) = ~f(y,»)). The condition for plausibility (Part I,
Section 2.2) requires us to put meaning postulates on f and to determine
whether this set of postulates M(f) is consistent with A, independently of the
reflexive case. But this is not possible where f is a parameter. On the other
hand, since f is standing in for arbitrary predicate constants, to ask whether 4,
is plausibie is effectively to ask whether {M(f), Ao} is consistent, when the
reflexive case is excluded, for all possible substitutions of predicate constants
for f. This, however, is the same as asking whether B, is an acceptable formula
for all possible substitutions on f, since By excludes just the reflexive case. But
this will be so iff B, is a thesis of quantification theory. Hence we may say
that A, is plausible just in case its Fregean counterpart B, is a thesis. Notice,
however, that although A, is implausible in terms of this criterion, special cases
of it which contain a predicate constant in place of the parameter are neverthe-
less plausible, for example, (3x)(¥)(c(y,x) = ~c(y,y)), since we should
expect M(c) to be consistent with it if the reflexive case is excluded. On the
other hand, other cases such as (3x)(¥)(r(y,x) = ~r(y,y)), where ‘r’ is ‘to
the right of’, are implausible.

Similar considerations apply to formulas which contain free variables and
sentential variables. In the case of formulas which contain both predicate
constants and predicate parameters, the question of plausibility is essentially
the question of whether the counterpart formula is a thesis if the predicate
constants are replaced by parameters.

This extension in the concept of plausibility is required only for the sake
of completeness in stating the general criterion. The interesting cases are those
which contain no predicate parameters, free variables, or sentential variables.
The general criterion is as follows:

PFR; Let A satisfy Cj and let B be a Fregean counterpart of A.

Standard Case. A contains predicate constants fy, ..., fn, no predicate param-
eters, no free variables, and no sentential variables. Then A is plausible and
B is acceptable iff {M(f,, ..., fn), A} is consistent when the reflexive in-
stantiation case(s) of A is (are) excluded; otherwise 4 is implausible and B is
unacceptable.

Nonstandard Case. A contains at least one predicate parameter, or one free
variable, or one sentential variable. Then A is plausible and B is acceptable iff
FB', where B' is obtained from B by replacing such distinct predicate constants
as occur in B by distinct predicate parameters not already occurring in B;
otherwise A is implausible and B is unacceptable.

The actual application of PFR; will of course be limited since in many
cases appropriate meaning postulates cannot be given. Hence the determination
of plausibility is not characterized by a recursive procedure.
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4.3 There are a number of differences between FR; and Frege’s own resolu-
tion which we now examine.

Note first that FR; depends on a prior application of C;, and C; is a test
which applies only to individual formulas. Moreover, the expression to be
tested must be a genuine formula (or sentence), i.e., it must not contain
schematic letters. Hence FR; does not sanction the introduction of modified
schemata.

The reason for this is easy to see. We know, for example, that any formula
of the form (3x)(¥)(A(y,x) =~A(y,y)) will be a reflexive contradiction since
the matrix will entail y # x whatever formula A is. But suppose we now apply
FR; directly to this schema to obtain (Ix)(¥)(y # x. D A(y,x) = ~A(y,»)).
Here we have achieved nothing. We cannot say, for example, that any formula
of this form is not a reflexive contradiction. For we can choose a case of 4,
say A', which contains variables (free or bound) which are different from x
and y and is such that the matrix (y # x. D .4'(y,x) = ~A'(y,y)) entails
another inequality which satisfies the conditions of C;. Hence the antecedent
restriction applied to the original schema is insufficient to block all reflexive
contradictions which can arise from it for suitable choices of 4. By contrast,
where we have a particular formula in this form, say (I3x)(»)(f(y,x) =
~f(»,»)), then the antecedent restriction y # x is sufficient to block the
contradiction. For since f is a parameter standing in for two-place predicate
constants only, and is not a schematic letter, “extra’ variables cannot be
introduced as they can in the case of the schema. Moreover, other cases of the
original schema which do contain ““extra’ variables are themselves dealt with as
individual formulas in terms of C; and adequate antecedent restrictions can be
imposed if their matrices entail other inequalities.

This is the first way in which FR; differs from Frege’s resolution. Frege’s
proposal was of course limited to a resolution of Russell’s paradox, and in that
respect it is less comprehensive than FRj, but in another respect it is more
comprehensive since in effect it took the form of imposing an antecedent
restriction on a schema for this limited case.

As is well known, Frege’s resolution was initially a proposal to modify
the identity condition on classes, (x(¢x) = 2(¥z)) = (¥)(¢y = ¥y), by restrict-
ing the quantifier in such a way that y does not take x(¢x) as a value in ¢y
or z(Yz) as a value in Yy However, the resolution is usually expressed by a
formal restriction on the naive abstraction scheme, (»)(y € X(¢x) = ¢y); in
particular by reformulating it as (¥)(y # X(¢x). D .y € X(¢x) = ¢y) or in
the stronger form (y)(y € X(¢x) = .9y & y # %(¢x)). We need only consider
the weaker form since consequences of it are consequences of the stronger.
Given the Frege-Russell substitution conventions on the letters ¢, ¢, etc., the
letters cannot simply be regarded as parameters which are standing in for
one-place predicate constants. On the contrary, an expression such as ‘¢y’
stands in for arbitrary wffs which contain y free. Thus they are schematic
letters and the identity principle and the abstraction principle are rightly
regarded as schemata. Hence, in view of what was said above, we should expect
that for suitable choices of ¢ the matrix of the modified abstraction schema
will entail other inequalities which satisfy C; and which are not part of the
antecedent restriction. That is, we should expect to be able to generate other
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reflexive contradictions from the modified schema. This relates to the
demonstration by Quine [5] and Geach [1] that the modified abstraction
schema is inconsistent.

