289

Notre Dame Journal of Formal Logic
Volume 25, Number 4, October 1984

Do We Need Quantification?

PHILIP HUGLY and CHARLES SAYWARD*

The standard response is illustrated by Lemmon’s claim that

...if all objects in a given universe had names...and there were only
finitely many of them, then we could always replace a universal proposi-
tion about that universe by a complex proposition. It is because these
two requirements are not always met that we need universal quantification.
[2], p. 105

We are partly in agreement with Lemmon and partly in disagreement. From
the point of view of syntax and semantics we can replace a universal proposi-
tion about any universe (finite or infinite, countable or uncountable) by a
complex proposition (= sentence built up from atomic sentences and the con-
nectives). But from the point of view of communication such a replacement is
not possible if the universe is infinite.

1 Skolem functions Less its quantifiers, the devices for sentence forma-
tion available in a standard first-order language are its predicates, simple
names and functors, and connectives for sentential composition. Lemmon
asks whether quantifications are generally dispensable in favor of sentences
built up with just these latter devices. He answers, no.

The eliminability of quantification through Skolem functions appears to
establish the opposite. We here sketch the situation.

As a model M of a standard first-order language L we take the structures
(D, v) for nonempty domain D and valuation function v defined in standard
fashion for variables, predicates, simple names and functors, if any, and for-

*We wish to thank an anonymous referee of this journal for a number of useful
observations on several points on an earlier draft of this paper. In particular, we are
indebted to that referee for bringing to our attention the apparent relevance of Skolem
functions to Lemmon’s dispensability question.

Received September 26, 1983; revised March 26, 1984



290 PHILIP HUGLY and CHARLES SAYWARD

mulas built up from these sorts of symbols plus symbols for composition and
quantification.

Now suppose v is defined for ¢(«,&) in which, for n = 0, exactly the
distinct variables @ = «y, . . ., a, and « have free occurrences and the not nec-
essarily distinct elements b,,..., b, are each in D. We then define a subset
D* of D relativized to b,,...,b,, n=0, and ¢(c,&):

(1) D*={a:a € D and for some v’, which differs at most from v in assign-
ing by to ay,..., b, to oy and a to a, v'(¢) = 1}.

Let relation R well-order D. We now define a Skolem function for de-
gree n + 1 formula ¢ (o, @):

{«by,...,bp),a): by,...,b,€D and a =the R-least element of
D™ if that set is nonempty; otherwise @ = the R-least element of D}.

{af {by,...,b,} is null, i.e., if n =0, we take a alone as the Skolem
function.)

A language L is a Skolem extension of a language L just in case it pro-
vides, in some form, for the expression of all of the Skolem functions for
each of its degree n+ 1 formulas. The models for L° are, for each model
M = (D,v) of L, M®=(D,v° R) for each well-ordering R of D and v° de-
fined also for the symbols expressing the Skolem functions. We call L? a
Skolem language.

The standard method of expressing Skolem functions is through functors
of the form f,. v° assigns to each fs the Skolem function for its ¢(o,&). It
may be shown that the following condition is satisfied for all quantifier-free
degree n + 1 formulas of each Skolem language L°:

(2) For each model M° of L° and each v* which differs at most from
v? in assigning b, € D to ay,...,b, € D to a,, v*(¢(f,(a),a)) =
v*(Cad(a,&)).

From this it easily follows that each sentence of L° is equivalent to some
quantifier-free sentence of L°. So, quantification is directly dispensable in
each Skolem language, and since each L has (conservative) Skolem exten-
sions, we can say that quantification is indirectly dispensable in every non-
Skolem language as well.

Does this show that Lemmon was wrong? Note that Skolem dispens-
ability is not dispensability in favor of just predicates, simple names and
functors, and connectives. The Skolem languages use the f symbol and it is
not a predicate, a simple name or functor, or a connective. So, Skolem dis-
pensability does not show that Lemmon’s claim was incorrect.

But does such dispensability perhaps show that Lemmon’s claim was
uninteresting? After all, the basic question is whether quantifications are dis-
pensable in favor of sentences built up from predicates, terms, and connec-
tives. Skolem languages satisfy this dispensability criterion. They merely
provide a new diversity of terms enabling dispensability.

