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First-Order Theories as

Many-Sorted Algebras

V. MANCA and A. SALIBRA*

introduction In this paper, by developing a study of first-order logic
through many-sorted algebras, we show that every first-order theory is a
particular algebra verifying axioms in equational form (see Section 2); therefore
we are able to apply Birkhoff s theorems concerning the varieties (see Section 1
and [7] and [8]) and to obtain the Henkin models algebraically, whence the
completeness theorem of first-order logic (see Section 3).

The many-sorted (or heterogeneous) algebras, systematized by Birkhoff
and Lipson (see [4] and [10]), find a natural application in investigating pro-
gramming languages: several approaches to the formal definition of semantics
for such languages can be developed by means of morphisms between many-
sorted algebras (see [2] and [6]).

This paper shows the analogous possibility of algebraizing linguistic
features of logic, thus yielding a unique framework for the formal analysis of
both programming and logical languages within universal algebra.

The analysis here developed is strongly related to those of [1], [2], [11],
and [12]. Moreover, an approach to the topic of present paper is elaborated in
the monographs [8] and [9]. Knowledge of these works is not necessary to
understand what follows, though it would better enable one to appreciate our
results.

This work was inspired by some lectures given by Professor E. de Giorgi in 1977-78 at
Scuola Normale Superiore of Pisa. Astute comments from Professors C. Traverso and
M. Forti of the University of Pisa helped to clarify the paper's focus. Finally, the authors
are grateful to Professor I. Nemeti of the Hungarian Academy of Sciences of Budapest,
whose corrections and suggestions improved the first draft of the paper immensely, and
who indicated how to relate the paper to a more general research field.
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1 Preliminaries A many-sorted algebra A = (D, F) consists of a family
D - {(AOIze/ of s e t s called domains of A and a set F of operations such that for
a l l / e F

/:Z)1X02X...XZ) i t->£>o

and Z)l5 D2> Dfa domains of/, and Z)o, codomain of/, are members of D.
Like classic (one-sorted) algebras, two many-sorted algebras (D, F) and

(D1, F') are said to be similar, or of the same type, iff: (a) there is a one-to-one
correspondence between D and D\ (b) there is a one-to-one correspondence
between F and F\ and (c) corresponding operations have corresponding
domains and codomains. The classic notions of morphism, congruence, sub-
algebra, quotient algebra, and direct product algebra are extendible to the
many-sorted algebras in a natural manner (see [ 4 ] , [ 6 ] , and [10]) . If a system

Σ of notations (many-sorted alphabet) is fixed, then the many-sorted algebra is

called a Σ-algebra; thus we have Σ-morphisms, Σ-congruences, and so on.
Let S be the class of all the many-sorted algebras of a given type. As in

the one-sorted case, one constructs the word algebra G(V) for S over a family
y - Wi\iei of generators. It is easy to verify that if/= ί//i/e/, where//:KZ ->D/
is a family of evaluations of V in the domains of a many-sorted algebra A e S,
then there is a unique morphism /: G( V) -+A which extends/.Furthermore, let-
ting C be a subclass of S, the following (congruence) relation p is defined on
G(V): EλpE2 iff f{Eγ) = f(E2), for any evaluation/and for any A e C. G(V)/p is
called the free algebra over V (generated by V) for C.

In general, it is not always the case that G(V)/p e C, but we have the
following results due to Birkhoff (see [7] and [8]).

Proposition 1 If C is closed under the formation of subalgebras and direct
product, then G(V)jp e C for any V.

Proposition 2 If C is a many-sorted variety (class of algebras defined by
axioms in equational form), then C is closed under the formation of sub-
algebras, epimorphic images, and direct products.

By the preceding propositions it follows trivially that

Proposition 3 If C is a variety, then G(V)/p e C for any V.

2 An algebraic metatheory for first-order theories A first-order theory is
essentially determined by a linguistic structure, i.e., formation rules, and by a
deductive structure, i.e., inference rules. In the usual first-order theories the
formation rules define a class of formulas by structural induction, starting from
individual constants and variables, by means of functors, predicates, and logical
operators (connectives and quantifiers). Finally, the deductive structure yields
the inductive closure of an initial class of formulas (axioms) by means of
inference rules as a class of theorems.

Now we express these ideas axiomatically in the theory of many-sorted
algebras. Consider the following types of sets:

T, a set of terms (let r, t, tu . . ., tk be variables on T)
F, a set of formulas (let E, £\, . . ., E^ be variables on F)
B, a set of Boolean-values,
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and the following types of operations:

predicates, whose elementsp are such that p:Tk ->F (k e N)
variables, w:T°^> T(where w is a generic variable)

Since T° - {h\h\φ-+T\ = {φ\, a variable yields a particular element which
identifies it.

functors, f:Tk-+T (/generic, k e N)
constants, c:Γ° -> T (c generic)
connectives, ~\F -» F, v:F X F -> F, where ~E stands for ~(E) and

Ex v E2 forv(Eίf E2)
quantifiers, VW:F -> F, one for every variable, where \lwE stands

for Vw(£)
Boolean functions, -:B-+B, +.BXB-+B, :BXB-+B, where -6, ί̂  + ftj,

&i &2 stand for - ( £ ) , +(Z?j, b2), m{bλt b2), respectively

deduction, δ.F^B.