The second way in which FR; differs from Frege’s resolution is connected
to the first. For since the modification is made to a schema, particular cases
of the original schema which are not reflexive contradictions, and which
therefore require no modification, nevertheless now appear as modified. For
since the schema is modified, so are all instances of it. Thus we do not have
a minimal resolution. By contrast, FR; permits only the modification of
just those instances which need to be modified; all other instances remain
unaffected.

So far as these two points are concerned, therefore, the important
differences between FR; and the application of Frege’s own resolution in the
particular area of set theory, is that the former provides us with a case-by-case
resolution, where the modification can differ from case to case, while the
latter provides us with a uniform modification on all cases. The uniform
modification is inadequate, since it fails to eliminate all reflexive contradic-
tions; and at the same time it is too comprehensive since it results in the
modification of formulas which are not contradictory. However, these con-
siderations are mainly of importance when examining what needs to be done
to eliminate reflexive contradictions in naive set theory. In other contexts,
the question of modifying schemata does not arise. We shall therefore postpone
further discussion of these points to Section 5. There is, however, a further
difference between FR; and Frege’s own resolution which has a wider applica-
tion. It arises from the treatment of descriptive terms in C;.

4.4 In terms of C; definite descriptions have to be eliminated before the test
for a reflexive contradiction is applied and hence before FR; is applied. There
is of course a strong temptation to treat them as constants, but we now show
that if C; contained a condition for descriptive terms analogous to the
condition on constants, then FR; would fail to block the contradiction even in
the simple cases.

As before, let C, the catalogue of all catalogues which do not list them-
selves, be (1x)(y)(c(y,x) = ~c(y,»)), and consider the standard contradictory
assumption,

o ey, O)=~c(y,3)).

Treating C as a constant for the purposes of applying C; and FR; we obtain the
Fregean counterpart,

o My #C.Dc(y,C)=~c(y,»),

since the matrix of a® entails y # C. Given the PM-theory of descriptions,
however, a! is inconsistent. This is immediate if C has a primary occurrence
in o' since o' is then of the form Y((1x)¢x) which entails E!(1x)¢x
(PM *14.21); ie., o entails E£!C, but we already know that ~E!C is a thesis
(Part I, Section 1.1(a)). If C has a secondary occurrence, the argument is
more complex, but there is a simpler argument which applies independently of
whether C has a primary or secondary occurrence. The argument has the
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further advantage of showing that a conditional instantiation rule for descrip-
tions, (»)A4y D (E!(3x)Bx D A(1x)Bx) (cf. PM *14.18), does not provide
adequate protection.

Conditional instantiation does block the obvious route. Thus we cannot
employ ordinary instantiation to move from o! to (C # C. D (¢c(CC) =
~c(C,C)), hence C = C, ie., E!C (PM *14.28). Instead we have E!C D
(C # C. D (¢(C,C) = ~c(C,C)), which is innocuous. However, from o' we
have (»)(y # C) D (¥)(c(y,C) = ~c(y,y)). But (»)(y # C) is equivalent to
~E!'C (PM *14.204), and we have ~E!C as a thesis. Hence, (3)(c(y,C) =
~c(y,y)); but this is 0.

Similar considerations apply in respect of all the usual paradoxical items
which give rise to the simple paradoxes. That is, a!-type modifications of
otype assumptions are inconsistent with PM description-theory. In effect,
such modifications provide no resolution at all since they simply lead back to
the original paradoxical assumption. In particular, this is true of the Russell
class R, (1x)(»)(y e x=~(y € y)). That is,

WV(y#R.DO(yeR=~(yey))

fails as a resolution. But now consider Frege’s own resolution of the class
paradox. As a special case of the modified abstraction schema we have,

F N #Fx(~(xex)).D(yex(~(xex)=~(yey)),

where x(~(x € x)) is the Russell class. That is, given our use of descriptive
terms instead of class abstracts, it is in exactly the unacceptable form above.
Hence even in this particular case of the modified abstraction schema, FR;
provides no analogue of Frege’s own resolution.

This is not to say that Frege’s own resolution is inconsistent in the
particular case of the Russell paradox, as well as being inconsistent in other
cases. For one thing, there is no reason to require class abstracts to satisfy the
conditions of PM description-theory. Thus we need not be committed to
(o0 = o) = E!'a where o is an abstract; in which case we can allow the instantia-
tion move on F to the conclusion x(~(x € x)) = x(~(x € x)). Alternatively,
there is no reason to be committed to a PM theory of descriptions; in which
case we can take abstracts to be descriptions and block the above argument
elsewhere. Frege’s own theory of descriptions would be satisfactory in this
respect since an improper description, which denotes no ordinary element of
the domain, denotes the null element. So, for example, we have (3y)(y = C);
and this being so the move from (y)(y # C) D (y)(c(y,C) = ~c(y,y)) back
to a® is stopped, though conditional instantiation is still required to block the
earlier moves (cf. Scott [6]).

