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On the Possible Number no(M) = The Number
of Nonisomorphic Models L, \-Equivalent

to M of Power A, for A\ Singular

SAHARON SHELAH*

Introduction Let M be a model of power A, with X\ relations, each with <\
places and of power <\. What can be

no(M) = {N/=:N=,, M, |[N| =\}?

We assume V = L (otherwise there are independence results (by [8])). It is known
that

(A) If ¢f N = Ry, it can be only 1 (by Scott [5] for A = K, and generally
by Chang [1], essentially).

(B) If \ is regular uncountable and not weakly compact it can be 1 or 2*
(it can be 27, see [3]; cannot be #1,2*: for A = R, by Palyutin [4], for
any A by [6]).

(C) If \ is weakly compact > R, then it can be any cardinal <\* (by [7]).
We prove here

(D) If \is singular of uncountable cofinality, no(M) can be any cardinal
x < \ (and also x = 2*). (This follows by 3.18 here.)

So we answer the question from [7], bottom of p. 26. The second question there,
top of p. 26, is answered trivially by 1.4.

Notation: We consider functions as relations.
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Science Foundation) which the author wishes to thank.
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1 Introducing the notions
1.1 Definition

(1) Let for a model M of power A\, no(M) be the cardinality of {N/=:N=,
M, |[N| =N\
() SP}, = {no(M):M € K}} where K}, = {M:M is a model, [M| =\ and M
has p relations each of <k places}.
(3) Let RK), = {M:MeK},, Z{|{RM|:Re€ L(M)} < \}

RSP} = {no(M):M € RK}}.
(4) We always assume that \, u, k are =R, k <\ and that u=cfrkorkisa

successor (otherwise MeKk) eMe | Kﬁ,lg). So w.l.o.g. every MEK),
I<k
A

is an L)} ,-model with a fixed L, which has for a closed unbounded set of
a < k exactly p o-place predicates when « is a limit cardinal, and p «~ place
relations when k= (x ) *.

Remark: Note that if A< >\, then in a model M € K}, we can code an
arbitrary model of K, where x = N=*. This is a point in favor of dealing with
RSP),.

1.2 Claim If o < py and k < «;, then SP}, < SP) ,, and RSP}, <
RSP) ...

Proof: Trivial.

1.3 Claim We assume u = «.

(1) If A\=X\<*then SP}, = SP} x,.
(2) RSP}, = RSP}y, when A\> kv cf N =«.

Proof: (1) For every M € K;‘,K let M* be the following model:

G0 |[M*|=MIU M|

(ii) for each i< a <« let R, ; be the two-place relation
RM.={ a,by:a €M, b *M|,a=bli]} .
(iii) For every a-place relation R of M, a one-place relation R*
(RYM = {be*M|:Me=R[b}} .

Clearly no(M*) = no(M), M€ K}, = M* € K} s, hence SP}, < SP} . The
other inclusion holds by Claim 1.2. .
(2) The proof is similar: define (R*)™ as above, [M*| = |[M| U
U (R*)M", and then
R
Ryi={{a,by:ac M, be*|M|N|M*|, a=b[i]} .

Why did we restrict A\? Because looking at Lm,x-equivalq_nce we want
that for every subset A4 of M™* of power <\, (A N M) U {Rang b:b € A} has
power <A.
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1.4 Claim

(1) If p <A< then SP}, = SP),.

(2) Moreover, if p <A\, then SP;‘,K = SPC)‘,(,K; if k is a successor then SP;‘,K =
SP}, . (really when « is a successor or 8o SP}, = SP},).

(3) Similar assertion holds for RSP.

Proof: (1) 1t is well known that (A, <) is isomorphic to any model L, .-
equivalent to it; moreover each element of (A, <) is defined by a formula in
L., (and we can replace Lo, by Lo ). Also L ) satisfies the Feferman-
Vaught Theorem. So we can show that for any M

no(M) =no(M+ (\, <)) .

Now in M + (A, <) we can use the o < \ and even sequences of length <« to
parametrize the relations.
(2) and (3): Left to the reader.