Certainly, if a reply on behalf of Lemmon here takes the form of merely



DO WE NEED QUANTIFICATION? 291

pointing out that his reduction base did not include the Skolem symbol, then
Lemmon’s claim is maintained by an arbitrary stipulation which does render
it uninteresting.

We shall try to show that what distinguishes operations with quantifier
symbols from the remaining operations in a first-order language equally and
on the same grounds thus distinguishes operations with the Skolem symbol.

What is central to quantification is that it is an operation which so forms
a formula ¢ from a formula ¢ that

(i) there are fewer variables with free occurrences in y than there are in ¢,
(ii) ¢ occurs in ¥, and
(iii) the valuation of ¢ is a function of a range of valuations of ¢.

We say that the result of replacing the free occurrences of « in ¢(«a, &)
by occurrences of the Skolem term f;(&) is an «-skolemization of ¢. (Note
that principle (2) above concerns precisely the dispensability of quantification
in favor of skolemization as just defined.)

Now consider the operation of skolemization. Note that formula ¢(a, &)
has n+ 1 free variables. Its a-skolemization, ¢(f,(&),&), has just n free
variables (e.g., ‘Gfgxy(»)y’ has 1 whereas ‘Gxy’ has 2 free variables). So,
skolemization satisfies condition (i). Further, ¢ occurs in ¢(fy(@),a) and
v(o(fy(a),a)) is a function of v(fy(&)) which is a function of a range of
valuations of ¢ (see (1) above). So skolemization also satisfies conditions (ii)
and (iii) above.

We shall call any operation which so forms a formula  from a formula
¢ as to satisfy conditions (i)-(iii) above a generalization-operator.

To see what Lemmon was really after in considering whether guantifica-
tion is eliminable one must see what kind of operation it is; for Lemmon was
concerned with whether operations of that kind are eliminable. Obviously to
eliminate quantification in favor of another operation of the same kind is not
to show the eliminability of what L.emmon concluded was ineliminable. Seen
in this light, and given our account of the kind of operation quantification is,
we can more fully express Lemmon’s question as follows:

Is it generally possible to dispense with generalization operations in
favor of the remaining devices of first-order languages?

The facts about Skolem functions sketched above plainly do not serve to
counter Lemmon’s negative answer to this question. !

2 The dispensability function On our interpretation Lemmon’s question
is whether it is generally possible to replace generalizations by complex sen-
tences free of generalization devices. We now focus that question on first-
order languages with just quantifiers as generalization devices, and define the
general replaceability notion for those languages using the more specific ter-
minology of dispensability.

We here construe a first-order language L as a countable set of names
and predicates, not void of the latter. Formulas of L are built up from predi-



292 PHILIP HUGLY and CHARLES SAYWARD

cates, and perhaps names, by use of variables, connectives, and quantifier
symbols. (For simplicity, we omit functors and any more than two connec-
tives and a simple quantifier symbol ‘L’.) An interpreted language L is a pair
{L,M) where L is a first-order language and M is a model of L. By a model
M of L we mean a pair {(D,v) where D is a nonempty domain set and v is a
valuation function defined, relative to D, for the individual symbols, predi-
cates, and formulas of L. M is complete if v maps the names onto D. M is
quantificationally complete just in case for every variable « and formula ¢ of

L, v(Eag) = v<¢%) for some name 3 of L. <¢>% is the result of replacing
each free occurrence of « in ¢ by an individual constant 8.

The dispensability of quantification in an interpreted language L will
essentially consist in there being a certain effective mapping of the quantifica-
tions into the quantifier-free sentences of L. Let m be some such mapping.
Roughly expressed, the existence of m establishes the dispensability of quan-
tification in L if, for each quantification ¢ of L, ¢ and m(¢) have the same
truth-conditions in L.