The main point of these remarks is simply to emphasize the significant
differences between the application of FR; and Frege’s own resolution, even
though they are similarly motivated and have superficial similarities. Both C;
and FR; could be simplified either by dispensing with descriptions altogether
or by adopting a different theory which allows for them to be treated as
constants. But this would be to draw a veil over some important issues. For one
of the main components of the paradoxes is the fact that we can construct
descriptions which are not satisfied by any existing items; in such cases their
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behaviour is different from that of constants and it is a main virtue of PM-
theory that it characterizes this difference.

4.5 The above difficulties do not arise in the case of generalized forms of
the paradoxes. For example, if we begin with the assumption (3x)(y)(c(y,x) =
~c(y,y)) in place of (y)(c(y,C) = ~c(y,»)), then FR; supplies the counter-
part (Ax)(V)(y # x. D (c(y,x) = ~c(y,»))). If we now instantiate to obtain
V)Y # xo. D (c(¥,x9) = ~c(y,y)), then although we have a formula which
has the structure of o, it cannot be o, i.e., x, cannot be C, for the conditions
on instantiation require x, to be a constant, i.e., a term which designates an
element of the domain, or imposing uniqueness, a description which designates
an element of the domain (which C does not). Assuming the latter, then x,is
Ox)P)(y #x.D(c(y,x) =~c(y,¥)), i.e., it is that catalogue which, excluding
itself from consideration as an eligible candidate, lists all and only those cata-
logues which do not list themselves. That is, x4 is C’s counterpart C* which
satisfies the condition (3)(y # C*. D (c(y,C*) = ~c(y,y)). Thus C* is not an
“ordinary” catalogue. For the antecedent condition imposes the requirement
that C* itself be excluded from consideration as a possible candidate for
listing or nonlisting in C*. That is, C* cannot be considered for listing in C*
and it cannot be considered for exclusion from C*. Hence it is a catalogue of
a different kind from those catalogues which are eligible for consideration. It
is not that C fails to be an “ordinary” catalogue, for C is not a catalogue at all.
The temptation to affirm the existence of C, and the temptation to think that
we can make a start on compiling it, derives from the fact that we can compile
C*. And the reason for this is simply that the description C* has the antecedent
restriction built into it, whereas C does not. The conditions on C* require us
to exclude it from consideration, but the conditions on C do not. And although
al, (N # C. D (c(y,C) = ~c(,y))), looks as if it is imposing such a
condition on C, in fact it is not because C remains as the inconsistent
(1 x)(P)(c(y,x) = ~c(p,y)). Thus, &' does nothing to change the conditions on
C; in particular, it does not redefine it. That is why it fails as a resolution. But
what o! is trying to express is consistent, namely

a2 (M@ FCE D (c(y,CH=~c(y,1),

where C* is (1x) () (¥ #x. D (c(y,x) = ~c(y,y)).

Since C* is defined in this way, &? has the form ¢((1x)¢x) (unlike a!
which has the form Y((1x)¢x), given that (1x)¢x has a primary occurrence);
but this is equivalent to E!(1x)¢x (PM *14.22), i.e., o? is equivalent to E!C*.
Hence to affirm o2 just is to affirm E!C*. Nothing of what has been said so
far, however, commits us to this affirmation. The above discussion shows only
that o? is consistent, i.e., that it offers a genuine resolution as opposed to the
spurious resolution offered by «!. Given that the original paradox is plausible,
then we can affirm o? since E!C* is precisely what we want to affirm. How-
ever, since all o?-type resolutions are equivalent to E!'P* where P* is the
counterpart of the original paradoxical item P, they cannot all be affirmed.
In particular, they cannot be affirmed if the original paradox is implausible.

As we have noted, the criterion which has been given for plausibility
is often inapplicable since it is difficult to provide appropriate meaning
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postulates. But in the case of the simple paradoxes at least, we now have an
alternative since the question of whether or not the original paradox is
plausible is the question of whether or not the corresponding o>-type formula
is acceptable. Hence if we can provide a model which satisfies the appropriate
o2-condition, then we have shown that the paradox is plausible.

In the case of the catalogue, there is an obvious model for the elementary
form of order theory which a? imposes. Let there be two kinds of catalogues
each of which lists books and only books: those in book form (book-cata-
logues) and those in card-index form (index-catalogues). Let some of the
book-catalogues list themselves as books in the library and let some fail to
list themselves. If we now propose to compile a catalogue C* of all those book-
catalogues which fail to list themselves, a? imposes the requirement that C*
be an index-catalogue since it then fails to be an eligible candidate for con-
sideration as a listable or nonlistable item in C* because it is not itself a book.

In general, a resolution of the simple paradoxes in terms of FR; imposes
the requirement that the domain over which the quantifiers range be parti-
tioned into two mutually exclusive and nonempty subdomains, in effect
into two categories or kinds of individuals, though the quantifiers range
unrestrictedly over the whole domain in the sense that any individual in either
of the subdomains can be taken as an instantiation value for any quantifier.
Thus we have a many-sorted theory without many-sorted quantifiers.