1.5 Claim

(1) If u = x = \<* then SP}, = SP}..
(2) If p=x =\ + « then RSP}, = RSP},.

Proof: (1) For every a < k and M, on *|M|, we define an equivalence relation
E,, realizing the same atomic type. The number of classes is <A< = x (if our
hypothesis holds).

We define for every M € K}, a model M*:

G M| = |M]
(ii) for every a <« and E,-equivalence class A, let R,Q‘”' ={ae*M|:
aeA}.

Clearly M* € K3, [M*| =\ and no(M) = no(M*). Hence SP}, < SP).,, and
the other inclusion follows by Claim 1.2.
(2) Similar proof.

1.6 Claim If A* = x > A, then Sup(SP},) = Sup(SPX,).

Proof: Let M € K),; for notational simplicity we assume that for some d <k,

N\ =y, so w.l.o.g. |M| < P\. So we reinterpret the relations of M as relations
on \; i.e., we define a model M™*:

G |[M*| =N\
(ii) for R€ L(M), R a-place.

RM = {{g;:i<da):a;€|M*|, and if we let for B <a, bg={agpsi:

i< 9) then (bg: B < a) € RM).

It is easy to see that M* € K ,i‘,,(, and no(M™) = no(M) (we get = and not
necessarily equality, as in no(M) we use a finer equivalence relation: Lo, ,—
equivalent and not L, »-equivalence).
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1.7 Claim
) If ;€ SPj,K (i<a=N\) then
i];lax,' (S SPZL\,K .

(2) Similarly for RSP.
Proof: (1) Let M,EK;‘,K, xi = no(M;) and L = L(M,)is fixed (see Definition
1.1(4)). W.lLo.g. M| N |M;| = @ for i # j. We define a model M:

@ M|=UM,.

i<a
(i) RM= QRMf for each Re L.

(ii) =M= {(a,b): Qi<j<a)la€EM;rnbE Mj]}.
Clearly M€ K}, and no(M) =[] no(M;) = [Ixi, hence []xi=noM)e
SP[Z\K‘ i<a i<a i<a

(2) The same proof.
1.8 Claim

M) If xe SP;‘,,(, ¢ a cardinal, 2 < ¢ <\, then the cardinality of {(19,—: i<x):

E ¥; =19, each ¥; a cardinal, 0 < ;< 19} belongs to SP;‘,,(.

1<x

(2) Let N,-eK,f,ﬁ‘ (may be even a finite model), for i < o, @ <\, be pairwise

nonisomorphic but N; =, 5 N, and [N =wrNoA N[ <A=\/N= N,-]. Let G;
i<a

be the group of automorphisms of N; and define f~ g mod G;, if f,g are

functions with domain N, and (34 € G;)(Va € N;)[f(a) = g(h(a))]. Now = is

an equivalence relation, and let xi/G; = 2f/~:fa function from N; into x.

Now if x € SP}, then }J |x"/Gi € SP)..

(3) Similarly for RSP}, (and N; € RK5}).
Proof: (1) Let M € SP),, x = no(M), and choose M; = M, |M;| N |[M;| = O for

(R3]

i< j<d¢. Now define M as in the proof of Claim 1.7, except
(i) EM = {(a,b): 3i < ¥)(a € M;A b E M]].
Clearly M* € K},K, no(M?*) is as required to exemplify the conclusion.
(2) and (3): Proved similarly.
In the following two sections we shall prove:
1.9 Theorem If N\ is singular of uncountable cofinality, 8o < & <\ then
¢ e RSPY,.
Proof: See 3.17.

1.10 Theorem If N is singular of uncountable cofinality, xN <\ then
X € RSP))\\,)\

Proof: See 3.18.
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In a following paper (in a Springer lecture notes volume) we shall prove
similar results for SP}, x,. Let us summarize the known results:

1.11 Theorem

(1) For every \, 1 € SP}, x,-

(2) If ¢f N= Ry, then SP)y = {1} and when [\>«kv ¢f\=«k], RSP}, = {1}
(by Scott [5] when A = Ry and Chang [1] when N\ > R)

(3) If N\ > R is regular or A\ = \¥0 then 2* € SPr)Eo,xo (see [3] for \ regular, and
by Shelah (8] for X = \¥0).