The algebras described here are of course relative to a fixed first-order
language L determining an algebraic similarity type, therefore our algebraic
metatheory is better called L-metatheory. Clearly, given an algebra A of type
L, every (first-order) term or formula of L yields a term or a formula of A.
Thus, we can extend the usual notions of "free", "bound", "closed", and so on
to the algebras of type I in a natural way. Moreover, if Gι is the word algebra
of type L over the empty set of generators, then the sets T and F of Gι are
practically the first-order terms and formulas of L.

Finally, the crucial difference between this and Example 1 of [2] (see
p. 34 and pp. 63-65, Section 4 therein) is our function symbol δ which is new
here. See also the similarity type g4 (of algebras) on pp. 55-58 of [2] in connec-
tion with our sorts T and F (cf. also p. 42 of [2]).

Algebraic axioms for first-order theories

Δ o All the instantiations of the Boolean axioms with the Boolean elements
of initial algebra Gι
Δ x -8E = δ ~ £ for every closed formula E
Δ 2 δEί + δE2

 = δ(Eι v E2) for every two closed formulas Ex, E2

Δ 3 δE - δ\fwE for every formula E
Δ 4 δ\/wE < δE[t/w] for any term t free for w in E (where b < b' stands
for b + b' = br and E[t/w] is the formula obtained by putting the term t in
place of all the free occurrences ofw in E).

If Δ = Δ o U . . . U Δ4, Γ is a set of enuciates on L, and

Θ = \δ(E)=\\EeΓ

then θ is the translation of Γ within the L-metatheory. The intended meaning
of the above axioms is the following: When we put δE = 1 for any E e Γ, if B
is the Boolean algebra over the subsets of [M\M \= E, E e Γi (where t= is the
usual first-order satisfiability), and if we put

δE = \M\M \=E',E' e Γ U | £ l l

then B verifies the axioms AUΘ.
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3 Completeness theorem Here follows the announced proof of the com-
pleteness theorem (for classic proofs see [3], [5], and [13]). Let C(Δ U Θ) be
the class of all many-sorted algebras verifying the axioms Δ and θ. Of course
C(Δ U θ) is a variety and has free algebras by Proposition 3.

Recall that by Birkhoff s completeness theorem we have

ΔU<9 ^b1 = b2<=> AUΘ ^bι = b2

where \^ is the well-known equational calculus (see [7]).

Lemma 1 (AUΘ k δE = δE') =* Γ h E «-> E\ where E, Ef are any closed
formulas and h is any first-order logical calculus.

Proof: We state the following fact

(*) Δ U 0 ^ b1 = b2^Γ \-bί+-+b2

where for any Boolean element b of Gι, b is a closed formula obtained as
follows: if b is the Boolean term P(δEu . . ., δE^) for a polynomial form P in +
and -, then b is P'(πEx, . . ., TΓE^), where irEx, . . ., πE^ are the universal closures
of Ex, . . ., Ejζ respectively, and P' is the corresponding polynomial form of P
where v and ~ stand for + and -, respectively. Further, 1 is Eo v ~ £ 0 for a fixed
enunciate Eo. Of course a formal definition of b can easily be given by induc-
tion. The proposition (*) implies the enunciate of the lemma because if E is a
closed formula then δE = E. Now we prove (*) by induction on the length of
the equational proof.

For proofs of length zero we have the following cases:

Case a. Δ U θ k b = b
Case b. Δ U θ \~e δE = 1 (E e Γ)
Case c. A U θ \re δ ~E = -δE
Case d. Δ U Θ ^ h(Ex v E2) = &EX + δE2

Casee. A U θ I7 δ\/wE = δE
Casef AU θ \^ δ\fwE+δE[t/w]=δE[t/w]
Case g. A U 0 I7 Z?x = Z?2, where frj = 5 2 e Δo.

Cases a, b, c, d, and e are trivial.

Casef δVw£+ δE[t/w] = πVw£ v π£[ί/w] = π£ v π£[ί/w]; but it is clear that
hπEvπE[t/w] <-*π£[f/w].

Cα^e g. If bx - b2 is an instantiation of a Boolean axiom, then bλ <—> b2 is an
instantiation of the tautology corresponding to the given axiom.