4.6 These conditions on the domain can be made explicit in terms of other
variants of a resolution by redefinition, in particular by variants which impose
an antecedent predicate-restriction. Thus, let B, be the predicate *. . . is a book
catalogue’ and consider (x)(»)(Boy D (c(y,x) =~c(y,y))). Instantiating, we
have as an analogue of o2,

o? (P)Boy D (c(pxo) =~c(y, 1)),

i.e., provided y is a book catalogue, it is listed in x, iff it is not listed in itself.
Given uniqueness, X, is that counterpart of C, C**, defined by (1x)(y)(Boy D
(c(y,x) = ~c(y,y))). Instantiating again we have ~B(x,); hence ~(¥)B,y.
Thus if o2 is affirmed, we are committed to the conclusion that not everything
in the domain is a book catalogue, and in particular, that x, is not. If the
domain were restricted to book catalogues, we should be forced to ~a3, i.e.,
~E!x,.

Since to affirm o3 is to characterize the original paradox as plausible,
it follows that plausibility depends on there being a suitable or “natural”
partitioning of the domain. If the domain is homogeneous, &3 cannot be
affirmed. This relates to a problem raised in Part I, Section 1.2, where it was
noted that a simple antecedent restriction to catalogues is inconsistent with
restricting the domain to catalogues. We can restrict the domain to catalogues
iff the antecedent restriction is expressed in terms of a subset of catalogues.
In general, in the case of the simple paradoxes, resolutions by redefinition
which take the form (Ix)(»)(Sy D A(y,x)), where (Ix)(p)A(y,x) is the
original paradoxical formula, always impose the requirement that the do-
main admits of a suitable partitioning into the two nonempty subsets {y: Sy}
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and {y: ~Sy}. If this requirement cannot be met, the original paradox is
implausible.

That there are o3-type resolutions of the other familiar paradoxes is well
known. For the Russell paradox, we can adopt the familiar course of taking
the domain to be all classes, partitioned into sets and proper (ultimate) classes,
and then take the restricting predicate to be “...is a set’. Then R**, the
counterpart of R defined by (1x)(y)(Set y O .(y € x =~y € »)), is a nonset.
Note, however, that as in the case of the catalogue, this kind of resolution will
not survive a restriction of the domain to sets, for we then simply restore the
original form of the paradox, now expressed in terms of R ** instead of R, and
conclude ~E!R**,

In some cases there is more than one choice of partitioning. Thus, for
the barber we can restrict the domain to villagers (as in the original paradox)
but partition it into those who are clean-shaven and those who are not and
take the restricting antecedent predicate to be . .. is clean-shaven’. Then B**,
the counterpart of B, shaves all and only those clean-shaven villagers who do
not shave themselves, while he himself turns out to be bearded. Alternatively,
we can extend the domain of the original paradox to include nonvillagers and
take the restricting predicate to be ‘.. .is a villager’, in which case B** is a
visiting barber.

What is obvious about such resolutions, however, is that the paradox
is avoided by changing the conditions in terms of which it was originally
expressed. That is, we set a new scene which differs essentially from the old
and for that reason alone is nonparadoxical. The old problem is not solved,
it is simply replaced by a new situation which presents no problem. This is
really what is meant by saying that nothing can change the fact that the
paradoxical items P postulated by the simple paradoxes do not exist and that
any closely resembling nonparadoxical situation invokes counterparts which
cannot, in any circumstances, be P.

In general, then, modified a-instances like a3 provide us with a case-
by-case resolution of the simple paradoxes but they impose the following
conditions:

(a) they introduce a counterpart of the original paradoxical item

(b) they are domain-relative in the sense that they fail as resolutions if
the domain is restricted in an appropriate way

(¢) they require the domain to be partitioned into a minimum of two
nonempty subsets such that the counterpart is an element of one
subset and the items to which it is related are elements of the other.
That is, where x, is the counterpart in question and f, is the predi-
cate constant in a particular case, the minimum requirement is that
Xof v fo(y,xo)} and {z:z ¢ {y: fo(y,x}l #¢.

Given x, ¢ {y: fo(y,xo)} and E!x,, the second condition {z: z ¢
{y: fo(y,xo)}} # ¢ issatisfied. And given ~(3z2)fo(x,2), then xo ¢ {¥: fo(3,x0)}
is satisfied; for if x, does not stand in the relation f, to any individual, then
it does not stand in the relation f, to itself. Hence if we can guarantee
~(32)fo(x0,z) and E!x, we shall satisfy the requirements of an ol-type
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resolution of the simple paradoxes. But both conditions are satisfied if we
affirm,

ot I(B)fo(3,2) D (foy,x0) =~f(¥,¥)),

where xq is (1x)(V)((F2)fo(y,2) D (fo(¥,x) = ~fo(¥,¥))). For then o just is
Elx,, and the reflexive instantiation case yields ~(3z)fy(xq,z). Alternatively
we can take o in the stronger form ()(fo(3,Xx0) = .~fo(¥,») & (F2)fo(¥,2))
where x, is now (0x)(¥)(fo(y,x) = .~fo(¥,¥) & (32)f(»,2)). Hence a Quinean-
type condition provides a general form of predicate-restriction resolution for
the simple paradoxes. The plausibility of the original paradox then turns on
the question of whether &® can be affirmed; and that is the question of whether
or not the domain admits of a plausible (or “natural) partitioning into the two
nonempty subsets {y: (32)fy(»,2)} and {y: ~(I2)fy(»,2)} such that x, is an
element of the latter.
Writing o* as,

