
36

Notre Dame Journal of Formal Logic
Volume 26, Number 1, January 1985

On the Possible Number no(AΛ) = The Number

of Nonisomorphic Models I^x-Equivalent

to AA of Power λ, for λ Singular

SAHARON SHELAH*

Introduction Let M be a model of power λ, with λ relations, each with <λ
places and of power <λ. What can be

no(M) = {N/s .Ns^ M, \\N\\ = λ} ?

We assume V- L (otherwise there are independence results (by [8])). It is known
that

(A) If c/λ = Ko, it can be only 1 (by Scott [5] for λ = Ko, and generally
by Chang [1], essentially).

(B) If λ is regular uncountable and not weakly compact it can be 1 or 2 λ

(it can be 2 \ see [3]; cannot be =£l,2λ: for λ = Ki by Palyutin [4], for
any λ by [6]).

(C) If λ is weakly compact > K 0 then it can be any cardinal < λ + (by [7]).

We prove here

(D) If λ is singular of uncountable cofinality, no(M) can be any cardinal
X < λ (and also χ = 2 λ ) . (This follows by 3.18 here.)

So we answer the question from [7], bottom of p. 26. The second question there,
top of p. 26, is answered trivially by 1.4.

Notation: We consider functions as relations.
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/ Introducing the notions

1.1 Definition

(1) Let for a model Mof power λ, no(M) be the cardinality of {TV/Ξ T V Ξ ^
M, ||7Vfl=λ}.
(2) SP*K = {no(M) :AfeK£j where K*κ = {M:M is a model, \\M\\ = λ and M
has μ relations each of <κ places).
(3) Let RK£K={M:MeKlK9 Σ{\RM\:R GL(M)} <λ}

RSP£K = {no(M):M (Ξ RK^J.
(4) We always assume that λ, μ, K are >K0, K < λ and that μ > c/ K or K is a

successor (otherwise MeK£κ&ME U # £ A So w.l.o.g. every MeKμtK

is an L^-model with a fixed L^>κ, which has for a closed unbounded set of
OL< K exactly μ α-place predicates when K is a limit cardinal, and μ κ~ place
relations when /c = (κ~) +.

Remark: Note that if λ</c > λ, then in a model MeKμtK we can code an
arbitrary model of K*κ, where χ = λ</c. This is a point in favor of dealing with
RSP*K.

1.2 Claim If μ < μ i and K < κu then SP£K Q SP£UKί and i?SP^, c
RSPμ\>Kl

Proof: Trivial.

1.3 Claim We assume μ > K.

(1) If λ = λ<« then 5Pμ

λ,, = 5Pμ

λ,Ko.
(2) RSPlκ = RSP^0 when λ > /c v c/ λ > <c.

Proo/. (1) For every MGK*tK let M* be the following model:

(1) |M*| = |M|U U^l^l

(ii) for each / < a < K let Λα>/ be the two-place relation

RΪti={<a,5):aeM9bea\M\9a = b[i]} .

(iii) For every α-place relation R of M, a one-place relation 7? *

(Λ*)M* = {5G°|Af|:Mt=Λ[5]} .

Clearly no(M*) = no(M)y MeK*K ^ M* G K^Q9 hence SP^K c 5Pμ

λ,Ko. The
other inclusion holds by Claim 1.2.

(2) The proof is similar: define (R*)M* as above, \M*\ = \M\ U
U ( ^ * ) M * , and then
R

Ra,i={(a9b):aeM9 be a\M\ Π |M*|, a = 5[i]} .

Why did we restrict λ? Because looking at L^x-equivalence we want
that for every subset A of M* of power <λ, (A Π M) U {/tortg b: b G ̂ 4} has
power <λ.
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1.4 Claim

(l)If μ<\<κ then SP*K = SP*K-

(2) Moreover, if μ < λ, then SP*tK = SPφtK; if /c is a successor then SP£K =
SPχo,κ (really when K is a successor or Ko SP*yK = SP^K).

(3) Similar assertion holds for RSP.

Proof: (1) It is well known that (λ, < ) is isomorphic to any model Loo,ω-
equivalent to it; moreover each element of (λ, < ) is defined by a formula in
Looω (and we can replace Loo,ω by £oo,χ) Also L^x satisfies the Feferman-
Vaught Theorem. So we can show that for any M

no(M)=no(M+ (λ,<)) .

Now in M+ (λ, < ) we can use the a < λ and even sequences of length <κ to
parametrize the relations.

