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Intension, Designation, and Extension

GARREL POTTINGER*

It is not our business to set up prohibitions,
but to arrive at conventions.

Carnapι

Introduction This paper presents a semantical theory for free S5 in all finite
types. That is, the system of logic determined by the theory is a modal logic
which allows quantification over individuals, propositions, properties of indi-
viduals, properties of propositions, properties of properties of individuals and
propositions, and so on, without limit. Because the logic is free, it is not presup-
posed that any individuals exist and singular terms may be used even if they do
not stand for anything.

The following features of the theory are worthy of note: (1) it permits one
to formalize Descartes* version of the ontological argument; (2) it does not
commit one to asserting that A and B express the same proposition as soon as
one asserts D ( A Ξ B ) (the box should be glossed as "necessarily"); (3) the theory
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asserts that there is exactly one proposition which is its own negation, but,
nevertheless, the theory is consistent.

In outline, the developments of the paper are as follows:

Section 2: Features (l)-(3) are discussed informally, and the theory pre-
sented here is compared with those of Frege and Montague.

Section 3: The formal language to be studied is officially introduced, and
some fundamental semantical concepts are formally defined. It turns out that
the unusual features of the theory being presented stem from the thoroughgoing
use of partial functions to model semantical concepts. Why things are arranged
this way is explained.

Section 4: Building on what has been done in Section 3, a semiformal treat-
ment of features (l)-(3) is given. Sections 5-7 provide the definitions necessary
in order to turn the semiformal arguments of Section 4 into proofs.

Section 5: The propositional calculus — the fragment of the theory which
deals with formulas built up from propositional constants and propositional
variables by means of connectives — is presented.

Because of the use of partial functions noted above, a system of defaults
is employed to ensure that, ultimately, formulas will get truth values. Validity
of formulas is then defined in such a way as to be independent of any particu-
lar choice of defaults. But before giving the definition of validity, it must be
explained how the defaults operate. The required explanation is complex, so in
presenting it attention is at first restricted to the propositional calculus.

Sections 6 and 7: The definitions of Section 5 are extended to cover the full
system.

Section 8: Possible ways of developing the theory are discussed, and an
application to set theory is given.

2 Three semantical theories Table 2.1 compares the theory presented here
with those of Frege2 and Montague.3 The motive which led to the construction
of the theory was to obtain "Yes" as an answer to the question: "Is there a
theory which enables one to formalize Descartes' ontological argument?".
Reasons for wanting to construct such a theory are given in Section 2.3. How
this motive led to the construction of a theory having the other features to be
discussed is explained in Section 3.4.

As the top section of Table 2.1 shows, the theory presented in this paper
has three semantical categories: intension, designation, and extension. The other
theories, of course, have two. In the theory being presented, a formula desig-
nates a proposition (if anything). Thus, the category called "designation" here
is similar to what Frege called "sense" and what Montague called "intension".

The second section of the table shows that all three theories are resolutely
two valued—there are no truth values besides the True and the False.4 On the
other hand, the theory presented here differs radically from the other two in its
account of how the two truth values are assigned to formulas. A formula may
not designate a proposition at all, and, even if it does, the proposition may not
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Table 2.1. Box Score

Theory
Frege's Montague's Being
Theory Theory Presented

Semantical Sense, Intension, Intension,
categories reference. extension. designation,

extension.

Treatment of A has a sense. A has an A has an
formulas intension and intension.

Sense of A an extension,
determines If A has a
reference of A. Intension of A designation, intension

determines of A determines it.
Reference of A extension of A.
is T or F. Designation of A

Extension of A or a default
is T or F. determines

extension of A.
Extension of A
is T or F.

Propositionist? Yes Yes No

Formally No Yes Yes

consistent?

Extensionist? No Yes No

Formalizes No No Yes
ontological
argument?

determine a truth value. If either of these situations arises, a system of defaults
assigns a truth value to the formula in the way to be explained below.5

2.1 Propositionism and the Russell proposition Propositionism is the view
that the truth value of A is determined by the proposition A expresses. It is
evident from the preceding remarks that propositionism is rejected by the theory
of this paper. No doubt rejecting propositionism will seem a strange thing to do.
Certainly, it is unusual. Section 3.4 argues that it is sensible.

The Russell proposition is the proposition which is its own negation.
According to the theory presented here, the Russell proposition exists. Very
likely, asserting this will seem horrible, rather than merely strange. Won't assert-
ing it lead to inconsistency?
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No. Asserting that the Russell proposition exists does not, by itself, lead
to inconsistency. Inconsistency arises if one combines this assertion with proposi-
tionism, as the following argument shows.

Let 'R' express the Russell proposition.

1. 'R' expresses the same proposition as '—R.'
2. Hence, *R' has the same truth value as ' —R.'
3. But either the truth value of 'R' is T and the truth value of ~R' is F,

or the truth value of R' is F and the truth value of '~R' is T.
4. Hence, 'R' does not have the same truth value as '~R.'
5. Therefore, 'R' has the same truth value as '~R,' and 'R' does not have

the same truth value as ' —R.'

Evidently, the argument fails if the step leading from 1 to 2 fails. But what,
if not propositionism, licenses this inference? The developments which follow
show that the answer is "Nothing".