(J/)(f(;ky ) (fo(y,xo) = ~f0(y5y))a

where fy is (3z2)fo(y,2), the o-type resolutions arise as special cases. Thus
¢*y is plausibly interpreted as ‘y is a book catalogue’ since (3z)c(y,z) says
that y is listed in some catalogue (book or index), but given the earlier
assumption that card indexes are not themselves listed in any catalogue (book
or index), then y is a book catalogue. Similarly, s* is the predicate ‘.. .is
clean-shaven’ since (3z)s(y,z) says that someone (maybe y himself, or maybe
the barber) shaves y. Again, €*y says that y is a membership-eligible entity
(set). Where f, is the predicate-constant r (to the right of), the reflexive case
yields ~(3z)r(xy,2), ie., xo is to the right of no item, so x, remains the
ultimate left-most object and this case of a* cannot be affirmed. Here r* is
the predicate ‘. . . is right-hand eligible’.

Although o provides us with a generalized form of a predicate-restricting
resolution which can be recursively applied where only one distinct predicate
constant occurs in the original formula, it is not easily generalizable to more
complex cases which contain more than one predicate constant. The problem
of finding a suitable restricting condition S(») remains open for such cases.
Hence considered as a general technique, predicate-restriction is less compre-
hensive than FR;. The application of FR; is independent of the predicate
constants occurring in the original formula and it is uniformly applicable to
all cases. Since the paradoxes are themselves independent of the particular
predicate constants involved, this represents an advantage. A further advantage
is that FR; invokes the minimum antecedent condition required to block the
reflexive contradiction in each case. It thus treats paradox resolution as a
purely formal enterprise stemming from a purely formal requirement. Hence
it requires no further rationale. By contrast, predicate-restriction builds in a
rationale by providing a “plausible” predicate to effect the required partition-
ing of the domain. Thus it moves us into the realm of solutions, as distinct
from resolutions.

5 The class paradoxes and naive set theory I now want to consider the
possible application of FR; to remove the paradoxes in naive set theory.
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5.1 The position we have is that given standard quantification theory with
PM description-theory, and the predicate constant e, we can prove that certain
classes do not exist if descriptions are utilized as class abstracts. More particu-
larly, let Q be a system of quantification theory with identity which contains
no predicate parameters and only one primitive predicate constant (apart
from identity), namely €, and let the definite descriptor 1 be introduced by
the usual PM contextual definition. Then in Q we can establish ~E'!'R as well
as other similar theses which determine the nonexistence of classes (e.g., such
as those postulated by cyclic-paradox formulas). We know that Q is consistent.
If, however, we add to Q an abstraction schema of the form,

A E'Ox)(»)(y ex =Ay)

then we get an immediate inconsistency by taking Ay to be ~(y € y) since
we then have E!R. And similarly in the case of other reflexive-paradoxical
classes, a nonexistence theorem of Q will be inconsistent with an instance of A
or with some consequence of one or more instances of A. Thus A generates
existence theorems which are reflexive contradictions; and since they are
reflexive contradictions, their negations are already theses of Q. These are
not the only inconsistencies which arise since there are instances of A which
are Curry formulas, and the negations of Curry formulas are not existing theses
of Q. Here the simple inconsistency arises indirectly by way of absolute
inconsistency.

In general, however, since Q is consistent we know that whatever incon-
sistencies arise when A is taken as an additional postulate are either instances
of A or consequences which rest essentially on A in the sense that one or more
instances of A occur essentially in their derivation. To the extent that such
inconsistencies arise from the generation of reflexive contradictions and Curry
formulas, therefore, the problem of removing them is solved if,

(1) we can determine which formulas are reflexive contradictions or
Curry formulas;

(2) we can modify these formulas in such a way that the contradiction
is removed.

Now we know that we can solve each of these problems in general. C;
provides us with a recursive procedure for determining whether an arbitrary
wif B of Q is a reflexive contradiction or a Curry formula; and FR; provides
us with a recursive procedure for constructing noncontradictory counterparts
of B. But the addition of A to Q does not extend the set of wff. Hence if we
apply Cj as a filter and FR; as a fix, it seems we can remove such inconsistency
as arises from the generation of reflexive contradictions and Curry formulas.

Call the naive theory determined by Q together with A, N. Alternatively,
we can take N to be determined by Q and the axiom schema,

A, @XM (yex=A4y)

together with Extensionality, and then recover A as a theorem schema. A then
guarantees that the satisfiers of A, are unique and we can use s, ...,s, to
abbreviate definite descriptions which are instantiation values of the e-quan-
tifier in A, and are such that for each s;, E'ls;. This simplifies some of the
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discussion if we assume that all the reflexive contradictions and Curry
formulas which arise from A also arise from A; and hence that the addition of
extensionality contributes no further formulas of this kind. (There is no
problem in the other direction, i.e., if we take A as the axiom schema, since
all consequences of A, are consequences of A.) Given this, the position is that
if the only inconsistencies which arise in N are due to the generation of
reflexive contradictions and Curry formulas from A, then there seems to be,
at least in principle, a technique which can be applied to the formulas of N in
such a way as to yield a modified system N* which is consistent. Put otherwise,
a proof that N* is consistent would show two things: first that the only
inconsistencies in N are due to the generation of reflexive and Curry contra-
dictions from A;; secondly, that C; is a necessary and sufficient condition for
detecting such formulas and FR; is a sufficient condition for constructing
noncontradictory counterparts.