(2) and (3): Left to the reader.

1.5 Claim

(1) If μ > x = λ<κ then SP£tK = SP*K.
(2) If μ > x = λ + K then ΛSP^, = tfSP^.

Proof: (1) For every α < K and M, on a\M\, we define an equivalence relation
Ea, realizing the same atomic type. The number of classes is <λ < / c = χ (if our
hypothesis holds).

We define for every MeK£tK SL model M*:

(1) \M*\ = \M\

(ii) for every a < K and ̂ -equivalence class A, let R%* ={aea\M\:
aGA}.

Clearly M* G * £ „ |M*| | = λ and no(M) = AIO(M*). Hence S P ^ g S P ^ , a n d
the other inclusion follows by Claim 1.2.

(2) Similar proof.

1.6 Claim If λ<κ > χ > λ, then Sup(SP*κ) > Sup(SP£κ).

Proof: Let MeK*tK; for notational simplicity we assume that for some # < K,
λΰ > x, so w.l.o.g. \M\ c ^λ. So we reinterpret the relations of M a s relations
on λ; i.e., we define a model M*:

(i) \M*\=\
(ii) for RGL(M), R α-place.

RM* = {(ai:i<t}a):aie\M*\, and if we let for β < a, bβ = (aύyβ+i:
i< ϋ) then (bβ:β<a)GRM).

It is easy to see that M* E K*tK, and no(M*) > no(M) (we get > and not
necessarily equality, as in no{M) we use a finer equivalence relation: Loo,x-
equivalent and not L^x-equivalence).
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1.7 Claim

(1) If χ, € SP£>K (/ < a < λ) then

(2) Similarly for RSP.

Proof: (1) Let MjGK^, χ, = ̂ ( M , ) and L =L(M,)is fixed (see Definition
1.1(4)). W.l.o.g. |M, | n \Mj\ = 0 for / Φj. We define a model M:

0) |M| = U M

(ii) RM = U R M i for each i ? G L

(iii) <M = \(a9b): (li <j < a)[a (ΞMiΛ b GMj]}.

Clearly MeK^κ and m>(M) = Π Λθ(Λf, ) = Π X/> h e n c e Π X/ = «o(Λf) E
onλ /<α: /<α /<α

(2) The same proof.

1.8 Claim

(1) If x G SPlκ, t? a cardinal, 2 < tf < λ, then the cardinality of <#/: / < χ> :

X) ??/ = ύ, each ^ a cardinal, 0 < t>, < t? belongs to 5P^K.

(2) Let N/ e K^ (may be even a finite model), for / < α, a < λ, be pairwise

nonisomorphic but TV, =«, λ No and U s β | λ Â o Λ ||7V|| < λ => V N= fy \. Let G,

be the group of automorphisms of TV, and define / ~ g moJ G, , if /,g are
functions with domain A7, and (3Λ e G/)(Vα e Â /) [/(α) = g(h(a))]. Now « is
an equivalence relation, and let χNi/Gi = 2f/~:fa function from Nt into χ.

Now if x G SP,λ,κ then £ |χ^/G/| G 5Pμ

λ

>/(.

(3) Similarly for RSP£fK (and N, G / ^ ^ κ

λ ) .

Proo/: (1) Let Me SP*K9 x = no{M), and choose Mt = M, |A/}| Π |My| = 0 for
/ <y < ι>. Now define M as in the proof of Claim 1.7, except

(iii) EM* = {(a9b): (3/ < ΰ)(a G Mx ι\ b G M&.

Clearly M* G AΓ^, no(M*) is as required to exemplify the conclusion.
(2) and (3): Proved similarly.

In the following two sections we shall prove:

1.9 Theorem If λ is singular of uncountable cofinality, ^0< ξ <\ then
ξ^ λ Gi?5P λ

λ , λ .

Proof: See 3.17.

1.10 Theorem If λ is singular of uncountable cofinalitγ, χcfλ< λ then

xeRSPiλ.

Proof: See 3.18.
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In a following paper (in a Springer lecture notes volume) we shall prove
similar results for SP*Otκo. Let us summarize the known results:

1.11 Theorem

(1) For every λ, lGSP£ 0 , K ( ) .