Let us suppose that (*) holds for equational proofs of length n and let
bγ = b2 be obtained with an equational proof of length ft + 1; then for the last
step of the proof we have the following possibilities (expressed in the usual
form premisses/conclusion):

ΔUfl \~e b2=bx
L AU θ ^ bx = b2

.. ΔUfl ]rebι = b3 ΔUfl \re b3 = b2
u ' AUΘ \-b1 = b2
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A U θ \~e b\ = b\ Δ U θ \^ b" = b2
1 1 L Δ U 0 Veb\ + b'[ = b\ + b\

where bι = b'ι + b" and b2 = b'2+ b2

ΔUΘ \~e b\ = b'2
l v Δ U θ t -b\ = -b2

where bx = ~b\ and b2 = ~b\.

(Derivations by means of substitutions are not considered because in our case
we have axiom schemata rather than axioms with variables.) But it is trivial to
verify that each translation of the above rules (where any b is replaced by b and
+, -, = are replaced by v, ~, *—>, respectively) holds in the calculus h; further-
more, by induction hypothesis, the translations of the premisses are derived in
the calculus K Thus in all the cases we have Δ U θ V~ bx

 <—• b2.

Lemma 2 If T is consistent according to formal first-order deducibility,
then the axioms Δ U Θ are consistent according to the equational calculus.

Proof:_U by Δ U θ ^ 1 = 0 , then for the previous lemma we also have Γ h
0 <—•> 1, whence the thesis.

Lemma 3 Let C be a class of similar many-sorted algebras. If a free
algebra of generators V is in C, then it is the quotient algebra G{V)/p where
G(V) is the word algebra of generators V, and p is the least one within the
congruences R for which G(V)/R eC.(Rι<R2 iff xRxy =* xR2y.)

Proof: See [7] and [8].

Lemma 4 IfT is a consistent set of first-order enunciates, then in the free

algebra G(V)/p ofC(A U 0), we have 1 Φ 0.

Proof: By Lemma 2, Δ U θ ψ 1 = 0, therefore 1 Φ 0 holds in G(V)/p by
Lemma 3.

Lemma 5 IfT is a consistent set of first-order enunciates, then in C(Δ U θ)
there exists an algebra A where B = ! 0, 1!.

Proof: In the initial algebra Ao = Gjp of variety C(Δ Uθ), consider a con-
gruence ε determined by a Boolean morphism from the Boolean algebra B
of Ao in SO, lί, i.e., an ultrafilter in B. Clearly A = A0/ε has only the two
truth values and, being a quotient algebra, is an epimorphic image of Ao.
But C(Δ U θ) is a variety, so by Proposition 2, it is closed under formation of
epimorphic images, therefore A0/ε e C(Δ U θ).

We note that the previous lemma plays the role of a Lindenbaum comple-
tion.

Completeness Theorem // Γ is a consistent set of enunciates according to
first-order formal deducibility, then it has a model.

Proof: First we recall that if Γ is consistent, then the expansion Γ' obtained
by adding to Γ the Henkin axioms

~VwE-+~E[cE/w]
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for any formula E having only one free variable w is also consistent (see [13],
Lemma 4.2.3, p. 46). Now, using the algebra A = (Γ, F, B, . . .) obtained by
applying Lemma 5 to Γ', we define a model M = (D, cM . . ., fM . . ., pM . . .) of
Γ as follows: let D = \t e T I no variable w is in t} (the elements of Tare
strings; in fact, 71 is also domain of a word algebra); c^, . . . are the constants
of A; fM, . . . are the functors of A restricted to D; and pM, . . . are defined by

(•) pM(tu . . ., ft) = 1 iff δ(p(tu . . ., ft)) = 1 in A

(In the algebra^, δ(£) = 1 or δ(E) = 0 for every atomic enunciate £.)
Now we show that

(**) δ(E)= l=>Λf l=£

whence

£eΓ=>Af t=£

thus concluding the proof.

(**) is established by induction on the complexity of the formulas. (For
brevity, let w be the sequence wu . . ., wn of all free variables of E and let r
be a sequence rl9 . . ., rn on D (i.e., r e Z)w) and let E[r/w] be the formula
((E[rjw,])... [rn/wn]).)

Initial step:

δp(tί . . . tk) = 1 =» δVwp(^ . . . ft) = 1, by Δ
=» δp(^ . . . ft)[r/w] = 1 for every r e Dn, by Δ
=*M \=p(ti. . . tk).

Let us suppose that (**) holds for formulas E, Eλ, E2 of a given complexity; we
now prove (**) for

Case 1. -E
Case 2. Eί v E2

Case 3. \/w0E.

In Case 1 we have four possibilities:

a. E = p(tλ . . . tk)
b. E = ~E'
c. E = EfyE"
d. E = \fw0E

f.