Notice, however, that the obvious step of simply applying C; and FR;
to instances of A, is inadequate. This would certainly enable us to filter
out and modify axioms which are reflexive or Curry contradictions. For
example, C; would filter out (Ix)(y)(y e x =~(y € y)) and FR; would supply
GAX)P)(y #x. D .y e x =~(y € p)) in its place. But we should not in this
way capture those contradictions which arise from two or more instances of
A, neither of which in itself is a reflexive or Curry contradiction. A simple
example is provided by an analogue of the contradiction arising from Aut
(Section 1.3). Thus, take as an instance of A;: (i) (3x)(¥)(y ex =y ey),and
instantiate to obtain: (i) (¥)(y € o=y € ¥); 5o is the class of all self-membered
classes, K. Now take as a second instance of A;: (iii) (Ix)(¥)(y € x =
~(y € sg)). Instantiating we have: (iv) (»)(y € s; = ~(y € s¢)). From (ii) and
(iv), then: (v) ()(¥ € s, =~(y € »)). Thus s, is R, introduced as the comple-
ment of K. This will be called the K-R argument in what follows.

As in the derivation of the contradiction from Aut, there is a heuristic
argument which treats s, and s, as constants to show that the two instances
of A, (i) and (iii), are not reflexive contradictions, yet (v) is. Hence even if (v)
is rejected as an axiom (or strictly, as an instantiation case of an axiom), it
will nevertheless still arise as a thesis from axioms which are not filtered out
by C;.2 To avoid this, we therefore need to apply C; as a filter on every thesis,
rather than as a filter on just the set of axioms.

The following remarks are merely suggestions about what kind of system
we might expect to get in this way, together with some indication of the
problems involved in setting it up.

5.2 The system which is envisaged, N*, differs markedly from those which
result from usual ways of applying a resolution by redefinition in set theory
for, in general, this kind of resolution is expressed by modifying the schema
A,, or A, in one way or another. This, however, is not open to us (Section 4.3).
The filter Cj can be applied only to formulas. But this has two advantages:
first, only those formulas which need to be modified get modified; and second,
the modification is minimal in each case.

These differences are clear if we consider what seems to be the nearest
relative to N*, namely the system proposed by Hintikka ({2] and [3]).
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Hintikka’s proposal consists in modifying A, in such a way that every bound
variable is restricted by an inequality condition wherever it occurs and every
free variable is restricted by an antecedent inequality condition. Hence, every
axiom is modified by inequality conditions which involve all the variables in it.
By contrast, the application of C; and FR; does not result in the modification
of all axioms, and even where modification is required it need not (and fre-
quently does not) involve all the variables in the formula. The only variables
which are involved are those which occur in relevant inequality conditions
entailed by the matrix.

In effect, then, the proposal to develop N* by employing C; and FR;
to filter out and modify certain theses of N aims at a Hintikka-type of mod-
ification but applied in a case-by-case way to just those formulas which are
either reflexive contradictions or Curry formulas and otherwise imposes no
restrictions on the construction of classes.

5.3 The main problem in setting up N* is that we have to devise some way
of screening every thesis of N which rests on one or more instances of A;.
This could be done in terms of a recursive enumeration of N-theses where the
appropriate C; and FR; are applied to each formula as it comes up; but this
is hardly a practical solution. Instead, what might seem to be required is
something along the following lines.

Call formulas which fail to satisfy C;, i.e., those which get past the filter,
starred formulas (they can be marked with a star). Secondly, if 4 is a formula
which does satisfy C;, replace it by its counterpart A, as determined by FR;
and star A.. Now adopt the following two rules:

N*1 If FyA and A%, then . 4™
N*2 If by A but not A*, then by« A7.

In terms of this, the theses of N* are the starred theses of N together with
the counterparts of unstarred theses of N. However, there are some obvious
difficulties. '

For one thing, we know that we have -y A and by ~A for arbitrary 4. We
have no guarantee, however, that C; will filter out all such contradictions.
C; is designed only to filter out reflexive contradictions and Curry formulas
and it is at least theoretically possible that for some A both 4 and ~4 will be
starred, in which case we shall have I—N* A* and b+ ~A* for some A. More
generally, we have kg B, for arbitrary B. But not every formula satisfies C;.
Hence, we shall have Fy« B* for some B* such that B* would not be a thesis
of N were it not for the inconsistencies in N, in which case it is an unacceptable
thesis of N*,

These points suggest that what we should be looking at are derivations in
N which rest on A, rather than at arbitrary theses of N, for we want to block
proofs which lead to inconsistency by way of reflexive and Curry contradic-
tions. That is, our interest is in theses of N which are “good’, in the sense
that they do not rest on contradictions and are not themselves contradictory.