(2) // cf λ = Ko, then SP^0 = {1} and when [λ > K V cfλ > K] , RSP^K = {1}
(by Scott [5] w/ιe« λ = Ko tffld C7ί<rag [1] w/iert λ > Ko)
(3)If\> Ko '

5 regwtor or λ = λκ° then 2 λ G SPκo,χo (see [3] /or λ regular, and
by Shelah [8]/or λ = λ*°).
(4) ( F = L). //λ > Ko to rβgwter mtf weαfc/y compact then SP£ λ = {l,2λ} (67
Palyutin [4] /or λ = «! by Shelah [6] generally),
(5) //λ > Ko to weakly compact then every χ,2 < χ < λ, belong to SP^0^0 (by
Shelah [7]).
(6) // λ to singular, χ c / λ < λ and cfλ > Ko ίΛefl χ G # S P £ λ (6y 1.10).
(7) Ifλ>cfλ>XQcindχ<:λ then χcfλGRSP£yλ (by 1.9).
(S)Ifλ<κ>λthen2λGSPlκ (by 1.6 and 1.7(1)).

In a subsequent paper we shall improve (6) for some λ,χ.

2 Constructing the example This section is dedicated to the proof of

2.1 Main Lemma Suppose λ to strong limit singular, K = cfλ. Also M is a
model of power <λ, and

(a) |M|= \JPj"9PFnpV=0foriΦj, \Pf\<κ, ϋ = no(M) P, a monadic
i<κ

predicate of M, ϋ = no(M), or even

(b) |Af I = U Pf"> Pf* nPfί=0 for i Φj, Pf4 has power <λ and the number
i<κ

of nonisomorphic N satisfying the following is ϋ: N=Loo κ M, moreover in the
following game (with ω steps) player II has a winning strategy:

in stage n(<ω): player I chooses in, JJ // < in < κ; player II chooses an
Kn

isomorphism gn from M t (J Pf4 onto NI (J Pj* which extends | J gh

j<in j<in l<n

Then we can find a model M*, of cardinality λ such that: no(M*) = ϋ and each
nonlogical symbol of M*'s language has an arity smaller than λ, and power
<2* for some χ<λ, and \L(M*)\ < λ < λ + |L(Af)|.

Remark: (1) We use hypothesis 2.1(b) only as 2.1(a) => 2.1 (b). (Note \\M\\ <

XJ \P&\ < ̂  K = κ; if \\M\\ < K necessarily & = 1, in which case the conclusion
i<κ i<κ

is trivial, so \\M\\ = K.)
(2) In case (b) we can assume that the range of hR (see below) is bounded

(if we omit the R's with unbounded hR the hypothesis is not changed).

In order to get this in case (a) we need every relation of M has arity <κ.

Proof: Let L be the language of M. W.l.o.g. L has no function symbols and
for every α-place predicate R there is a function hR from a to K such that
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Mt= ( v x b , . , , , ^ . . . ) ^ / ! ^ , . . . , ^ . . . ) -+ j\i<aPhR{i)(xϊ)\- We let α =

a(R). We assume that there is R E L, «(/?) > 1. Let λ = £ λf , K < λ, < λ, for
i<κ

i<j< K, and for each / λ, is a regular cardinal > 2J V
Mi

2.2 Definition

(1) We define a class # of L-models: 21 E # iff |2ί| = \J P?, for / Φj Pf Π
i<κ

Pf = 0 , a n d f o r e v e r y p r e d i c a t e R , 211= ( V x 0 , . . . , * / , . . . ) [ # ( * o > . . . , * / , . . . ) - •

Λ/P/^ω (*/)]•
(2) We let K°QKbe the family of We K such that player II wins the game
described in 2.1 (b).
(3) For each 21E K we define an ZΛmodel 81*:

|8t | = {(a, {>:βG 21, and a£P?=>t< λ j .
/?* = {<*,*> : * e P ? , an<U<λf-}.

For each R E L let /Λ = {(αj) : α < α(,R) and j < λ/7/?(α)}, and let Rn* be the
set of tuples

V*b,0> -̂ 0,1 > > -̂ 0,7» » *ϊ,0> X\,\ > » -^lj » »

* α,0> -̂ o;,l» » X<xJm * » ))(aJ)GlR

which satisfies: there are αα E 21 for α < α(jR) such that

(a) 211= Λ[flr0, . . .,*«,.. .] hence αα E P ^ ( a ) .
(b) for each a for all but <λΛ / ? ( α ) ordinals 7 < \hRM, x^y = <aa9 y)
(c) the xα,7(α < a(R), 7 < λΛ/?(α)) are distinct, and xatΎ E P^*.