We show that (**) holds in each of them:

a. δ - p ί ί j . . . ft) = 1 =>δ~p(t1 . . . ft) [r/iv] = 1 for every r e Dn, by Δ
=* δp(ί2 . . . ft) [r/w] = 0 for every r e Dn, by Δ
=>M Wp(tχ . . . ft) [r/w] for every r e i ) " by'(*)
=>M t~p(tλ. . . ft)

b. δ ~ ~ £ ' = 1 => δ^^.E'fr/w] = 1 for every r e Dn, by Δ
=> δ£"'[r/w] = 1 for every r e Dn, by Δ
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=>M \=E'[r/w] for every r e Dn, by induction hypothesis
=* M t£ ~E' [r/w] for every r e Dn

=>M 1= ~~E'[r/w] for every r e Dn

=>M l=Vw — E'

c. δ ~ ( £ ' v £ " ) = 1 =*δ~(E'v E") [r/w])= 1 for every r e Dn, by Δ
=>δ~(E'[r/w] v E"[r/w])= 1 for every r e Dn, by Δ
=>-(δEr[r/w] + 8E"[r/w])= 1 for every r e Dn, by Δ
=>δ~E'[r/w] = 1 andδ~£"[r/w] = 1 by Δ
=»M 1= ~£"[r/w] and Af 1= ~£"[r/w], by induction

hypothesis
=»7kf I=~(JE'V/VV] v£"[r/w]), by induction hypothesis
=̂ M t= (~Er v £") [r/w], by induction hypothesis
^M \=Vw~(E'vE")
=*M ί=~(£" M E")

d. δ~\/w0E' = 1 =» δ(-£:'[r/w]) [C'/WQ] =1 for every r e D", by Δ and Henkin
axiom, where c is the Henkin constant of Ef

=*M \=(~E'[r/w]) [c'/w0] by induction hypothesis
=>M t=~Vwo£".

In Cases 2 and 3 we have analogous deductions:

2. δ(£Ί v £2) = 1 => δ(£Ί[r/w] v E2[r/w]) = 1 for every r e Dn, by Δ
=* δ^Jr/w] + δ£2[r/w] = 1 for every r e £>", by Δ
=» δE^r/w] = 1 or δ£I

2[^/w] = 1 for every r e DM, by Lemma 5
=>M ^E^r/w] ovM \=E2[r/w] for every r e Dn, by induction

hypothesis
=*M t=Ex[r/w] v E2[r/w] for every r e Dn

=>M (= Vw(£Ί v £ 2)
=*M l=£Ίv£ 2

3. δVwo£ = 1 =» δ(£[r/w]) [ro/wo] = 1 for every r e Dn, r0 e /), by Δ
=>M t= CEV/w]) [ro/wo], by induction hypothesis
=>M NVwo£.

The given algebraic construction of the Henkin models suggests naturally a
first-order logical calculus K" in equational form defined by

ΓlLE*=*AUΘUH^δE=\

where

i. E is a first-order enunciate in the language L of Γ
ii. θ and Δ are as in Section 2, but in the language L# obtained by adding

to L the Henkin constants
iii. H= \δE\Ef is a Henkin axiom for Γl.

Thus, we have the following

Corollary Γ ^E^Γ \~E

for any Hilbert-type first-order logical calculus K
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Proof: The implication =» follows by the proof of previous Lemma 1. For the

converse, it is convenient to consider the logical calculus \~ having as inference

rules modus ponens and generalization and as axioms all tautologies and the

schemata

Ex = MxA -+A[t/x] (where t is any term free forx in A)

E2 = \fχ(A -* B) -> (A -> MxB) (where all occurrences of x in A are bound)

Γ Yi E1 because δEι = 1 is really Axiom Δ4, and Γ h? E2 because for any

constant c by Δ 4 it follows that

δ(\/x(A -*B)->(A-> MxB)) > δ{{A -+B[c/x]) -> (A -+B[c/x])),

by Δ o we have

δ((A -»B[c/x]) -> (A ->B[c/x])) = 1,

therefore δE2 = 1.

Further, the following deductions (where some obvious steps are omitted)

show that modus ponens and generalization are derived rules in our calculus K\

(For brevity we suppose that A and B have only one free variable w.)

1. δ(A-*B)= 1

δπQ4 -»£)= 1 5Λ = 1

b(A -+B)[CB/W] = 1 δπ̂ 4 = 1 c# is the Henkin constant

δ(~A'vB')= 1 δi4[c^/w] = 1 associated with B

-δA' + δBf= 1 δA'=l Af=A[cB/w]

(-δy4;) l + δ £ ' = 1 B'=B[cB/w]

(-δA') δA' + δBf = 1

0 + δff' = 1

δB'= 1

δ ~ 5 ' = 0 δ ~πi? < δ ~B' (Henkin Axiom)

δ~πB = 0
δ ^ = 1

2. δA = 1 δΛ = δVwyl (Axiom Δ3)
δVw l̂ = 1
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