We can restrict attention to minimal derivations which rest on Ay, i.e.,
which are of the form 4, . .., 4, by B where: (i) none of the 4; is eliminable,
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and (ii) at least one A4; is such that it is an instance of A, or contains a wf part
which is an instance of A;.

Suppose, now, that each A; gets past the filter. Even so, we cannot affirm
Ay, ..., A, Hn« B since, as we have seen, reflexive contradictions can arise
as the last line of a proof sequence such that none of the preceding members
of the sequence is a reflexive contradiction. Hence B has to be screened also.
Thus, in place of N*1 and N*2 we require:

N*1’ IfA,,...,A, by B and each of Ay, ..., A, and B are starred, then
A%, .. AR By BT
N¥2' If Ay,...,A, by B and Ay, ..., A, are starred but B is not, then
A%, .. A bne BE

It is immediate from N*2' that the rules of N are not closed under
starring. A simple example is provided by the following proof in N which
utilizes starred premisses taken from the K-R argument:

(i)* (W ese=yey)
(V)* My es =~y € s0)),

hence,
Vi) (N ese=yey) & (¥)(yes;=~(y €so).

However, (vi) is not starred since the matrix of its pnf, ()(2)(y € s¢ =
yey. & .z es;=~(z €sy)), entails y # s, vz ¥ s,. Hence, adjunction is not
closed under starring and N* is therefore a nonclassical system. The Q-part
of N* remains classical since all derivations in Q satisfy N*1', i.e., the rules are
closed under starring for derivations in Q and all theses of Q get an automatic
star.

The application of N*2 to the sequence (ii)*, (iv)* by (vi), requires us
to replace (vi) by its counterpart to obtain a proof sequence in N*. Notice,
however, that the heuristic arguments which we have employed so far, which
treat so and s, as if they were constants, fail to supply a counterpart of (vi).
In particular, although the matrix of the pnf of (vi) entails y # s;vz # s,
we cannot apply FR; directly to produce (»)(z)(y # s1. D (y € s =
y €ey. & .z e s; =~(z € sy)). This is not a genuine counterpart since the
antecedent restriction contains a description. If we were to adopt it, the
reflexive instantiation case which arises by taking y =s, and z = s, would yield
§; = §;; but sy is R, so we have F'!R which contradicts the existing thesis ~F!R.
This reaffirms the discussion in Section 4.4 and emphasizes that a correct
application of C; and FR; requires the prior elimination of descriptions. Thus
the abbreviations s, and s, in (vi) have to be replaced by (1x)(»)(yex =y € y)
and Gz)(W)(w e z = ~(w € (1x)(¥)(y € x =y € y))), respectively; these have
then to be eliminated before constructing the pnf of (vi) and applying C;. The
genuine counterpart of (vi) will then have an antecedent restriction in which
no descriptions occur.

Now consider the relevance of N*2' to the K-R argument. If we just
take the argument as it stands, then we have: (1)*, (ii)*, (iil)*, (iv)* Fy (v),
where (v) is not starred. Hence it has to be replaced by its counterpart before
we get an N* sequence. However, in view of the discussion above, it is clear
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that the argument gets blocked at an earlier stage. For although (vi) does not
occur in the K-R argument as it is presented, it would do so in an expanded
form of the argument since adjunction on (ii) and (iv) is implicit in the move
to (v). From this point of view, (vi) is a step on the way to (v). But as we have
seen, (vi) is not a consequence of (ii) and (iv) in N*; hence neither is (v). In an
expanded form of the argument, therefore, we should expect that the counter-
part of (v) arises directly from the counterpart of (ii) & (iv).

This general approach of using C; and FR; to screen derivations in N has
obvious advantages over the earlier proposal to screen theses, but it is still not
without difficulties. These arise because: (i) it is limited to derivations which
contain instances of A; as premisses or as the wf part of premisses, and (ii) it
can only work efficiently if all steps in the derivation are explicit. Thus we
could ensure an adequate application of C; and FR; in this way only if all
derivations in N which rest directly or indirectly on A; were expanded to
complete proofs. By this are meant proofs which run right back to the axioms
on which they rest and which employ no derived rules.

This suggests an alternative approach which consists in setting up N*
independently of N. Thus, let N* be a set of postulates for Q together with
A,, Extensionality, and the following primitive rules:

C; Rules for starring

FR; Rules for constructing counterparts of unstarred formulas
MP*1 If FA* and H(4 D B)* and B¥, then FB*

MP*2 If FA* and H(A4 D B)* and not B*, then FB}

Gen* If FA*, then H(a)A4)*.

Gen* is standard since starring is not affected by universal closure. Thus if
A is in pnf so is (a)A. Moreover A and (a)A have the same matrix; hence the
same inequalities are entailed. Let a occur as a free variable in A (other cases
are trivial). If A is starred, its matrix does not entail any inequalities of the
form a # b where b is a u-variable, a free variable, or a constant in 4. Hence
the matrix of (¢)4 does not entail any inequalities of the form a #* b where
a is now a u-variable and b is as above. But these are the only relevant in-
equalities since no e-variables satisfy the condition that the quantifiers in
which they occur precede the quantifier over a in (a)A4. A similar argument
establishes that if 4 is not starred, neither is (a)A. If existential instantiation
is introduced as a primitive rule, the usual restraints have to be put on the
application of Gen*.