(4) Let K* = {21:21 an ZΛmodel, L^-equivalent to M*}.

2.3 Fact I f2lE^ o then|2I | | = lM|, |P? | = | P ^ | (for each /). Also M E AT0.

P/ΌO/: Trivial.

2.4 Fact If 33 E AT* then |33| = λ and \Pp\ = λ, + | P ^ | < λ.

PAΌO/: Trivial.

2.5 Fact If 7VE ^° then TV* E *Λ

PAΌO/: Call a set ̂ 4 g M* small if \A Π P, | < λf . Similarly for N. Call a partial
isomorphism / from M* to N* good if some g induces it, which means:

(a) g is an isomorphism from Ml [JPf4 onto N\ {JPJ* (for some /)
j<i j<i

which is a winning position for player II in the game from 2'.l(b).
(j8) the set {<<?,£> : <g(«),ξ> ^/(<tf,£>), e.g., one is defined the other not}

is a small subset of M*.
(7) / is one to one, preserving the predicates P, , and it maps \JPf**

onto U P / j<i

It is easy to see that the family of good/'s, exemplifies M* s^JV*.
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2.6 Definition For each S3 e K*, we define S3". For each / < K let

Si = {<#«: α < λ/> : aa G P/8 for each a, aa Φ aβ for a < β < λ, , and for
s o m e R, 7 , 6 , M Ύ ) = /, %*=R[bθ9.. .95j9.. .]J<aiR)

a n d * 7 = <α α :α<λ / >}

(we allow to use equality for /?).
Clearly S, is a definable subset of 33 (by a formula of LW ) λ with no

parameters). Now we define on S, an equivalence relation Ef.

(a%:a< λ, > Efa*: a < \)iff (a%:a< λ, > G S,, (aaι:a < λf > G S, and the

symmetric difference of {a®: α < λ/}, {^ : α < λ/} has power <λ/.

Now we define 33 ~:

\%-\ = {δ/Ei:δeSh i<κ} .

Pp~ = {a/Ei:aESi} .

R® = {(ao/EiiO)f..., aa/Ei(a)i... >α«*(/?): aa G S Λ / ? ( α ) .

i ( α ) = M α ) a n d 33 t=R*[ά0, ai9..., aa,.. .]a<aW} .

2.7 Fact If N G K°, then (//*)" is isomorphic to TV, and PfNΊ~ =

{<(ί?, i) . ' ί < \)/Ei ^ G Pi} and the isomorphism is the obvious one.

2.8 Fact If 33 G K* then 33 ~ G AT0.

Proof: We call a partial isomorphism g from M t o 33 ~ good if some/induces
it, which means:

( a ) / is an isomorphism from M* \ \J Pf4 onto S3 ί \JPf which
preserve Loo,\-equivalence, i.e., j<i j<i

(β) g is a function from | J P/* onto (J Pf", where for a G P/^

&(a) = <J<a9ξ):ξ<\j)/Ej .

It is easy to see that the family of good g exemplifies 33 " G K°.

2.9 Fact If 33 G K* then (33") * is isomorphic to 33.

Proof: As 33 G K*9 \P?\ < λ (see Fact 2.3). Now by the definition 33 =oo,λ Af*,
hence there is a partition of P/8, P 8 = (J {/^: ξ < λ/}, the /α>̂  are distinct

aGM

(for ύr G P ^ , ξ < λ, ) and { < ^ : £ < λ,-)//?/: a G M} is a list of all ̂ -equivalence
classes. So Pp~ = {</α^: ξ < X/>/£/: α G M}, and

p/»") = {«fβ>€: ξ < λΛ/^/,0 : α € M , ξ < λ } .

Now define F: 33-• (33")*, for a G M,

/7(^) = «^:{<λ/>/^) .

It is easy to check that F i s an isomorphism from 33 onto (93")*.
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Proof of Lemma 2.1: The series of facts above prove that the number of noniso-
morphic models in K° and in K* are equal: the map N-+N* is from K° into K*
(see Fact 2.5) and the map 93-* 33" is from K* to K° (see Fact 2.8); those maps
are each an inverse of the other (when we divide by isomorphism) (see Facts 2.7,
2.9). As by Definition 2.2(4) and Fact 2.4:

r = {a:aScβiλM*, l«l = x>

clearly no(M*) is the number of nonisomorphic MGK, which was assumed
to be ϋ.