"Russell proposition" is a suggestive piece of terminology. It is not intended
to suggest that a new foundation for mathematics is being presented
here —nothing of the sort is going on. It is intended to suggest that the follow-
ing story might be true.

What happened back in 1902 was that Russell discovered the propo-
sition which is its own negation and communicated it to Frege.
Because, on the one hand, that proposition was expressible in Frege's
system and, on the other, Frege had built the system so that every
formula would have a proposition ('gedanke' in his terminology) as
its sense and every proposition expressed by a formula would deter-
mine the truth value of the formula expressing it, Frege's system was
inconsistent.

More will be added to the story in Section 4.1, and a way of using the system
to discuss set abstraction and the Russell paradox will be indicated in Section
8.2. But it will be clear that the scheme laid out in Section 8.2 provides a new
way of looking at a known foundation for mathematics (the cumulative type
hierarchy), not a new foundation for mathematics. The disclaimer issued above
is to be taken seriously.

2.2 Extensionism Extensionism is the view that if • (A = B) is true, then
A and B express the same proposition. Extensionist semantical theories rule out
the possibility of construing belief as a relation between individuals and propo-
sitions, because doing so would, for example, lead to the conclusion that the
following argument is valid:

1. Diophantus believed that 2 is even.
2. D(2 is even = every real-valued function continuous on a closed inter-

val in the reals is uniformly continuous on that interval).
3. Hence, Diophantus believed that every real-valued function continuous

on a closed interval in the reals is uniformly continuous on that interval.
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Clearly, the argument is invalid. Diophantus was the greatest number theorist
of antiquity and the right half of premise 2 is a famous old theorem of classi-
cal analysis, so the premises are true. On the other hand, the Greeks were so bad
dealing with real numbers that the conclusion is certainly false.

It may be that construing belief as a relation between persons and propo-
sitions is not the right thing to do, but logic shouldn't rule out the possibility
of constructing theories in which belief is such a relation. In order to construct
such theories, a system of logic which rejects extensionism is required. The
theory presented here does reject it—the example given in Section 4.2 shows that
the theory is inconsistent with extensionism.6

2.3 The ontological argument As was remarked above, the motive which
led to the construction of the theory being presented was a desire to devise a
system of logic which would allow one to formalize Descartes' version of the
ontological argument. It will now be argued that the philosophical importance
of that argument is sufficient to justify the project. (The argument is also vener-
able and fun to think about, but those are separate matters.)

Assessing the claims of natural theology is a philosophically important task.
The strongest argument for a negative assessment is the central argument of [8],
which runs as follows: The existence of God cannot be proved a priori. Hence,
if God's existence is to be proved, it must be proved by means of an inductive
argument. But, given the evidence available to us and given that the principle
of total evidence must be applied, it is clear that no such argument can succeed.
Therefore, the existence of God cannot be proved.7

If one is convinced that the first premise is true, the argument is convinc-
ing. But Hume's argument for that premise ([8], p. 189) is problematic — if it
were correct, it would show that that the number two might not exist, for
example. Consequently, if one is to figure out what to make of Hume's argu-
ment, one must make a survey of the available a priori arguments and try to
decide whether they make their point. The ontological argument is the best such
argument, so the problem reduces to evaluating it.

The foregoing considerations led to the work which resulted in [17], The
following version of Anselm's argument8 is analyzed there.

1. God is the being than which none greater can be conceived.
2. If God doesn't exist, then a being greater than God is conceivable.
3. Hence, God exists.

The analysis is satisfying for the following reasons. First, it turned out that there
was a weakest way of expressing "a being greater than God is conceivable" in
free Γ, but the resulting argument was invalid in free S5. Thus, using the
strongest possible construal of "God is the being than which none greater can
be conceived" and the other premise and using the strongest logic, it turned out
that the argument was invalid. On the other hand, adding the premise that God's
existence is possible (Leibniz's premise9) produced an argument which was
valid in free S5 but not in the weaker systems. Since it seems impossible to
decide whether the extra premise is true, [17] provides quite strong evidence that
Hume was right, despite the problematic character of his argument to the effect
that the existence of God cannot be proved a priori.
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The unsatisfying thing about the analysis given in [17] is that it cannot be
applied to Descartes's version of the argument, which runs as follows:

1. God is the being which has all perfections.
2. Existence is a perfection.
3. Therefore, God exists.

As soon as one says "God is the being which has all perfections", one is stuck
with second-order quantification. The work reported here makes it possible to
formalize Descartes' argument, and things turn out as they did with Anselm's
argument.

3 Language, metalanguage, and basic semantical concepts This section lays
out the basics of the formal apparatus to be considered and motivates the
characteristics which lead to the features discussed in Sections 2.1 and 2.2.
Because the concepts are unusual, considerable commentary is included along
with the definitions.

3.1 The language A version of the simple theory of types is employed. To
begin with, type symbols are introduced. The type structure these allow is, in
fact, more general than the remarks of the introduction suggest. Besides indi-
viduals and propositions, properties of individuals and propositions, properties
of such properties, etc., the structure includes ft-nary relations where the terms
of such a relation need not all be of the same type.

A version of the simple theory of types is employed.