(4) (V=L). If \> Ry is regular not weakly compact then SP}, = {1,2*} (by
Palyutin [4] for A = R, by Shelah [6] generally).

(5) if N> Ry is weakly compact then every x,2 < x < \, belong to SP}, x, (by
Shelah [7]).

(6) If \ is singular, x’* <\ and ¢f\ > R, then x € RSP} (by 1.10).

(7) If N> cf N> Ro and x < \ then x> € RSP}, (by 1.9).

(8) If N<*> \ then 2* € SP), (by 1.6 and 1.7(1)).

In a subsequent paper we shall improve (6) for some A, x.

2 Constructing the example This section is dedicated to the proof of

2.1 Main Lemma Suppose \ is strong limit singular, k = cf\. Also M is a
model of power <\, and

@ M| = UPM, PMNPM=0 fori+j, |PM| <«, & =no(M) P; a monadic
predicate :fKM, ¥ = no(M), or even

(b) M| = UP{”, PMNPM=0 for i+ j, PM has power <\ and the number
of nonison;f;rphic N satisfying the following is 9: N = Lo M, moreover in the
JSollowing game (with w steps) player II has a winning strategy:

in stage n(<w): player I chooses i,, U i< i, <«k; player II chooses an
I<n

isomorphism g, from M| ) P} onto N1 \J P} which extends | g,.

J<iIn j<in I<n
Then we can find a model M*, of cardinality \ such that: no(M*) = ¢ and each
nonlogical symbol of M*’s language has an arity smaller than \, and power
<2X for some x <\, and |L(M™*)| <N<\+ |L(M)].

Remark: (1) We use hypothesis 2.1(b) only as 2.1(a) = 2.1(b). (Note [M| <

Y |PM| < Y k =«; if [M] < k necessarily 8 = 1, in which case the conclusion
i<k i<k
is trivial, so |M| =«.)

(2) In case (b) we can assume that the range of Az (see below) is bounded
(if we omit the R’s with unbounded Az the hypothesis is not changed).

In order to get this in case (a) we need every relation of M has arity <«.

Proof: Let L be the language of M. W.l.o.g. L has no function symbols and
for every a-place predicate R there is a function Az from « to « such that
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M= (YXy, ... Xiy. .. )i<a[R(Xo, s Xiye o) & /\,-<O,PhR(,~)(x,-)]. We let a =
a(R). We assume that there is RE€ L, a(R) > 1. Let A=Y  N;, k < N; <\, for

i<k -
i <j<«, and for each i \; is a regular cardinal > Y \;.
J=<i
2.2 Definition
(1) We define a class K of L-models: % € K iff |%| = |J P¥, for i #j P¥N
i<k
4 = (J, and for every predicate R, A = (VXg,. .., Xis. .- )[R(Xps. .. s Xiy...)

I\i Py (X1
(2) We let K° < K be the family of N € K such that player II wins the game
described in 2.1(b).
(3) For each % € K we define an L*-model %A*:

|A*| = {<a,£Y:a €YU, and a € P¥= £ < \}.

P¥ = {{a,t):a€ P¥, and £ < \}}. .
For each R € L let Ir = {{a,)) 1 < a(R) and j < Ny}, and let R be the
set of tuples

{X0,0, xOI,...,xoj,...,xlo, Xidseoos X joresonns
Xe,00 Xoi, 15+« + 3 Xar, j* )>(0£,J)EIR
which satisfies: there are a, € ¥ for o < o(R) such that
(@) A=R]ay,... .] hence aaePhR(a)

(b) for each for all but <Nig(e) O1dinals v < Nypay s Xoy = (aa, v
(©) the x, (o < a(R), ¥ < MNpp(ay) are distinct, and x,, s pY

(4) Let K* = {%: % an L*-model, Lo, -equivalent to M*}.