For λ not strong limit we use instead of Lemma 2.1:

2.10 Main Lemma Suppose that in 2.1 we assume further that every relation
of M, restricted to \JPj* (for i<κ) has power <λ, but λ is singular, not

necessarily strong limit.
Then ϋ G RSP^λ

Proof: As the proof is similar to that of Lemma 2.1, we shall only mention the
required changes:

In Definition 2.2(3) we redefine /?**:

R = J (*o,o> *o,i > Ϊ χojOi »*i,o> *i,i» > χιjι» \

• > *Ό:,0> Xa,\ > ' ' > Xa,ja 5 )oc<a(R)

There are aa G 21 for a < a(R) such that:

(a) 211= Λ[ff0,..., έjrα,... ] hence aa G P%RM;

(b) for each a there are « and O = ξ o < £ i < ••• <ζn< ^hR(a) and
aaj G PhR(a) for / < ft, such that:

£π < γ < λΛj?(ot) => xa>y = (aaiy)

h < γ < ξι+ί =» xα>7 = <ύrαt/, γ) .

In the proof of Fact 2.5 redefine "g induces/" by replacing (β) by:

08) ί for each j < /, there is ξy < λy such that for a G P/*,

m a ' ξ } ) (<g(a),0 ifξ>ξy

(j3)έ for each j > / for some ξj < λj9 f((gj9 ξ » = <α, ξ> if a G P f , ξ < ξj9

undefined otherwise.

(β)3 gj is a one-to-one function from Pf1 onto 7^.

Still the power of L(M*) is too large, but we can use Claim 1.4(1).
To get the desired conclusion we still have to find M as required in Lemma

2.1(b). We shall construct such M.

2.11 Conclusion If Ko < * = cf λ < λ then 2K G RSP£tλ.

Proof: it is well known that there are two trees, with /c-levels, L^^- equivalent:
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one has a branch of order type K, the other not. So each such tree is
a model satisfying Lemma 2.1(a) for some d < 2 \ ϋ > 1. In fact the hypothe-
sis of Lemma 2.10 holds also. Hence, by 2.10, (3d < 2K) [ϋ G RSP^χ A ϋ > 1].
By Claim 1.7(2) this implies that 2KGRSPχλ.

3 Building κ~Systems

3.1 Definition A /c-system will mean here a model of the form 21 =
{Gi.hij)^^ where

(i) Gj is an Abelian group such that (VA: E G, ) (Λ: + Λ: = 0), the G/s are
pair wise disjoint.
(ii) hij is a horαomorphism from Gj into G, when / < y.
(iii) hiutfhi2Jz = A/j,/3 when /Ί < /2 < /3.
(iv) hij is the identity.

We denote ^-systems by 2ί, 93 and for a system 21, we write G/ = Gf

Λ j = Λ^ Let 1811 = ^ ||G, ||. Almost everything we prove holds for δ-systems,
i<κ

δ a limit ordinal and we shall use this.

Letatδ = <σ?,Λ5>/^.<ό.

3.2 Definition We say 2ί < 33 if Gf is a subgroup of G/8, Λ^ S Λ,̂ -, and:

(*) for every j< K, O G Gp there is a maximal /<y such that Λ,®(α) G Gf.

3.3 Fact < is transitive reflexive and if 2ία(α < δ) is increasing then

a<δ L /3<δ J

3.4 Definition Gr(2ί) = {Λ = <α/>y :i<j<κ): au G G, , and ifa<β<y<κ
then αα, 7 = αα,^ + hatβ(aβty)}.

This is a group by coordinate wise addition.

3.5 Definition For a = <#,-:/< K) G Π G f , let fact (α) = < # , , , : i < j < κ )

where α / ) 7 = α, - hitj(aj). Let Fact (21) = {fact(a): α G ΠG/*}.

3.6 Claim The mapping a-+fact(a) is from Π ^ / i n t o ^ r(2l)» a n d is a

homorphism. So JF#CΫ(21) is a subgroup of Gr(2ί).

3.7 Definition

(1) Gs(2ί) = {αGGr(2l): for every δ < K, < α / y : / < y < δ> eFactCΆ tδ)}
(2) E(H) = Gr(H)/FactW), £°(2l) = GsW)/Fact(fi).

(3) 2ί is called smooth if for every limit δ < K, E°{% \ δ) has power 1.

Fact 3.7A Let 21 be a κ-system:

(1) for every limit δ, Fact(211 δ) c Gs{% \ δ) c Gr(2l \ δ).