Type symbols TS, the set of type symbols, is the smallest set satisfying the
following conditions:

1. t E TS.
2. If n , . . . , τn G TS (n > 0), then [n . . . τn] G TS.

i is the individual type symbol, and [τ\... τn] is a relation type symbol.
According to the specifications of Section 3.3, properties will be degenerate

relations. For example, [ι] will be the type symbol for properties of indi-
viduals. Also, propositions will be degenerate properties, so [] will be the type
symbol for propositions.

Logical constants

s [ τ τ ] , E[τ]

= [ττ] is the identity constant with type symbol [TT]
E[τ] is the existence constant with type symbol [T].

Logical operators

~ &. Π v t
, O t , I—I, V , .

! will be used as the description operator.
Variables and nonlogical constants Denumerably many variables with type
symbol r and arbitrarily many nonlogical constants with type symbol r, for
each r.
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Terms

1. If t is a constant or variable, r is the type symbol of t, and τ Φ [ ], then
Ms a term with type symbol r.

2. If t\,..., tn (n > 0) are terms with type symbols τ\9..., τn9 respec-
tively, and either n = 0 and ί is a constant or variable with type sym-
bol [] or n > 1 and Ms a term with type symbol [τ{ .. .τn], then
ttγ... ίn is a term with type symbol [ ].

3. If t and u are terms with type symbol [] and χ is a variable, then ~/,
Situ, Ώt9 and Vχt are terms with type symbol [].

4. If ^ is a term with type symbol [ ] and χ is a variable with type symbol
r, then \χt is a term with type symbol r.

The reader may wonder why propositional constants and propositional
variables (i.e., those with type symbol []) are included in case 2 of the fore-
going definition, rather than being lumped together with the constants and
variables of other types in case 1. The reason is that this way of arranging the
grammar of terms gives a better fit between the rules of the grammar and the
forms of the recursions of Sections 5-7 than the alternative way of proceeding
would allow.

Formulas The terms which have type symbol [] are formulas. Thus, for-
mulas are those terms which (may) designate propositions.

Henceforth, A, B, C, A\,...are to be formulas. It will become clear in the
sequel that understanding the treatment of the formulas produced by case 2 of
the definition of terms (the predication case) is crucial for understanding the
theory. Where ttλ... tn is such a formula, t is the head term o/the formula and
t\9... 9tn are the tail terms o/the formula. It will also become clear that the
semantical theory treats head terms and tail terms very differently.

3.2 The metalanguage The metalanguage is Gδdel-Bernays with individuals.
That is, the metalanguage countenances both classes and objects which are not
classes, and a distinction is drawn between sets (those classes which are mem-
bers of classes) and proper classes (which are classes, but are not members of
any class.) The existence of the empty set, (unordered) pair sets, powersets,
unions, and an infinite set is assumed. It is postulated that the membership
relation is well-founded, and that the image of a set under a function (which may
be a proper class) is a set. Also, class abstraction is permitted, so long as the
abstraction condition does not involve unrestricted, bound variables taking
proper classes as values. The axiom of choice is not included.

The following notational conventions are employed:

l ((x9y)) = {{x}, {x> y}}> That is, <<x, y)) is the ordinary ordered pair
having x and y9 respectively, as its elements.

2. «*» =JC.

3. For n > 1, ((xu... 9xn+ι)) = <«<*i , . . . , * „ > > , *„+!>>. Thus,
< < * ! , . . . , JCΛ+I> ) is the ordinary n + 1-tuple which has xx,..., xn+\,
respectively, as its elements.
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4. (x0,..., xn-\) is the finite sequence with elements x0,..., xn-ι, re-
spectively. So (xθ9..., Xfl-i) is a function which has {0,..., n - 1} as
its domain and has xt as its value for the argument / (0 < / < n — 1).

Most of the semantical definitions, below, proceed by means of finite
sequences, rather than ordered pairs and ^-tuples. But, because functions are
construed as sets of ordered pairs, pairs are needed in a couple of places to
handle function abstraction. That is why notations for both pairs and sequences
are included.

5. Where xθ9...9 xn-\ are sets, Seq(xθ9..., xn-\) is the set of all finite
sequences y of length n such that for all / (0 < / < n - 1), the /th
element of y is a member of xh

6. Where/is a function, Z?/is the domain of/and Rf is the range of/.
7. Where x and y are sets, x => y is the set of partial mappings from x to

y (i.e., the set of functions / such that Z?/is a subset of x and Rf is a
subset of y).

8. An element/of x =* y is to far/ (with respect to x => j>) if, and only if,

9. Where t and j> are sets, yx = {/E x => j>: / i s total}.
10. /(w) is the result of applying/to w, if w E JD/. / ( W ) is undefined,

otherwise. This remark applies everywhere in what follows.
11. 4 = ' is used in such a way that if the value of one of the expressions

flanking it is undefined and the value of the other is defined, the
equation is false. If the values of both expressions are undefined, the
equation is true.1 0

Let x and y be sets, let u be an object which is not an element of y, and
let yx — y\J {u}. it is easy to see that x => y has the same number of elements
as yf. This provides a simple way of figuring out how many functions are in
x =*> y.

3.3 Basic semantical concepts The semantical theory employs possible
worlds, but, as will become apparent in what follows, it employs them in unusual
ways.