But what does having the same truth-conditions come to? Sameness
of truth-conditions in L cannot be understood in terms of sameness of
truth-value in L, since then all sentences true in L would have the same
truth-condition in L. Nor can we appropriately interpret sameness of truth-
conditions in L as logical equivalence. This can be seen from the following
example. Let (D,v) be a complete model of L, and D be a unit set. Then
quantification is clearly dispensable in L = (L, M), and in particular by virtue

of a function m such that, e.g., m(Xa¢) =¢>% for each ¢ = Y« for unary

predicate ¢ of L, variable o, and some individual constant 8 of L. Yet no
quantification is logically equivalent to an atomic sentence.

Call a function dis a dispensability function if and only if: (1) it is an
effective mapping of the sentences of L into the quantifier-free sentences of L
and (2) for any quantificationally complete model M = (D, v) of L and sen-
tence ¢ of L, v(¢) = v(dis(¢)). If M is quantificationally complete for L,
then the truth values of all sentences of L are determined by the truth values
of all the atomic sentences of L. So we shall say: Quantification in L =
(L,M) is directly dispensable just in case there is a dispensability function
from the sentences of L into the quantifier-free sentences of L and M is quan-
tificationally complete for L. Quantification might be dispensable without
being directly dispensable. Intuitively, quantification is dispensable over any
finite domain. However, it may not be directly dispensable since the model
may not be quantificationally complete. In each such case, however, there is a
variant model which is quantificationally complete. Such a variant model
results by adding names to L and extending the original model to these new
names.

Accordingly, we say quantification is dispensable in (L, M) just in case it
is directly dispensable in (L, M) or it is directly dispensable in (L*, M*) where
L* is a name extension of L, M™ agrees with M in assignments to elements of
L, and M* is quantificationally complete for L*.



DO WE NEED QUANTIFICATION? 293

3 Infinite sentences Quine says this about the dispensability of quantifi-
cation:

If all the objects are named and finite in number, then quantification is of
course dispensable in favor of alternation, and can be viewed as mere ab-
breviation. If the objects are infinite in number, on the other hand, the
expansion would require an infinitely long alternation. [3], p. 91

But then Quine adds:

[Earlier] we arrived at a view of expressions as finite sequences, in a mathe-
matical sense; and the further step to infinite sequences is in no way auda-
cious. It would, however, be distinctly a departure from all writings on
grammar and most writings on logic, including this book, to invoke in-
finite expressions. [3], p. 91

If quantification is dispensable in L = (L, M) then, for each quantifica-
tion ¢ of L, dis(¢) must exist. If the domain set of the model is infinite,
dis(¢) must be an infinite sentence, either an infinite alternation or infinite
conjunction.

Now is it just a matter of custom that infinite expressions are not
invoked? If this is all there is to it, then quantification over an infinite
domain is at least sometimes dispensable. And there seems to be no more to
it than that. For if expressions are sequences, then there is nothing wrong
with construing some infinite sequences as expressions. Indeed, the situation
almost trivially yields, e.g., infinite alternations. A standard alternation of L
in Polish notation is a three-ary sequence with alternation symbol as its first
coordinate and sentences of L as its second and third coordinates. The defini-
tion for an infinite alternation of L is then just this: an infinite sequence with
an alternation sign as its first coordinate and for each n'" coordinate, n > 1,
a sentence of L as that coordinate. Given the existence of an alternation sign
and at least one sentence of L one can use set theory to prove the existence of
an infinite alternation of L. Given infinitely many sentences of L one can
prove the existence of uncountably many infinite alternations.

Viewing expressions as sequences we might define the wffs of a first-
order language in this way:

1. (Y,w,...,w,y is an atomic wff of L if y is an n-ary predicate letter of
L and each w; is a variable or a name of L.

Every atomic wff of L is a finite wff of L.

(N, ¢) and (‘A’,¢,y¥) are finite wifs of L if ¢ and  are finite wffs of L.
(Y, a,0) is a finite wff of L if « is a variable and ¢ is a finite wff of L.
Nothing else is a finite wff of L.

Every finite wff of L is a wff of L.

(‘N’¢) and {‘A’¢,y) are wffs of L if ¢ and y are.

(A, b1, ..y Op,...) 1s @ WIf of L if n=2 and each ¢; is a quantifier-
free wff of L.