(2) If 21 is smooth then for every limit δ < κu £(21 ί δ) has power 1 and, i.e.,
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Gr(2Πδ)=Fact(2Πδ).
(3) GrW) = Gs(ϊί).

Proof: (1) Easy.

(2) We prove this by induction on δ. For a given δ, by the induction
hypotheses Gr(8l ίδ) = Gs(% ίδ) . As 21 is smooth, E°(U tδ) = Gs(2l ί )δ)/
Fact(Sίtδ) has power 1, hence Gs(2t tδ) = Fact(2ί t δ); together with the
previous sentence we get Gr{% \ δ) = Fact(2ί ί δ), hence £(Sl ί δ) = Gr{% t δ)/
Fact (21 tδ) has power 1.

(3) Easy.

3.8 Claim There is % |2l| = μ + K and |£(2l) | > μ.

Proof: Let G, be the free Abelian group of order two generated by Wj =
{afj\ ξ < μ, j < K but j > /}. So we can identify it with the family of finite
subsets of Wh with addition being the symmetric difference.

hcίβ-Gβ^>Ga is defined by

Check: For a<β <y hay = haβ°hβtΊ as

ha,β(hβ,y(ali)) = KAaL ~ aίy) = (aii - aiβ) ~ (<*ly ~ aiβ)
= ah - aiy = ha,y(ali) .

Let a^ = {afj:i<j<κ). Clearly α^GGr(H). We want to show a*-a*£
Fact(Sl) f o r ' ^ f .

If not there are w, G G/

[2] aSj-afj=wi-hu(Wj).

Clearly wt is nothing but a finite subset of Wlt

Let G* = ({a j'.eφ ξ, i<j<κ}). We can define a projection gt onto
G*:gi(x) = x Π {afj:j<κ,j> /}. It is easy to check that for i<j< K, h^gj =
gi°hij and hu maps G* into G*. Applying gt on the equations [2] we get
aίj - w? ~ hij(w?) when wf = g/(w, ). So we get that for some wf (/ < /c)

[3] atj = Wj-hij(Wi).

So there are n < ω and 5, an unbounded subset of K such that (V/ E

s)H=/i.
Let α < β < y be in 5, by [3] α ^ = wβ - hβfΎ(wy); apply Λα>j8 and get

aiΊ - aiβ = hatβ(Wβ) - Λα>7(w7).
So

< 7 + A«,Ύ(w7) = «J./3 + hatβ(wβ) .

So for some ca G Gα for every β, a< β

[4] tfJU + Λα,/3(W/3) =Cα.

Let Ua = {/:«!,/ appear in cα}, remember cα is a finite subset of W ,̂ so
Ua is a finite subset of K.

W.l.o.g. aGSAβeSΛa<β=>β> Max Ua. So if a < β are in 5, by the
equation [4], haiβ(Wβ) has elements of the form a^β or αj > 7 : (γ</3) only.
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(Clearly aiβ does not appears in ca, so it appears in haβ(Wβ).) Hence (by hajs
definition) some a^y(y>β) appears in hatβ(Wβ)9 but this contradicts the
equality.

3.9 Fact Assume cfκ> Ko. If 2lα(α < δ) is <-increasing continuous,

a G Gr(Slo) S Gr(2lJ, a £ Fact(%a) (for a < δ) then α £ Fact ( U 2IJ.
\α<δ /

Proof: Suppose a=fact(b) b = <&,-:/< κ>. For each / there is a minimal
α = α(/)<δ, biGGf1^.

Now / < y => α(/) < α(y), because #/j = 6, — hjj(bj) hence &, = α/>y +
A/ft/(6/) but aij<ΞG?Q<^G?<*u\ and bjGG^K So &je G^«ω hence α(/) <
α(y). If <α(/): / < /c> has a bound a* < δ then α G Ftfrt(2lα) contradiction.

Hence <α(/): / < K) converge to δ. So cf δ = cf K > Ko.
Hence for some ύ< κy cf ϋ = Ko, <α(/) :i<ϋ) is not eventually constant

and let /3 = U « ( 0

However, look at 3.2(*), apply to 21 = 21̂ , 93 = 2 I α W , j = β, a = bβ, and
get contradication.