Basic ontologies

O = (D9 #), where D is a set-valued function and # E DD.
1. Wo = the set of worlds ofθ = DD.
2. # is the actual world ofO.
3. D{w) = the set of individuals existing in w.

All interpretations will be built up from basic ontologies. Each such
ontology has at least one world (the actual world of that ontology), but worlds
need not have any individuals existing in them (D(w) may be empty).

In what follows, part a of the definition glosses in metalinguistic prose the
notation being defined, and part b does the actual defining.
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Designation types

1. a. DT(O, L) = the individual designation type of O.
b. DT{O, ι) = the union over w G Wo of D(w).

Quantification over individuals will operate on the individual designation
type of O, rather than being restricted to some D(w). It will be possible to
restrict the quantifier to individuals existing in a world by using the individual
existence predicate appropriately.11 Similar remarks apply to descriptions.

2. DT(O9 [τλ...τn_x])
a. = the [τλ... τn_ι] relation designation type ofO
b. = Seq(Wo, DT(O, n ) , . . . ,£>Γ(O, τn^)) => {Γ, F}.

That is, an element of DT(O, [τx.. .τn-\]) is a function which, when
applied to a sequence <w, x l 5 . . . , xπ_i) consisting of a world and objects of
appropriate types, may yield a truth value. Of course, it may yield nothing.

3. a. PR(O) = the proposition type ofO.
b. PR(O) =DT(O, []).

Clearly, propositions are completely degenerate relations, as promised in
Section 3.1. Consequently, propositions take singleton sequences of worlds,
rather than worlds, as arguments. A terminological dodge will smooth out talk
about such matters. Consider a proposition/and a world w. / is true at w iff
/ ( < » ) = T. f is false at w iff/(<w>) = F. f is undefined at w iff /(<w>) is
undefined.

Intension types

1. /(O, r)
a. = the r intension type of O
b. - WO^DT{O, r).

Thus, a 7 intension is a function which, when applied to a world, may yield
a r designation. It may yield nothing, and it may yield different designations
when applied to different worlds.

2. Z?I(O, r)
a. = the r r/g/rf intension type of O

bl. = {0}, if ZλΓ(O, r) = 0
b2. = the set of total, constant members of /(O, r), otherwise.

Remark: If bl applies, then Ύ — ι.

Rigid intensions will be used to interpret variables. Clause bl ensures that
it will always be possible to interpret individual variables, even if there are no
individuals.

Intensional interpretations

t = <O, / ) , where / assigns intensions to the nonlogical constants.

Sections 5 and 7 show, for each intensional interpretation t, how to define
a function / f which assigns intensions to all terms.
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The intension of a term may be thought of as the most basic part of its
meaning. Allowing that a single intension may determine different designations
in different worlds is a way of taking into account the fact that different asser-
tions may be made by using the same sentence in different semantical situations.

Classical interpretations

* = <f, <Δ, V)), where Δ and V are defaults used, if necessary, to ensure
that every formula has a truth value as its extension. Δ is the head.default
of the interpretation, and V is the tail default.

The preceding paragraph exhibits the form of classical interpretations but
does not really define them, because definitions of "head default" and "tail
default" have not yet been given. Formal definitions of these terms will be
deferred until Sections 5.2 (for head default) and 7.2 (for tail default). The
intervening semiformal discussion should help the reader understand what is
going on when he encounters the full, technical explanation of what the defaults
are and how they operate.

Although every formula is assigned an intension in every intensional
interpretation, the intension of a formula may not determine a designation at
a world, and, even if a designation is determined by the intension, the designa-
tion may not determine a truth value. It is now possible to give a simple
illustration of these points.

A basic ontology O = (D9 #> is bleak iff DD = {#} and £>(#) = 0. In a
bleak ontology there are three propositions: the proposition which is true at #,
the proposition which is false at #, and the proposition which is undefined at
# (also known as the Russell proposition). There are four propositional inten-
sions: three rigid intensions having the three propositions as values, and the
undefined intension.

Consider a bleak ontology and a propositional constant P. If P is assigned
the undefined intension, P will have no designation at #. If P is assigned the
intension which has the Russell proposition as its value, P will have a designa-
tion at #, but the designation will not determine a truth value. In the other two
cases, the intension will determine a designation and the designation will deter-
mine a truth value.

In a classical interpretation built up from a bleak ontology, if P is assigned
either the undefined intension or the one which has the Russell proposition as
its value, the head default will be applied to the intension in question.12 It will
yield one of the other two propositional intensions as its value, and the truth
value of P will be determined via that intension.

The foregoing remarks provide the simplest possible illustration of what
the head default does. Section 5 gives a general account of how it works for
formulas involving neither bound variables nor predication. In Section 7 the tail
default is added and all terms are treated.

3.4 Why things are partial As the preceding example suggests, the theory
being presented rejects propositionism and asserts the existence of the Russell
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proposition because of the uniform use of partial functions at higher types. It
is now time to motivate this.

Consider the following sentences:

1. Scott is a logician.
2. Godzilla is a monster.
3. God is a deity.

Clearly, when one uses any of them assertively, one speaks truly. But how does
one manage to do this?