9. Nothing else is a wff of L.

e A a2

A sentence of L is, as usual, a closed wff. It is a set-theoretical consequence
of this definition that L has uncountably many sentences.



294 PHILIP HUGLY and CHARLES SAYWARD

4 An argument that quantification is always dispensable If it is simply a
custom to restrict expressions to finite sequences, and this custom is all that
stands in the way of the existence of the function dis in the case where the
domain set is infinite, then one might well ask: what happens if this restric-
tion is lifted? Our answer is that, for any standard first-order language L and
model M of L, quantification is dispensable in (L,M).

Our argument is based on a result established elsewhere ([1], p. 361):

*) For every language L and model (D, v) of L there is a set A of names
not in L and a v* which is an extension of v to A such that: (1) (D, v*)
is a model of L* = LUA and for every sentence ¢ of L, v(¢) = v*(¢),
and (2) for every quantification sentence Loy of L*, v*(Zay) =

v*(x/z%) for some name (3 of L*.

Let (L, M) be any interpreted language. Then there is a name extension of L*
of L and an assignment of elements of the domain set to these new names
(yielding M™) such that the truth-value of every sentence of L* is determined
by the truth-value of the atomic sentences of L*. In other words, M* is quan-
tificationally complete for L*. Both models agree in their assignments to the
elements of L; so each sentence of L has the same truth value in the two
models.

Suppose, now, M is quantificationally complete for L. Among the sen-

tences of L are uncountably many infinite alternations each built up from
atomic sentences of L and the connectives ‘N’ and ‘A’. So there exists the
requisite dispensability function. If M is not quantificationally complete for L
there is, as we have just seen, a variant model M* which agrees with M with
respect to elements of L and which is quantificationally complete for a name
extension L* of L. Quantification is directly dispensable in either (L, M) or
(L*,M™). So, for any interpreted language L, quantification is dispensable in
L.
5 Why view expressions as sequences? The previous argument relies on
two things: (*), which is just a formal fact, and Quine’s idea that expressions
are sequences in the mathematical sense, which is not any kind of fact at all,
but, rather, a convention. Why adopt this convention?

The expressions of a first-order language L comprise a set BU C, where
B is the set of basic characters of the language and C is a set of strings from
B. For example, for some L we might have B = {‘T’,‘4’,‘N’,‘@’,‘x’,‘F’,‘"’}.
The rest of the expressions of L, grammatical and otherwise, will comprise
some set C of strings from B.

What are these basic characters and strings? What is the letter ‘x’, for
example?

Much reasoning about numbers proceeds without in any way determin-
ing what is the number 0, the number 1, and so on. Equally, much mathemat-
ical research into order proceeds without in any way determining what is an
ordered pair. In an entirely similar way much reasoning about expressions
proceeds, without determining what is the letter ‘x’, what is the word ‘horse’,
and so on.



DO WE NEED QUANTIFICATION? 295

At certain levels of theory, however, we need to fix answers to these
questions about numbers and ordered pairs. Here there is great latitude.
Numbers, ordered pairs, etc., can be variously construed. In a good sense, we
can say that the notion of a number is a relative notion. For example, relative
to one system 2 is {{A}}. Relative to another 2 is {A{A}}.

There is similar latitude in fixing the denotation of ‘expression’. For
example, where B is a finite set, membering seven basic characters, these
characters could be identified with the numerals ‘0’ through ‘6’ or with seven
planets of our solar system. Now at a certain level of theory we enunciate
rules which generate infinitely many expressions. (For example, ‘a negation of
a sentence is a sentence’). So the set C, which consists of strings from B, is an
infinite set. So, to be assured of sufficiently many strings we must regard
them as abstract objects, for there is no law of physics which says of some set
of concrete objects that it is infinite.

But among abstract objects we are at considerable liberty to choose
which are to be strings. Quine’s choice—strings are sequences—is natural
enough, even if it is not the only one which could meet the requirements
imposed by syntax and semantics.

Now we do not have to survey every conceivable alternative to Quine’s
choice in order to answer our question: Do we need quantification? This
would not be possible in any case. More to the point, since the notion of an
expression is a relative notion, the question (“Do we need quantification?”) is
really misstated. It should read: Is there a notion of an expression, suitable
for syntax and semantics, relative to which quantification is always
dispensable? Our answer has been that there is.