2.3 Fact  If A € KO then |¥| = |M|, |P¥| = |PM| (for each i). Also M € K°.
Proof: Trivial.

2.4 Fact  If B€ K* then |B| =\ and |P®?| =\, + [PM| <\

Proof: Trivial.

2.5 Fact If Ne€ K° then N* € K*,

Proof: Call a set A € M”* small if |4 N P;| < \;. Similarly for N. Call a partial
isomorphism f from M* to N* good if some g induces it, which means:

(«) g is an isomorphism from M| UPM onto NI UPN (for some i)

<i i<
which is a winning position for ;Jlayer II in the game from 2.1(b).
(B) the set {{a,&):{g(a), &) #f({a,£)), e.g., one is defined the other not}
is a small subset of M*.
(v) fis one to one, preserving the predicates P;, and it maps UPM
onto |J PN J<i

Jj<i

It is easy to see that the family of good f’s, exemplifies M*=,,\ N*.
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2.6 Definition For each B € K*, we define B~. For each i < « let

;= {{aa:a <N} :a, € PP for each a, a, # ag for o < 8 < \;, and for
some R,’Y,b, hR(’y) = i, %;R[bo, ey bj,. . ']j<ot(R)
and b, = (a,:a < \)}

(we allow to use equality for R).
Clearly S; is a definable subset of B (by a formula of L., with no
parameters). Now we define on S; an equivalence relation E;:

@d:a <Ny E{al:a < \YIff (ad:a < N) €S;, @y 1 <\;) € S; and the
symmetric difference of {a0:a < \;}, {al:a < \;} has power <\;.

Now we define B~:
B~ ={a/E;i:a€s;, i<k} .
P® ={a/E;:ac S} .
R® = {{@y/Ei0y; - - - » Ba/Ei(a)s - - - Ya<a(R) : B € Shp(ar) -
i(a) = hg(a) and BE= R®[ay, ay, ..., 8y, - - - la<ar)} -

2.7 Fact If N € K% then (N*)~ is isomorphic to N, and PN)™ =
{{(a,t) : £ <N)/E;:a € P;} and the isomorphism is the obvious one.

2.8 Fact If B K* then B~ € K.

Proof: We call a partial isomorphism g from M to B~ good if some f induces
it, which means:

(a) f is an isomorphism from M*! |JPM onto B! |JPP which
preserve L, y-equivalence, i.e., J<i J<i

(M* c)cGUPM = (B, f(©)ce UPYB .

J<i J<i

(B) g is a function from UP,M onto UP}B—, where for a € PM
J<i J<i

g(a) =(f{a, &) E<N)/E; .
It is easy to see that the family of good g exemplifies B~ € K°.
2.9 Fact If B € K* then (B7)* is isomorphic to B.

Proof: As B € K*, |P®| < \ (see Fact 2.3). Now by the definition 8 =, , M*,
hence there is a partition of P®, P3 U {ts,r: £ <N}, the £, are distinct

(for a € P, E <N)and {{f <N )/E ae M3} is a list of all E;-equivalence
classes. S0 P?™ = {(t,:: £ <N)/E;:a € M}, and

P = {({typ: £ <NY/ELEY:a €M, E<\} .
Now define F: 8- (B87)* fora e M;
F(t,) = (ta s E<NY/E;;) .

It is easy to check that F is an isomorphism from % onto (87)*.
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Proof of Lemma 2.1: The series of facts above prove that the number of noniso-
morphic models in K and in K* are equal: the map N — N* is from K° into K*
(see Fact 2.5) and the map B— B~ is from K* to K° (see Fact 2.8); those maps
are each an inverse of the other (when we divide by isomorphism) (see Facts 2.7,
2.9). As by Definition 2.2(4) and Fact 2.4:

K*={%: A= M*, |A| =N}

clearly no(M?™) is the number of nonisomorphic M € K, which was assumed
to be &.
For A not strong limit we use instead of Lemma 2.1:

2.10 Main Lemma Suppose that in 2.1 we assume further that every relation
of M, restricted to UP,M (for i < k) has power <\, but \ is singular, not

J<i
necessarily strong limit.