The case of "Scott is a logician" is unproblematic. "Scott" refers to Scott
(i.e., Professor Dana Scott), "is a logician" expresses the property being a
logician, and when one predicates "is a logician" of "Scott", one attributes the
property in question to Scott. Since he has the property, a true proposition is
expressed.

Things are otherwise with "Godzilla is a monster". To begin with, God-
zilla doesn't exist. Does one speak truly when the sentence is used assertively
because Godzilla exists in some other world and one is, somehow, talking about
him and attributing to him our property monstrousness? Or is one's success
merely a result of the way we regard certain activities of Japanese film makers?

Evidently, even nastier questions can be asked about "God is a deity". The
metaphysician and the philosopher of language are, quite properly, concerned
with such questions. But if the logician must answer them before formalizing
arguments in which these sentences occur, he will never be able to get started.

These considerations suggest that the logician had better figure out a way
of doing logic which avoids questions of these sorts if he is going to formalize
the ontological argument and many other philosophically interesting arguments.
This was a major motivation for the development of first-order free logic.13 As
long as attention is restricted to first-order logic, the main problem is how to
handle sentences like 1-3, above, which involve singular terms which do not or
may not denote. But moving to a higher-order system raises the question of what
to do about sentences like "Scott is even". Here, there are no nondenoting
singular terms, but it is hardly clear that being even is a property which can be
attributed to Scott. Yet one can speak truly by using assertively the sentence "If
Scott is an even prime, then Scott is even", so the problem of providing a
semantical account of sentences like "Scott is even" cannot be avoided.

The theory of this paper resulted from a persistent attempt to extend the
treatment of nondenoting singular terms provided by first-order systems of free
logic to cover examples like the one given in the preceding paragraph. Allow-
ing that attribution may fail, even if predication is successful, led naturally to
the introduction of partial propositions. Also, there seemed to be no good reason
to require that a formula should express the same proposition in every world and
fairly good reasons for not doing this. Notoriously, the same sentence can be
used to express different propositions in different situations, and the things being
called "possible worlds" here are really just basic semantical situations in which
formulas are to be assigned truth values. Taking these points into account led
to the introduction of intensions of the sort considered here. And, what with
everything being partial, there had to be defaults to ensure that, ultimately, every
formula would get a truth value.
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4 Reprise Although it is not yet possible to prove anything, it is possible to
indicate how things will be proved eventually. That will now be done.

Officially speaking, the language of the system is written in prefix notation
(operators are written before operands and no parentheses are used). Also, the
logical constants carry type symbols along with them, in order to provide a
formal way of distinguishing the various identity relations and kinds of existence
involved in the type structure.

This way of arranging the notation was devised with the developments of
Sections 5-8 in view, and it is fine for those purposes. However, in order to
allow the reader to concentrate on the content of the semiformal explanations
of this section, without having to worry about unfamiliar ways of arranging
notation, the official notation of the system will be abused here. Infix notation
will be employed (i.e., binary operators will be written between their operands
and parentheses will be used), and ' = ' will be employed in a typically ambigu-
ous way as an object language symbol for identity.

The reader will have to rely on his intuitions in order to interpret the
variable binders and will have to take the author's word for how the defaults
operate (or don't). The author warrants that the reader will not, thereby, be
misled.

4.1 The Russell proposition (revisited) Where/is a proposition of the basic
ontology O, the negation of/is the proposition of O which is true at those
worlds where/is false, false at those worlds where /is true, and undefined at
those worlds where/is undefined. Evidently, there is exactly one proposition
which is its own negation: the empty function (also known as the empty set, also
known as the Russell proposition). The following definition provides a piece of
notation which designates it at every world in every interpretation.

R =d/lp(p = ~P).

Where/and g are propositions of O, their conjunction is the proposition
which is true at worlds where both are true, false at worlds where at least
one of them is false, and undefined at worlds where neither of these condi-
tions holds. A -> B is defined to be -(A & ~B), and A = B is defined to be
(A^B)& (B-^A).

A is closed iff no variable is free in A. Let A be a closed formula. A is
intensionally valid iff in every intensional interpretation f, at the actual world
of t A designates a proposition which is true at that world. A is classically valid
iff in every classical interpretation *, A has Γas is extension at the actual world
of*.

In the following, 1 is intensionally valid, 2 and 3 are classically valid:

1. R = ~R.
2. R Ξ R .

3. ~ ( R Ξ ~ R ) .

Since R designates the Russell proposition at every world in every interpre-
tation and the Russell proposition is its own negation, it follows (via the defi-
nitions to be given below) that ~R also designates the Russell proposition at



INTENSION, DESIGNATION, AND EXTENSION 321

every world in every interpretation. This suffices for the intensional validity
of 1.

Because R designates the Russell proposition at every world in every
interpretation and the Russell proposition is undefined at every world in every
interpretation, R gets one of the two truth values as its extension by default at
every world in every classical interpretation. Then truth tables apply. It follows
that 2 and 3 are classically valid.

It should be clear from the preceding two paragraphs why one cannot infer
R Ξ ~ R from 1 and 2 —although R and — R designate the same proposition, that
tells one nothing about their truth values. Consequently, it is fallacious to replace
the right-hand occurrence of R in 2 by an occurrence of ~R. This provides an
excellent example of the difference in the way head terms and tail terms are
treated in the theory being presented —R and — R are tail terms in 1, but they
are head terms in 2 and 3. Evidently, the difference is important.