The starring conditions on the primitive rules will carry through to all
derived rules, and in consequence these secondary rules will usually have
complex constraints on them. Consider, for example, the usual derivation of
adjunction:

(1) FAD(BD.A&B)
Hyp (2) F4

3) H(BD.A&B)
Hyp (4) +B

5) FA &B
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In N*, however, we first require that any instance of (1) be a starred formula.
For even though (1) is a theorem schema of Q, this does not guarantee that
every instance of (1) is a theorem of N*; and indeed we should expect in some
cases that if one or more of the schematic letters is replaced by an instance of
A,, the formula so obtained will not be starred. Second, we require A*; third,
that any instance of (3) be starred; fourth that B be starred; and finally that
A & B be starred. Hence adjunction gets through only in the cumbersome
form:

Adj*1 If FA* and FB* then H(4 & B)* provided:
i) (AD(BD.4&B)*
(i) (B D .4 &B)*
(iii) (4 & B)*

Adj*2 If FA* and FB* then H(A & B)} provided:
i) (AD(BD.A&B)*
(i) (BD.4 &B)*
(iii) (4 & B) is not starred.

Evidently derived rules have little practical value in N*.

If N* is set up in this way, however, the primitive rules guarantee that
only starred formulas get through as theses, i.e., that no thesis will be a
reflexive contradiction or a Curry formula. We therefore expect N* to be
consistent if these formulas are the only source of inconsistency in N.

5.4 N* is absolutely consistent, trivially, since certain formulas fail to get a
star and cannot therefore be theses. However, since N* is nonclassical, there is
no argument from absolute consistency to simple consistency, even though
A & ~A. D B is a theorem-schema of Q. What we are assured of, then, is that
if N* is simply inconsistent, it is paraconsistent since the inconsistency does
not spread to absolute inconsistency.

It is easy to see that it is theoretically possible for N* to be simply incon-
sistent yet absolutely consistent. For suppose we have H~(3x)(3y)Ay(x,»)
and F(3x)(3y)Aqx,y), for some Ay(x,») containing just the two variables x
and y. The pnf of their conjunction is (3x)(Fy)(2)(W)(A(x,¥) & ~A(z,W));
but the matrix of this entails x # zvy # w, hence it is not a starred
formula. Consequently Adj*1 fails to be satisfied and we cannot affirm
FAx)@AY)Ao(x,y) & ~(3x)(3Fy)Ay(x,y). So even if 4y & ~Aq. D By is a
starred thesis where B is an arbitrary wff, we cannot apply MP*1 to conclude
FBE.

One minor point of interest so far as consistency is concerned is that the
usual proviso on A;: (3x)(¥)(y € x = Ay), namely that x not be free in Ay,
seems not to be required in N*, at least in simple cases. For suppose we choose
~(y € x) for Ay. Then the instance (3x)(»)(y e x =~(y € x)) is a limiting case
of a reflexive contradiction since its matrix entails x # x. Hence it is eliminated
by the filter. On the other hand, the innocuous instance (3x)(y)(y e x =y € x)
which is eliminated by the usual proviso is not eliminated by the filter.

Note, finally, that the question of plausibility coincides with the question
of consistency in N*. For if the only two primitive predicate constants which
can occur in a formula are € and =, then the meaning postulates M(e,=) are
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just the axioms on identity and membership. Consequently, the question of
whether a given reflexive contradiction is plausible always reduces to the
question of whether it is consistent with these axioms independently of the
reflexive case. But that is just the question of whether N* is consistent.

5.5 It is not claimed for N* that it has any practical advantages over more
conventional theories which apply a resolution by redefinition by means of
a modification on the abstraction schema. Rather, N* is offered as a theoretical
system which lies between N and conventional theories and which represents
a minimally modified variant of N if the sole concern is to eliminate incon-
sistency. If N* is consistent, then those of its theses which are not counterpart
formulas constitute the maximally consistent set of N-theses. When counter-
part theses are added, we have the maximally consistent set of minimally
modified formulas of N. What is interesting, however, is that although N*
lies between the classical (though inconsistent) N and classical (presumed
consistent) conventional theories, it is itself nonclassical. What we can con-
clude, then, if N* is consistent, is that no classical conventional theory can
stand as a minimally modified N. All such theories, that is to say, will always
contain more restrictions on the construction of sets than are necessary to
avoid inconsistency.

NOTES

1. It might be thought that if we insist on conditional instantiation, then the usual contra-
diction from @ is blocked since we cannot move to ¢(C,C) = ~c(C,C); instead we have
E'C D (c(C,C) = ~¢(C,C)), hence ~E'!C. So it might seem that there is no paradox in
the first place and that the contradiction arises from a mishandling of descriptive terms.
However, given that there is at least one catalogue, y,, which does not list itself (and
certainly there is no paradox if not), we have ~c(yq,»0). But by ordinary instantiation on
o, since y, is a constant, we have ¢(y0,C) = ~c(y.); hence c(yo,C). Here C has a

primary occurrence, so by PM* 14.21 we also have £'!C.

2. To show this in detail it is necessary to eliminate the description from (iii), which in full
is

@A)y ex=~(y e ()W) wez=wew))),
before C; is applied.
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