Then ¢ € RSP},

Proof: As the proof is similar to that of Lemma 2.1, we shall only mention the
required changes: .
In Definition 2.2(3) we redefine R¥ :

A* _ .
R = {(XO,(), Xo,l,.. .,xo,jo,. . .,xl’o, X115 - .,xl’jl,. Cey

ey X0 Xayls e - "xoz,ja' [N '>a<a(R) :
(e, jYEIR

There are a, € U for o < a(R) such that:

(@) A=Rlao,...,0a,...] hence @, € Pl (ay;
(b) for each  there arenand 0= £, < §; < ... <£, < Mo and
Qo1 € Ppp(oy for I < n, such that:

gn =v< >‘hR(a) = Xy = <aon7>

E1=y <&p41= Xayy = (o, 'Y>]'

In the proof of Fact 2.5 redefine “g induces f” by replacing (8) by:
(B){ for each j< i, there is £; < \; such that for a € PM,

(gt ifE<
f“"’g”‘Lg’(a),a ifE=,

(8); for each j =i for some &; <\, f({g;,£)) =(a, &) if a erM, £ <,
undefined otherwise.

(B)4 g is a one-to-one function from P onto I}V,

Still the power of L(M™) is too large, but we can use Claim 1.4(1).
To get the desired conclusion we still have to find M as required in Lemma
2.1(b). We shall construct such M.

2.11 Conclusion If Xy <k =cf N<X\ then 2“ € RSP},.

Proof: it is well known that there are two trees, with «-levels, L, .~ equivalent:
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one has a branch of order type k, the other not. So each such tree is
a model satisfying Lemma 2.1(a) for some ¢ <2*, & > 1. In fact the hypothe-
sis of Lemma 2.10 holds also. Hence, by 2.10, (33 <2“)[d € RSP{‘,)\ A >1].
By Claim 1.7(2) this implies that 2* € RSP} ).

3 Building «-Systems

3.1 Definition A k-system will mean here a model of the form %=
<Giahi,j>i5j<,( where

(i) G;is an Abelian group such that (vx € G;)(x + x =0), the G;s are
pairwise disjoint.

(i) hA;;is a homomorphism from G; into G; when i <.

(lll) h,‘l’,'2°h,'2’,'3 = hil,f3 when il = iz = i3.

(iv) h;; is the identity.

We denote k-systems by %, B and for a system ¥, we write G;= GX
hij=hY. Let || = E |Gi|. Almost everything we prove holds for §-systems,
6 a limit ordinal and’;;e shall use this.

Let %18 =(G¥, h¥)icjcs.

3.2 Definition We say U < B if G¥ is a subgroup of G®, h¥;< 1%, and:
(*) for every j <k, a€ GP there is a maximal i < such that £%(a) € G¥.

3.3 Fact < is transitive reflexive and if %,(« < 6) is increasing then
A [ﬁlas Umﬁ] )
a<d B<é

3.4 Definition Gr)={a=(a;;:i<j<k)y:a;;€G,andif a<B<y<«k
then a, ., = a, g+ hop(as,)}.

This is a group by coordinatewise addition.
3.5 Definition  For a=<(a;:i<«) €[]G, let fact (a) =(a;;:i<j<«)

i<k

where a; ;= a; — h; j(a;). Let Fact () = {fact(a) :a € IG}.

3.6 Claim The mapping a — fact(a) is from [[ G; into Gr(¥), and is a
i<k

homorphism. So Fact(2) is a subgroup of Gr(%).
3.7 Definition

(1) Gs(U) = {a€ Gr(Y): for every § <«, {a;;:i1<j<8)E Fact(A )}
(2) E(Y) =Gr(A)/Fact(N), E°(A) = Gs(A)/Fact(N).
(3) U is called smooth if for every limit 6 < x, E°(A | §) has power 1.

Fact 3.7A Let A be a k-system:

(1) for every limit &, Fact(2 18) < Gs(A18) < Gr(A!$).
(2) If A is smooth then for every limit é < «;, E(%15) has power 1 and, i.e.,
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Gr(A16) =Fact(A1H).
3) Gr(Y) =Gs(N).