This brings us back around to the story about Frege and Russell which was
begun in Section 2.1. One thing which needs to be done in order to turn it into
more than a romance is to introduce the notations {x: x£x} £: {x: x£x} and
{x: x φ. x) φ. {x: x φ x) and get things to work out for them as they do for R
and —R. A way of doing this will be sketched in Section 8.2. The other thing
which needs to be done is to show that the historical content fits the facts.

There is reason to think the historical content does fit the facts, at least as
far as Frege's end of the affair is concerned. Frege was, in his way, a great fan
of defaults. We find him, for example, telling us that we must explain what it
means to add 1 to the Sun ([4], p. 33) and trying to explain how to negate 2
([4], p. 35). Also, it is clear from [2] that he believed that some propositions
(gedanken) expressible in natural languages determine no truth value. In [5] we
can follow his painstaking efforts to make sure that this could not happen in
the language of his formal system. But he adhered rigidly to the view that the
reference of a formula is determined by its sense and tried to do all the neces-
sary defaults by extending the domains of functions to totality, which will not
work.14

4.2 Counterexample to extensionism For each basic ontology O, besides the
Russell proposition, there are always at least two other O propositions: the
totally true proposition, which is true at every world, and the totally false propo-
sition, which is false at every world. The following definitions provide notations
for these.

T =dfVp(P=P)-
F =df ~T.

It is now possible to explain why the theory being presented is inconsistent
with extensionism. In the following, 1 is classically valid and 2, 3, and 4 are
intensionally valid.

1. D ( R & ~R = T & ~T).
2. (R& ~R) = R .
3. (T& ~T) = F .
4. ~((R& ~R) = (T& ~T)).
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That 2, 3, and 4 are intensionally valid should be plausible from the
definitions of T and F and what was said about negation and conjunction in
Section 4.1. It should also be plausible that R & ~ R = T & ~ T i s true at every
world in every classical interpretation. This suffices for the classical validity
of 1.

The reader must not be misled by what has just been said into thinking that
the customary Kripke condition for the truth of formulas beginning with D
holds for all formulas. It is not always true that ΏΛ has Γas its extension at
a world in a classical interpretation iff A has T as its extension at every world
of that interpretation. This may be seen as follows.

D will be interpreted by means of an operation which sends the totally true
proposition to itself, sends any proposition which is false at some world or other
to the totally false proposition, and sends all other propositions to the Russell
proposition. Consider a basic ontology which has two worlds: # and wx. Let the
intension of the propositional constant P have the totally true proposition as its
value in #, and let the intension of P have the totally false proposition as its value
in Wj. Then DP will designate the totally true proposition in #, but P will
designate the totally false proposition in wx. This suffices to make T the exten-
sion of DP in # and to make F the extension of P in wx. (Because everything
is total, the defaults have no effect.)

4.3 Invalid and valid ontological arguments Let TΓ be a variable for prop-
erties of individuals, let Π symbolize "is a perfection", let g be an individual
constant symbolizing "God", and let x be an individual variable. Descartes'
ontological argument may be formalized as follows:

1. V7r(D((Πτr) = T) v D((Πτr) = F))
2. D(g=(!xDVτr((Πτr)^D(τrx))))
3. UE
4. Hence, Eg

Or, in something like English:

1. For every property TΓ of individuals, either it is necessary that the
proposition that TΓ is a perfection is the totally true proposition or it is
necessary that the proposition that TΓ is a perfection is the totally false
proposition.

2. Necessarily, God is the being x such that it is necessary that for every
property TΓ of individuals, if TΓ is a perfection, then necessarily x has TΓ.

3. Existence is a perfection.
4. Hence, God exists.

Premise 2 is a strengthened version of Descartes' first premise, and 3 and
4 are straightforward formalizations of his second premise and conclusion.
Premise 1 is a stability assumption —it says that being a perfection is an all or
nothing affair which has the same upshot in every world. Although it's hard to
say what being a perfection is like, it seems reasonable to say at least this.

Even given the added premise, the argument is invalid. To see this, con-
sider a bleak ontology. Since there is only one world, the boxes can be ignored.
Also, in a bleak ontology, there is only one property of individuals, 0, and this
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property is also individual existence. (In every interpretation built up from a
basic ontology O, individual existence is the property/of individuals such that
for every world w of O and every individual o of O, /(<w, o>) = T if o E
D(w), and /(<w, o)) = F if g £ D(w).) Let the intension of Π have as its
value at # the function which has {<#, 0)} as its domain and has Γas its value.
This will make Vτr((Πτr) = T) true. It follows that 1 and 3 will be true. The
individual constant in 2 must be assigned an individual intension, and the
description will have an intension by virtue of the recursive definition of P to
be given below. But there is only one individual intension in a bleak ontology:
0. Hence, both the constant and the description will have 0 as their intension.
Their having the same intension is sufficient for the truth of 2. Since the inten-
sion of the constant determines no individual at #, the tail default will produce
an extension for 4. That extension will be F, because things are arranged so that
no formula of the form Et is every made true by default.

On the other hand, adding as a premise that God's existence is possible
yields a valid argument with the conclusion that God's existence is necessary.
That is, for every classical interpretation *, if 1-4, below, are true at the actual
world of *, then 5 is also true at the actual world of *.