6 Tokening systems Lemmon gives the following as a reason for thinking
quantification over an infinite domain is not replaceable:

As we need the universal quantifier because we cannot write down an ‘in-
finite conjunction’, so we need the existential quantifier because we cannot
write down an ‘infinite disjunction’. [2], p. 111

A natural reaction to this claim is this: “Well, there are finite expressions
which are also unwritable. Just consider:

the sentence of English beginning with ‘John is’ followed by
1000!%%0 occurrences of ‘the father of’ and ending with ‘someone’.

The sentence just described has never been written. Nor can it be. In the light
of this it is hard to see the point of Lemmon’s claim.”

This natural reaction overlooks the distinction between expressions
which are unwritable because of some contingent, finite upper bound on our
capacity to produce and process tokens, or the availability of material there-
unto, and the unwritability of infinite expressions for which no finite capaci-
ties and materials, possible or actual, would suffice. Writability in Lemmon’s
sense clearly means writability in virtue of some possible, though always
finite, set of capacities and materials.

We have seen that, for any quantification La¢, there exists an infinite
disjunction dis(Za¢). Lemmon does not deny this. He denies that dis(Za¢) is



296 PHILIP HUGLY and CHARLES SAYWARD

writable. And, for this reason, he asserts that La¢ is not replaceable by
dis(Lagd).

While it is true that from the point of view of syntax and semantics
quantification is always dispensable, there seems something intuitively right
about what Lemmon says. Does anything illuminating lie behind the
intuition?

Writing an expression is one way of tokening it. Rules for writing
expressions comprise a tokening system for a language. In practice, these
rules are confused with syntactical rules. For example, instead of

(‘N’,¢) is a wif if ¢ is a wff,
we find
'No' is a wif if ¢ is a wff
which says
the result of writing ‘N’ and then ¢ is a wff if ¢ is a wff.

Now the result of writing a wff is a perceptible particular —a concrete object.
A wff is a string of basic characters. As such it must be construed as an
abstract object since there are infinitely many strings.

A tokening system from a set B of basic characters is a pair (BU C;, ;)
where C; is some set of strings from B and ¢; is a function with domain BU C;
and whose range is a set of tokening instructions, i.e., instructions for con-
structing perceptible particulars. We regularly write {B;,¢;) for (BU C;, ;).

As an example let B= {‘T’,‘N’,‘A’,*”,‘F’,‘a’,‘x’} and let C, be the set
of all finite strings from B. Then a tokening system (B, #;) for BU C, = B,
can be determined by a finite set of general rules from which a specific token-
ing instruction for each x € B, can be derived, as follows. Let R1-R7 be rules
telling us how to token each element of B. Then we have

RS To token (si,...,s,) € C; first token {s;,...,s,—;> and then follow
it a small but discernible distance to the right by the result of to-
kening s,.

Being a token of is a four-place relation relating perceptible particular,
expression, language, and tokening system. Accordingly, Lemmon’s claim
that infinite alternations are unwritable comes to this: If an infinite alterna-
tion belongs to a set of strings, no tokening system exists for that set.

Now what has this claim got to do with the dispensability of quantifica-
tion? Well, consider this restraint on what is to count as an expression of
first-order language L.

() No string of basic characters of L is an expression of L unless it is
tokenable.

We have already seen that semantic and syntactic theory best construe strings
as abstract objects. But, from the point of view of communication, expres-
sions are not merely that. If an expression is something which a speaker can
communicate to a hearer, then no abstract object is an expression except as it



DO WE NEED QUANTIFICATION? 297

is an element of a system connected with some method by which the elements
of that system can be, e.g., written down.

So Lemmon’s point can perhaps be put this way: If the domain is in-
finite, then, while dis(Xa¢) might be constructible as a set-theoretic object, it
is not tokenable. Consequently, it could not replace Za¢ for the purposes of
communication. Briefly, quantification is not always replaceable by an
expression built up solely from atomic sentences and connectives.