Proof: (1) Easy.

(2) We prove this by induction on 6. For a given 6, by the induction
hypotheses Gr(A18) =Gs(A'1d). As A is smooth, E°(A18) =Gs(A!)s)/
Fact(216) has power 1, hence Gs(U!6) =Fact(A5); together with the
previous sentence we get Gr(A!48) = Fact(2A!48), hence E(Y6) =Gr(A1s)/
Fact(A I 8) has power 1.

(3) Easy.

3.8 Claim There is %, |A| =p +« and |[E(A)| = p

Proof: Let G; be the free Abelian group of order two generated by W, =
{afj:£< u, j<k but j>i}. So we can identify it with the family of finite
subsets of W;, with addition being the symmetric difference.

hep: Gg— G, is defined by

(1] has(ass) = af, —afg.
Check: For a < B <7y hy .y = hqpohg., as

ha (g (af)) = aﬁ(aﬁ, a5,) = (ak;— abg) — (ak, —alp)
—aéi-—a{g’yz:ha'y(a'éi) .
Let af=(af;:i<j<k). Clearly at€ Gr(¥). We want to show af—a’¢
Fact(¥) for £ #¢.
If not there are w; € G;

2] af;—af;=wi— h; j(w)).

Clearly w; is nothing but a finite subset of W,.

Let G = ({a,j e+ £, i<j<k}). We can define a projection g; onto
Gr:gi(x)=xN {a,j J <k, Jj>i}. It is easy to check that for i <j<«, h; jog; =
g°h;j and h; ; maps G/ mto G;. Applying g; on the equations [2] we get
afj=w? — h; j(wP) when w = gi(w;). So we get that for some w;(i < k)

3] af; = wi— h; j(wy).

So there are n < w and S, an unbounded subset of «x such that (vi €
S)]wl| =n.

Let a < 3 < +ybei m S, by (3] aﬁ v = wg — hg_(w,); apply A, g and get
al, —alp="hos(Wg) — her(W,).

So

,1 R + ha ‘Y(WV) = a 8t h, ﬁ(wﬁ)

So for some ¢, € G, for every 8, a < f8

[4] aig+ hop(wg) =c,

Let U, = {i:af; appear in c,}, remember c,, is a finite subset of W,, so
U, is a finite subset of «.

W.lo.g.a€ESABESAa<B=L>Max U,. So if a < are in S, by the
equation [4], h,(wg) has elements of the form afg or af.: (y <@B) only.
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(Clearly af s does not appears in c,, so it appears in h, s(wg).) Hence (by h,g’s
definition) some afw('y > (3) appears in h,g(wg), but this contradicts the
equality.

3.9 Fact Assume cf k > Ry. If A, (e < 6) is =-increasing continuous,
ae Gr(Yy) € Gr(YU,), a¢ Fact(Y,) (for a < 6) then a & Fact( U 2Ia) .
a<d

Proof: Suppose a = fact(b) b= {b;:i<«k). For each i there is a minimal
a=a(i) <8, b;e G¥=0,

Now i < j = a(i) < a(j), because a; ; = b; — h; j(b;) hence b; = a; ; +
hi j(bj) but a; ;€ G < G¥W), and b; € GM=W. So b; € G¥=\) hence a(i) <
a(y). If {a(i) :i < «) has a bound o* < é then a € Fact(%,) contradiction.

Hence {a(i) :i < k) converge to 8. So ¢f 6 =c¢f k> R,.

Hence for some ¢ < k, ¢f 3 = 8¢, {a(i):i < ) is not eventually constant

and let 8 = J a(i).
i<d
However, look at 3.2(*), apply to A = Uz, B=U,(s), J =B, a =bg, and
get contradication.