1. Vτr(D((Πτr) = T) v D((Πτr) = F))
2. D(g=(!xDVπ((Πτr)-*D(7rx))))
3. UE
4. ~Π~Eg
5. Hence, ΏEg.

Premise 1 and the form of the description suffice to ensure that the inten-
sion of the description is constant. By premises 2 and 4, that intension is not
degenerate. It follows that it is rigid and, via 2 again, that g and the descrip-
tion have the same intension. Given the way the rules for the description
operator will be arranged, it follows that DV7r((Πτr) -* D(τrx)) will be true, if
this intension is assigned to x. This and premise 3 imply that ΏEx is true for
this way of evaluating x. It follows that ΏEg is true.

Before settling down to give the definitions necessary to turn the proof
sketches of this section into proofs, it will be well to illustrate how this valid
version of Descartes' ontological argument fares in some interpretations built
on very simple ontologies.

A basic ontology is Spinozistic iff the actual world is both the only world
of that ontology and the only individual in that world. Individual existence is
the only candidate for being a perfection in such an ontology, and if one makes
it such and assigns g the only nondegenerate intension available, the premises
and conclusion will be true.

Next, consider a basic ontology with two worlds, # and wu where Scott is
the only individual in # and Godzilla is the only individual in W\. If g is
assigned either the rigid intension having Scott as its value or the rigid intension
having Godzilla as its value, the conclusion will be false. Given such an assign-
ment of an intension to g9 any way of making 1 and 3 true will make 2 false,
because the description will not designate an individual and the tail default will
always make t = u false if t has a designation but u does not. On the other hand,
it is possible to make ΏEg true by assigning g the Scottzilla intension — the
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individual intension which has Scott as its value in # and has Godzilla as its value
in the other world.15 Premise 2 will be false for this way of interpreting g.
One other individual intension is worth considering before passing on to the next
example —the Godott16 intension, which has Godzilla as its value in # and has
Scott as its value in wγ. If the Godott intension is assigned to g, D -Eg will
be true.

As a final example, consider a basic ontology which has two worlds and
has the same individuals in both, namely Professor Scott and Professor Peter
Andrews. Here, both Scott and Andrews exist necessarily, so if either the inten-
sion having the former as its value in both worlds or the intension having the
latter as its value in both worlds is assigned to g, the conclusion will be true
and premise 4 will be true. If one makes individual existence the only perfec-
tion and does it carefully, premises 1 and 3 will also be true, but 2 will be false,
because, as was remarked above, the description will fail to designate an indi-
vidual and the tail default will be arranged so that t = u is false if the intension
of / determines a designation and the intension of u does not. If one allows that,
besides individual existence, being Scott is the only other perfection, Scott
undergoes apotheosis. A symmetric move would ensure the divinity of Andrews.

By the remark at the end of Section 3.2, there are 33 = 38 1 properties of
properties of individuals in the ontology considered in the preceding paragraph,
so it seems many other stories could be told about that ontology. However,
enough stones have been told. It is time to get on with the formalism.

5 Propositίonal calculus The formulas of the propositional calculus are
those which can be built up from variables and constants with type symbol [ ]
by means of ~, &, and D. In this section attention is restricted to formulas of
the propositional calculus, which makes it possible to give a precise illustration
of what the head default does without worrying about the tail default. From now
on, prefix notation is employed in describing and writing object language expres-
sions. Definitions which apply to the full system will be marked "General", and
those which must be extended later will be marked "PC".

Designations (general)

a. DE(O) = the set of O designations.

b. DE(O) = the union over r E TS of £>Γ(O, r).

That is, the set of O designations is the union of the O designation types.

Intensions (general)

a. /(O) = the set of O intensions.
b. /(O) = the union over r E TS of /(O, r).
And the set of O intensions is the union of the O intension types.

Determination of designations by intensions (general) For / E /(O) and
we Wo:

a. DE(O, w,/) = the O designation (if any) determined by/in w.
b. DE(O, w , / ) = / ( w ) .
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Thus, the O designation (if any) determined by the O intension/is obtained
by applying / to w.

5.1 Intensional interpretations (propositional calculus) Recall that an inten-
sional interpretation consists of an ontology together with an assignment of
intensions of that ontology to nonlogical constants. It will now be shown how
to extend such an assignment to one which assigns intensions to complex for-
mulas of the propositional calculus.

Determination of extensions (PC)

ForfePR(Q) and wG Wo:
a. EX(O, JC, /) = the O extension (if any) determined by/in w.
b.EX(O, w , / ) = / « w > ) .

Using the terminology introduced in Subsection 3.3, this amounts to say-
ing that the O extension determined by the proposition / in w is Γif/is true
at w, Fiffis false at w, and undefined, otherwise.

The logical operations (PC)

1. N(O)
a. = the negation operation ofO
b. = the / G PR(O) => PR(O) such that / is total, and for all g G

PR(O) and all w G Wo, Df(g) = Dg and /(g)«w>) = T iff
g((w))=F.

So the negation of the proposition g is the proposition which yields truth
values at exactly the worlds where g does and yields the opposite truth value to
the one produced by g at worlds where both produce truth values.