3.10 Fact There is a smooth 21, |2l| = μκ with |£(2l)| = μ such that every
hfyj is onto Gf.

Proof: By 3.8 there is 2ί0, ||2lo| < /Λ |^(2l)| > μ. Let aξ + Fact(%) E Gr(2l0)/
Fact(%o) be distinct for ξ < μ. We define by induction oτιa< μκ X κ+ (ordinal
multiplication) 2lα, <-increasing, continuous |2ία|| < μκ, such that a^-a^φ
Fact($a) for ξ Φ f. Clearly it is enough to prove [1], [2], [3] below (see later):

[1] if b e Gr(2U - 0Fto(2Io),..., aξ9... >ξ < μ, ίΛe« we can define 2lα+i
such that: ^ G jFto(2tα+i).

We take care of smoothness similarly. This is done as follows: let 2ία+i =
(Cί^+ι ha+ι\ where\Uy >nιj ?i<j<κ9 wnere

Gf+1 = <Gf ,x7>-free extension (among Abelian satisfying x + x = 0)

[2] if i<j<κ9 x G Gfa - Range A/5" we can define 2lα+i such that
xGRangh^f+ι

We let

Λr,£(*s) =^f when /< f < ξ <y, A^(x ξ) = x

[3] if δ < K, b G Gr(2IQ! I δ) then we can define 2lα+i such that b G
Fact(2I α + i tδ) .

This is similar to [1].
Why are [1], [2], [3] enough?
As we can define the 2lα's such that if e = μκ x 7, e(l) = μκ x (7 + 1)

eC)=μκXκ + :
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(a) for b G O(2l μ *χ 7 ) for some β < e( l ) , b G (Fact(^),..., aξ9.. ,)ξ<μ

(use [1]) hence:

be(Facme(l))9...,a^...)

(b) for every x G P ^ , / < j < K, for some β < e( 1)

j t G R a n g t / ^ ) (use [2]) (hence xe Rang(/z/5er))

(c) for every limit δ < K, if b G G/*(Sle ( δ) then for some 0 < e ( l ) ,
Z> G F t f c / ^ ί δ) (see [3]) hence b G Ftfrt(3l e r ) ί δ).

As cf e(*) > K, G r ( a e r ) ) = U Gr(Xx*xβ) and Gr(2ίe(*) f δ) =
β<κ +

( J GA-(21X/CX/3 t δ) , SO 8l€( ) is as required.

3.11 Claim For every /c-system SI where the hfj are onto, there is M,

|Af| = I SI | , as in Lemma 2.1(b), and we get for Λf,ύ= |£°(St) | .

Proof: We concentrate on ϋ > Ko.

For every a G G/*(3ί) we define a model Mα:

(i) \Ma\=\jG*.
i<κ

(ii) P^o^G?.

(iii) for every / < /c, c G G , w e have a partial function F c : Pf4* -• P / ^ :

F c(x) = c + x

(iv) for every / <j, we have a partial function ///>7: P™a -• P/^β

///>y(x) = Λ/,y(x) + έz/t</ .

The following series of Facts will prove Claim 3.11.

3.12 Fact Ma = Mh iff a - b G Fact(%) (the subtraction is in Gr(3ί)).

Proof: Suppose b — a =fact(d) where d = <tf,: / < κ>. We define an isomor-
phism g = gd from M α onto M f t:

for A:G G? let g(x) =x + dh

Clearly g maps each Pf4* onto P™b hence it maps |Mα | onto \Mb\. Also g
is one-to-one.

Now for each / < K, C G Gf, JC G P/^fl = Gf

g(F^(x)) = g(c + x) = c 4- JC + di = c + g(x) = Fc

M*(g (x))

Lastly for / <j\ xG Pfa = Gf

y(Hff*(x)) = g(Λ/>y(x) + *,,,) = Λ/ty.(jc) + ̂  + dt =

hλ*) + Λιj(rfy) + 6/j = M ^ + dj) + */J = Htf>>{x + dj) = Htf>{g{x))
(the third equality is as 6 - α =fact(d) and fact(d)'s definition.

For the other direction suppose g is an isomorphism from Ma onto M 6 . We let
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di = SM ~ * for any (some) x E Pf*a and d = <d,: i < κ>, and can check that
b-a=fact(d).