Is this right, even accepting («)? Let C, be C; plus all sentences dis(¢),
where ¢ is a finite sentence belonging to C,. Among the sentences dis(¢) are
infinite strings. (If ¢ is quantifier-free just set dis(¢) = ¢.) Now pretty clearly
there is a tokening system for BU C, = B,:

(BZ ’ t2 > .
Just let ¢, be determined by R1-R8 plus this additional rule:

R9 For each finite sentence ¢ € C; where ¢ # dis(¢), token dis(¢) by
overbarring the result of tokening ¢.

Thus, this series of marks
YxFx
tokens ‘TxFx’ (=(‘L’,‘x’,‘F’,‘x’)) and this series of marks:

YxFx

tokens dis(‘ExFx’), an infinite alternation.
This makes it appear that Lemmon is wrong. Infinite alternations are
writable.

7 A possible reply Lemmon might have made the following reply to this
argument:

“Your argument is based on your notion of a tokening system, which is
defective. For consider that all you require is a finite set of rules which associ-
ate with each element of a set of expressions a unique instruction for con-
structing a unique concrete particular. Well, then, let X be any countable set
of expressions and e any enumeration of its elements. Then consider:

X) For each x € X token x by constructing a physical line segment e(x)
cm long.

This rule yields a tokening system by your definition. But do we want to say a
physical line segment tokens an expression? Surely not. A hearer cannot tell
what element of X is tokened just by looking at a line, say, 8 cm long.

“A tokening instruction does not merely correlate an expression with a
possible concrete object. The object, in order to be a token, must render the
structure of the expression perceptible.

“Returning to your overbar example, the series of marks

**) YxFx
no more tokens an infinite disjunction than does a physical line segment

token an element of X. In neither case does the particular constructed percep-
tualize the structure of the expression it is supposed to token.”



298 PHILIP HUGLY and CHARLES SAYWARD

We are not persuaded. For suppose a speaker and hearer share certain
knowledge. They know which expressions are in X; they know the function e;
and they know rule (X). Then communication between them can take place
by producing and processing line segments. The case is similar with our over-
bar example. Given a knowledge of the elements of B,, a knowledge of
R1-R9, a knowledge of dis, communication can take place by means of such
items as (**) above.

It is true that communication would not proceed very easily using over-
bars or line segments. But it could proceed. That is all that is relevant here.

8 A further constraint on infinite expressions Earlier we made the point
that just as we are free to variously construe what gets quantified over when
we quantify over numbers so we are free to variously construe what gets com-
municated when we communicate expressions. We normally take ‘153’ as a fi-
nite string of three basic characters, ‘1°, ‘5°, and ‘3’. But it could also be
taken as an infinite string, e.g.,

<. ces ‘O’, ‘0” ‘1” 657, ‘3)>'
Compare these two tokening systems:

System 1. Here the set of basic characters is A = {‘0’,..., ‘9’}. The set
of strings, Cj, is the set of all sequences (sy,...,s,) where s; # ‘0’ and
si(0< i< n) is a basic character. The function #; is determined by this
set of rules: First, there are ten rules saying how to token each basic
character. Then there is the usual recursive rule:

To token {sy,...,s,) € C; first token (s;,...,s,_;» and follow
it a small but discernible distance to the right by the result of
tokening s,.

System 2. The set of basic characters is the same. The set of strings, Cy,
is the set of all sequences (..., ‘0’,0’,s;,...,s,) with the same con-
straints on s; and each s;. The tokening rules are the same except that
‘To token (...0%,‘0’,sy,...,8,) € C4 replaces ‘To token {s;,...,s,) E
C3’ in the statement of the recursive rule.

Relative to system 1 the series of marks
153

tokens a finite string; relative to system 2 it tokens an infinite string.

While the two systems (A3,#3) and (A4, #;) are distinct, the distinction
makes no difference. Isomorpohism is a technical concept that captures this
idea. Two tokening systems {B;, ;) and (B;,;) are isomorphic if and only if
there is a 1-1 function f from the union of B; and the range of ¢; onto the
union of B; and the range of ¢; such that

ti(x) =y iff 4(f(x)) =f(»).