3.10 Fact There is a smooth ¥, |Y| = u* with |E()| = p such that every
hY; is onto GY.

Proof: By 3.8 there is %, |o] < p*, |E(A)| = p. Let a; + Fact(o) € Gr(Aop)/
Fact(%,) be distinct for £ < u. We define by induction on o < u* X k* (ordinal
multiplication) %,, <-increasing, continuous || < u*, such that a; —a; &
Fact(Y,) for ¢ # {. Clearly it is enough to prove [1], [2], [3] below (see later):

[11 if b € Gr(Y,) — (Fact(Ao), . .., @, .. .)s<,, then we can define U,
such that: b € Fact(U,,,).

We take care of smoothness similarly. This is done as follows: let %, =
(Gia+l7hif;'+l>i<j<m where

Gt = (GR, x;)-free extension (among Abelian satisfying x + x = 0)
hi j(x;) =x; — b

[2] if i<j<«k, x€GY¥«— Range h;%« we can define %,,; such that
X € Rang hf‘;’“

We let

Glet1 — G if¢=<ior£>j
¢ (G¥o,xpy ifi<tE=<j.

hm(xg) = X¢ when i< {< ¢ =, hi’E('xE) = X.
[B1if 6 < x, b € Gr(Y, | 8) then we can define A,,; such that b €
Fact(A,.;10).

This is similar to [1].

Why are [1], [2], [3] enough?

As we can define the %,’s such that if e = p* X v, e(1) = p* X (y+ 1)
e(M)=pxkt:
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(@) for b € Gr(YU,«x,) for some B <e(1), b € (Fact(Up),...,a, ... )¢y

(use [1]) hence:

be (Fact(¥c1y),---»a,...)
(b) for every x € P¥, i < j <k, for some 8 < e(1)
X E Rang(hi?}‘*) (use [2]) (hence x € Rang(h,?}f('))

(¢) for every limit 6 < «, if b € Gr(Y, | 6) then for some B <e(1),

b e Fact(Us!6) (see [3]) hence b € Fact(U (- 16).
As of €(*) > &, Gr(¥q) = U Gr(¥aexg) and Gr(¥ e 1 8) =

U+ Gr(Unexp8), 50 A+ is as requife<dx.

B<k

3.11 Claim For every k-system ¥ where the h,%‘j are onto, there is M,
|M]| = |¥|, as in Lemma 2.1(b), and we get for M, & = |E°()]|.

Proof: We concentrate on ¢ = R.

For every a € Gr(Y) we define a model M,:

0 |M,|=UGX
() PMa=GY.
(ili) for every i < k, ¢ € G; we have a partial function F,: PMa— pMa:
F.(x)=c+x
(@iv) for every i <j, we have a partial function H; ;: P,Ma—bP,M“
H; j(x)=h;;(x) +a; .
The following series of Facts will prove Claim 3.11.
3.12 Fact M, = M, iff a — b € Fact(Y) (the subtraction is in Gr(%)).

Proof: Suppose b —a = fact(d) where d ={d;:i < k). We define an isomor-
phism g = g, from M, onto M:

for x € G¥ let g(x) = x + d,.

Clearly g maps each PMe onto PM? hence it maps |M,| onto |[M,|. Also g
is one-to-one.
Now for each i <k, c € G¥, x € PMa = G¥

g(FMa(x)) =g(c+x) =c+x+d;=c+g(x) =F(g(x))

Lastly for i < j, x € PMa= G}

Y(Ha(x)) = g(h; j(x) + a; ;) = h; j(x) + a;j+di=
hi j(x) + h; j(d)) + bij = hij(x+ d;) + b; ; = HM(x + d;) = HY(g(x))
(the third equality is as b — a = fact(d) and fact(d)’s definition.

For the other direction suppose g is an isomorphism from M, onto M,,. We let
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d; = g(x) — x for any (some) x € PMa and d = (d;: i < «), and can check that
b—a=fact(d).