3.13 Fact For any Ma, Mb(a, beGsCΆ)) player II wins the game of
2. l(b).

Proof: We let (using the notation from the proof of Fact 3.12)

ς$*={gd:dtΞY[Glί,a\a-b\a=fact{d)} .
i€a

By 3.12 and the hypothesis, <βα Φ 0 , and by the proof of 3.12, ̂ a is a set of
isomorphisms from Ma I [J Gf onto Mb \ \J Gf. The strategy of player II

is to use partial isomorphisms from U^Pα+i The onty missing point is: for

successor a<β<κ, g G ^ α , there is g'E'φβ, g^g'l equivalently, for d0G
Y[ Gf9 satisfying a \ a. — b I a =fact(d0) there is C / E Π G / , do = d\a, and
/<α i<β

a\β-b\β =fact(d). We know that for some dx, d2 E Π G h a t β =fact(d1),
b\β=fact{d2). i<β

Lεtdo = (d?:i<a), dx = {d}:i<β), d2 = (df:i<β).
As a I α = fact(dχ t α), 6 f α = fact(d2 I α) and α t α - 6 t α = fact(d0)

clearly for every / < j < a

(d} - hijid})) - (df - hijdf)) = df - A/jίrf;)

hence,

(a) rf/ -df-d? = hijdj - rf/ - df).

As hβ-ιt(x-ι is from G^_! onto G^_i (remember a,β are successor ordinals) for
some JCE G|Li:

(b) Vi)HW=ti-ei-4°-i.

By (a) for every i<a:

(c) huβ^{x)=d}-df-df.

Now define for /, i<β.

(d) di = d}-d?-hi9β-l(x).

By (c) for / < j8:

(e) di = d?.

Let cί = {di:i<β), so d I α = d0. We shall show that a\β-b\β =
fact(d) thus finishing the proof of 3.13. For i<j<β

au - btJ = (d} - hu(d})) - (df - hij(d}))

= (d}-df)-hu(d}-d})

= {di + V i W ) - hij(dj + hjj-x(x))

= (df - h,j(dj)) + ( Λ / ) H W - hijohjj-dx)) = di - Λ/fy(dy )
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So d is as required and we finish.

3.14 Fact If in the game for (Ma,M) player II wins then (3b)[M =
MbAb-a<EGs(%)).

Proof: We can use a weaker hypothesis:

(*) For every α, M\ \J Pf4 is isomorphic to Ma \ \J Gf and let the isomor-

phism be g~ι and prove M = Mb for some b G Gr(2l);

by 3.12 (applied to the various 21 ί δ), b will be as required.
For any i<j < K, (gΓιgj) \Pi*a is necessarily an automorphism of Ma\

Pf4*". So using the functions Fc(c G Gf) clearly for some du G Gf gΓιgjM =
x + dij for every x G Gf).

Using the functions H$<* we can check that da>y = daβ + hatβ(dβty) for
α < ]8 < γ < Ac hence ί/ = (daβ: α < β < K) G GA*(2ί). It is also easy to check that
Md+a = M (the isomorphism takes xG G, to g/(x)), so we finish.

* * *

What about finite μ? The proof is O.K. for powers of 2. Similarly we can use
Abelian group of order p to get power of /?, and then sum of models gives us
any product.

Alternatively use 1.8.

3.15 Claim For every ϋ, there is a κ-system 21, ||2ί| = K + #, ύ < ^ ( G ^ ) ! -

Proof: Just like the proof of 3.10.

3.16 Fact For every /c-system 21, |£°(2ί)| ^ 1̂ (81) I ̂  I|H||\

Proof: As |Gr(8t)|< |2l|\

3.17 Conclusion If Ko < * = cf λ < λ and # < λ then ϋκ G /?SP^λ.

Proof: First assume $ < λ. Let 21 be a system as provided by 3.15. So by 3.16
ϋ < |£°(2l)| < ϋκ. By 3.11 there is a model Af of power |2ί| = K + # < λ,
satisfying the conditions of 2.1(b), 2.10 for # = | £ ° ( H ) | . So by 2.1, 2.10
|£°(2l)| G /?5P^)λ; hence, by 1.7, |£°(2l)|κ eRSP^λ. However, tfκ< |^°(2ί)|κ <
^ κ ) / < = ̂ \ So

ύκeRSP^λ .

We are left with the case $ = λ. Let λ = ]Γ) λ, , λ, < λ. By what we have
i<κ

already proved λf G /?SPχ>/( for each / < K. By 1.7 Π V ^ ^^λ,« but by easy
/</ί

cardinal arithmetic ϋκ = λκ = Π λf.
/•<«

3.18 Conclusion If Ko < K = cf λ < λ, ϋκ < λ, then ι? G RSP£tλ.

Proof: Like the proof of 3.17, using 3.10 instead of 3.15.
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