Now note that there is such a function from A;U the range of #; onto
A4 U the range of #4. So the two tokening systems are isomorphic.



DO WE NEED QUANTIFICATION? 299

Here, then, is the situation. The same tokening capacity by which
speakers and hearers process such marks as

153

can be formally represented in infinitely many ways. Relative to some of these
representations an infinite string is tokened; relative to others a finite string is
tokened. All of these representations are isomorphic to one in which each
string from {‘0’. .., ‘9’} is finite. This fits with the solid intuition that ‘153’ is
a finite expression.

These considerations motivate the following constraint on what is to
count as an infinite expression of a first-order language L. Let B be the set of
basic characters of L and C; a set of strings from B. Then:

® A string s € C; is a finite expression of L iff s is a finite string, or
else, for any tokening system {B;,¢;) there is an isomorphic tokening
system {Bj;,;) in which each s € C; is a finite string.

An infinite string s € C; is an infinite expression just in case there is a token-
ing system {B;, ;) which is isomorphic to no tokening system {B;, ;) where
each string s € C; is finite.

Returning now to our overbar example, recall these sets:

B = the set of basic characters of L

C, = the set of all finite strings from B

C,=C U {x:x=dis(¢) where ¢ #dis(¢) and ¢ is a finite sentence
of L}

t, =the function determined by R1-R8

t, =the function determined by R1-R9.

Now dis(‘CxFx’) is an infinite disjunction belonging to C,. It is also token-
able since (B,,?,) is a tokening system. But from these two facts it does not
follow that dis(‘ExFx’) is an infinite expression of L. For the tokening system
(B,, ;) is isomorphic to the tokening system (B, ?;) and each string belong-
ing to Cj is finite.

9 Is there a tokening system for an uncountable set? Reflecting on what
Lemmon’s claim has to do with the general issue of whether quantification is
always dispensable, we have been forced to get a clearer idea of when an ex-
pression is infinite. We have seen that whether a string s belonging to a set C;
of strings of basic characters B of L is an infinite expression of L depends not
so much upon s itself as it does upon B; = BU C;. In particular, B; has to be
uncountable. This is true because of the following set-theoretic truth:

If B; is a countable set of basic characters of L and strings of basic
characters of L, and (B;,¢;) is a tokening system, then there exists a set
C; of finite strings from B and a tokening system (B;,¢;) which is iso-
morphic to (B;, ;).

Consequently, if an infinite string is to be an infinite expression of L it has to
belong to an uncountable set C of strings. And, of course, there has to be a
tokening system for that set C.



300 PHILIP HUGLY and CHARLES SAYWARD

Now we argue:
There is no tokening system for an uncountable set.

We do not deny the existence of a pair (BU C, ) where BU C is uncounta-
ble. We deny that such a pair is a tokening system. While every tokening sys-
tem is a pair of a certain sort, the reverse is not always true.

All reasoning that is to be communicated requires the repetition of sym-
bols. This in turn requires the multiple tokening of the same symbol. For ex-
ample, communication of a modus ponens inference requires each of two
sentences to be twice tokened. So for (BU C,¢) to be a tokening system each
instruction #(x) must be such that it is possible to determine if two concrete
particulars token the same element x&€ BU C.

The essentials of the situation can be most easily seen by considering the
case in which each specific instruction #(x) is derived from a single general
rule. Such a rule correlates a variable property which discriminates the ele-
ments of BU C with a variable perceptual property. If BU C is denumerable
and is enumerated by e, this rule would be an example:

To token an element x € BU C draw a line segment e(x) cm long.

The variable property differentiating the elements of B U C is the property of
being the i*" element of B U C relative to e. The variable perceptual property
is being a (physical) line segment i cm long.

Suppose now B U C is uncountable. Then the variable property discrimi-
nating the elements of BU C will be continuous. The variable perceptual
property will be a continuum property. This means that though we could ef-
fectively decide in certain cases that a pair of objects token different elements
of BU C, we could in no case determine that a pair of objects token the same
element of BU C. And this would not be because of lack of sensitivity in our
measuring instruments. No increase in the sensitivity of our measuring instru-
ments would resolve the problem.