3.13 Fact For any M,, My(a, b € Gs(2)) player II wins the game of
2.1(b).

Proof: We let (using the notation from the proof of Fact 3.12)

Po={ga:d€[IGY, ata—blta=fact(d)} .
i€a
By 3.12 and the hypothesis, B, # &, and by the proof of 3.12, B, is a set of
isomorphisms from M,! |J G} onto M, |J G¥. The strategy of player II
i<a i<a
is to use partial isomorphisms from U Po+1- The only missing point is: for

a<k
successor a < B <«k, g €B,, there is g’ € Py, g < g’; equivalently, for dy €
I1 GE, satisfying ato — bt o =fact(dy) there is d € I1G:, dy=d!a, and

i<a i<p
alB—btB=fact(d). We know that for some d,, d, € H GY alB =fact(d,),
bl B =fact(d,). i<B

Let dy=(d?:i<a), d,={(d}:i< By, dy=(d?:i < B).
Asala = fact(d,la), blta = fact(dyt ) and ata — bl o = fact(dy)
clearly for every i< j< «

d! = h; j(d1)) — (d? = hi j(dP) =dP — h, () ;
hence,
() d} —d} —dP =h; j(d} —d} - d)).

As hg_1 -1 Is from Gg‘_l onto G¥_, (remember o, 3 are successor ordinals) for
some x € G§_;:

(®) hy1,p-1(x) = dy—di—dd_;.
By (a) for every i < «:

©) hig1(x) =d} —d? —df.
Now define for i, i < 3.

(d) dy=d! —d? — hig_1(x).
By (c) for i < f3:

(e) d;=d}.

Let d = (d;:i<B), so dla = dy. We shall show that al—-blf=
fact(d) thus finishing the proof of 3.13. Fori<j<gf

a;;—bij=(d} —h;;(d})) - (d? — h; j(dP))
= (dil - diz) e hi,j(djl - djz)
= (d;+ hig—1(x)) — h; j(d; + hj g_1(x))
= (d; — h; j(d})) + (hig_1(x) — hi johjg_1(x)) =d;— h; j(d))
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So d is as required and we finish.

3.14 Fact If in the game for (M,,M) player II wins then (3b)[M =
Mynb—ac Gs(U)].

Proof: We can use a weaker hypothesis:

(*) For every a, Mt |J PM is isomorphic to M, 1 | J G¥ and let the isomor-
isa isa

phism be g5 ! and prove M = M, for some b € Gr(Y);
by 3.12 (applied to the various A | ), b will be as required.

For any i<j <k, (g,”gj) t PMa is necessarily an automorphism of M,!
PMra_So using the functions F.(c € G) clearly for some d; ;€ G} g7 'g;(x) =
x+d; ; for every x € G¥).

Using the functions H; = we can check that d, ., = d, s+ ha(ds.) for
a<B<y<ckhenced={(d,g:a<p<«k)€ Gr(¥). It is also easy to check that
M, .= M (the isomorphism takes x € G; to g;(x)), so we finish.

* * *

What about finite n? The proof is O.K. for powers of 2. Similarly we can use
Abelian group of order p to get power of p, and then sum of models gives us
any product.

Alternatively use 1.8.
3.15 Claim For every ¢, there is a k-system 2, |A| =« + 3, d < |E°(GA)|.

Proof: Just like the proof of 3.10.

3.16 Fact For every k-system ¥, |[E°(A)| < |E(N)| = [¥A| "
Proof: As |Gr(2)| < |¥]*.

3.17 Conclusion  If Rp<k=c¢f A<\ and & <\ then 9 € RSP},.

Proof: First assume d < \. Let U be a system as provided by 3.15. So by 3.16
9 < |E°(Y)| =d* By 3.11 there is a model M of power |A|=k+ I <N\,
satisfying the conditions of 2.1(b), 2.10 for ¢ =|E°(2)|. So by 2.1, 2.10
|E°(2)| € RSPY\; hence, by 1.7, |E°(Y)|* € RSP} . However, 9% < |E°(Y)|* <
%) =d* So
9“E RSP}, .
We are left with the case & = \. Let A= D \;, \; < \. By what we have
i<k

already proved N\ € RSP{‘,K for each i<«. By 1.7 [[ M e RSPQK but by easy

i<k
cardinal arithmetic 9% = N\* =[] \~.
i<k

3.18 Conclusion  If Xo<k=cf N<N\, 3=\, then & € RSP},.
Proof: Like the proof of 3.17, using 3.10 instead of 3.15.
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