An example will help. Suppose C is the set of all infinite decimals from
B, which consists of the ten digets plus the decimal point. Then let # be deter-
mined by this rule:

To token (s;,...) construct a line segment » cm long where r is the real
number represented by {(s;,...)

Now suppose the difference between lengths # and m is the least difference we
can detect (by whatever instruments we have). There will be uncountably
many lengths between n and m. Thus, given that our best instruments cannot
detect a difference in length between some pair of line segments, it remains
possible that they are different in length (only undetectably so). And, since
there are uncountably many lengths between any two lengths, no increase in
the sensitivity of our measuring instruments can resolve the problem. So while
we could decide in certain cases that a pair of line segments are of different
lengths and hence token different infinite decimals, we could in no case deter-
mine that a pair of line segments are of the same length and hence token the
same infinite decimal. For this reason there is no tokening system for the set
of infinite decimals.



DO WE NEED QUANTIFICATION? 301

It would seem that any tokening system for uncountably many syntactic
items would need to exploit some continuously variable property or set of
such properties so that the “indistinguishability problem” would arise for each
such system. It thus appears that there is not only no tokening system for the
set of infinite decimals, there is also no tokening system for any uncountable
set of syntactic items.

10 Concluding remarks Consider any interpreted language L = (L, M).
Let B be the set of basic characters of L and C be the set of all strings of these
basic characters. Suppose M is quantificationally complete for L. Then there
exists a 1-1 function dis from the L-sentences of C to the quantifier-free L-
sentences of C such that ¢ is true in M if and only if dis(¢) is true in M. In
this case quantification is directly dispensable in L.

Suppose M is not quantificationally complete for M. Then there exists
an interpreted language L* = (L*, M) such that

(i) L*is a name extension of L
(ii) M™* agrees with M with respect to L
(iii) M* is quantificationally complete for L*.

Also there exists a 1-1 function dis from the sentences of L* onto the
quantifier-free sentences of L* such that, for all sentences ¢ of L*, ¢ is true
in M™* if and only if dis(¢) is true in M*. In this case quantification is directly
dispensable in L*.

So, from the point of view of syntax and semantics, quantification is dis-
pensable in L, for any interpreted language L. This observation is worth
noting because it is frequently supposed, in philosophical discussions at any
rate, that syntactic and semantic factors are what secure the need for quantifi-
cation in connection with infinite domains.

Despite this, it turns out that Lemmon is right about dispensability,
though for a reason he only hints at in his reference to writability. Following
up on this reference we have seen that the bar to dispensing with quantifica-
tion in connection with infinite domains pertains not to syntactical or seman-
tical conditions, but to conditions of communication, for which we have
supplied the outlines of a formal representation in our notion of a tokening
system.

NOTE

1. To make even plainer the clearly evident kindredness of the use of the Skolem
symbol to that of quantification symbols, note that an equivalent way of exploiting
Skolem functions is to give f the role of a variable-binding term forming operator.
The formation rule is this: for each degree n =1 formula ¢ in which variable « is
free, fa¢ is a degree n — 1 term. Each fa¢ is called a Skolem term for ¢ relative to
a. Note that o is bound in fa¢ and bound by fa. There is an exact syntactic
parallel to the usual use of the iota symbol “’. The differences are valuational. fa¢
is so evaluated as to express the relevant Skolem function (but not, as in the case
of the Skolem functors, to denote them). The definition is as follows:



302 PHILIP HUGLY and CHARLES SAYWARD

v(fa¢) = the R-least element of {a:a € D and, for some v’ which differs
from v at most in assigning a to a,v’(¢) =1} if that set is nonempty;
otherwise, v(fa¢) is the R-least element of D.

REFERENCES

”»

[1] Hugly, P., and C. Sayward, “Indenumerability and substitutional quantification,
Notre Dame Journal of Formal Logic, vol. 23, no. 4 (1982), pp. 358-366.

[2] Lemmon, E. J., Beginning Logic, Hackett, Indianapolis, Indiana, 1978.

[3] Quine, W. V., Philosophy of Logic, Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1970.

Department of Philosophy
University of Nebraska
Lincoln, Nebraska 68588-0321