2. K(O)
a. = the conjunction operation of O
b. = the/G Seq(PR(O), PR(O)) => PR(O) such that/is total, and

for all g9he PR(O) and w G Wo:
(D/«£, h))((w)) = T, if g((w)) = Γand h((w)) = T
(2)f«g, Λ>)«w>) =F, if g((w))=For h((w))=F
O)f((g> Λ>)(<w)) is undefined, otherwise.

That is, the conjunction of the propositions g and h is the proposition
which is true at worlds where both are true, false at worlds where at least one
of g and h is false, and undefined, otherwise.

3. L(O)
a. = the necessity operation ofO
b. = the/G PR(O) => PR(O) such that/is total and for all g G PR(O)

and w G Wo

( l ) / ω « w > ) = Γ, if for all wx G Wθ9 g«w,>) = T
(2)f(g)((w)) =F9 if for some w{ G Wo, g«Wι» =F
(3)/(g)(<w>) is undefined, otherwise.
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Let us call the result of applying the necessity operation of O to the propo-
sition g the necessitation of g. Then the necessitation of g is true at a world w
if g is true at every world of O, the necessitation of g is false at w if g is false
at some world of O, and the necessitation of g is undefined at w, otherwise.

Intensional interpretations (general)

t = <O, / ) , where / is a function such that DI is the set of nonlogical
constants and for all t E DI, /(/) E /(O, r), where r is the type
symbol of t.

Where Fis the set of variables, F1* is {ψ: ψ is a function, Dψ = V, and for
all x E Dφ, φ(χ) E RI(O, r), where r is the type symbol of χ}.

That is, F1" is the set of assignments of rigid intensions to variables.

Intension, designation, and extension (PC) For ψ E F1", w E JFo> a n d
z1 a f o r m u l a o f t h e p r o p o s i t i o n a l c a l c u l u s , d e f i n e l\ψ9 t ) , DE\ψ, w , t ) , a n d
EX\ψ, w, 0> respectively, the intension oft in t under ψ9 the designation (if
any) 0/ / />? t at w under ψ, and the extension (if any) of t in ^ at w under ψ,
as follows:

Case 2^(PC): Ms a variable or constant.

If Ms a variable, then fiψ, t) = ψ(t).

Or, put less formally, the intension of a variable in an intensional interpre-
tation under an assignment of rigid intensions to variables is the intension
obtained by applying the assignment to the variable in question.

If Ms a constant, then 7 t(^, t) = /(/).

In other words, the intension of a constant is the intension assigned to that
constant by the intensional interpretation under consideration.

DEHφ, w,t)=DE{O, w,lHψ,t)).

Thus, the designation of a propositional variable or constant in an inten-
sional interpretation at a world under an assignment of rigid intensions to vari-
ables is the designation (if any) determined by the intension of that variable or
constant in the ontology of the interpretation.

EXHΨ, w,t)=EX(O, w,lHφ,t)).

And in an intensional interpretation the extension of a propositional vari-
able or constant is also determined by the intension of that variable or constant.

Case 3^(General): Ms ~A.

DEHψ, W, t)=N(O)(DEHφi w,A)).

So the designation of the negation of a formula is found by applying the
negation operation of the interpretation to the designation of the formula. In
the other two cases, below, the conjunction and necessity operations are used
to produce designations for conjunctions and formulas beginning with box from
the designations of the subformulas.
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iHψ, t) = {«w1> DEHΦ, wl9 0 » : w1 G ^o}.

That is, the intension of tin t under ψ is defined to be the function which,
for every world wx G Wo, has the designation (if any) of tin t at Wγ under ^
as its value.

EXHψ, IV, 0 = £*«>, w, /t(0, 0 ) .

In the remaining cases, /^i/s t) and EX^(ψ, w, /) are always defined
from DE\ψ, w, /) in the preceding manner.

It follows that in an intensional interpretation of the propositional calcu-
lus, the extension (if any) of a formula is determined by its intension.

Case 41(General): t is &AB.

DEHΨ, W, /) = K(O)((DEHΨ, W, A), DEHψ, W, £)>)•

Case 51(General): t is D A

Z ) ^ ! ^ , w, 0 = L(O)(DEHφ, W, Λ)).

Where A is a formula of the propositional calculus, A is intensionally valid
iff for every assignment of values to the variables of A in every intensional
interpretation t, at the actual world of t A designates a proposition which is true
at that world.

No formula of the propositional calculus is intensionally valid. To see this,
consider an arbitrary basic ontology O, let / assign the rigid intension having
the Russell proposition as its value to every propositional constant, and let ψ do
the same for every propositional variable. Every formula of the propositional
calculus will designate the Russell proposition at every world of the resulting
interpretation.

5.2 Classical interpretations (propositional calculus) Inspection of the defi-
nitions given in Section 5.1 show that 1^ is defined for every φ G F1" and
every formula of the propositional calculus. But DE^ and EX^ may be unde-
fined for some triples of arguments. Further scrutiny of the definitions in
question shows that this situation will arise only if the intension of some
propositional constant or propositional variable fails to determine an extension
at some world. Consequently, if each intension of a propositional variable or
constant is defaulted to a total intension determining total designations, the other
clauses of the definition can be used to assign default intensions, designations,
and extensions to all formulas of the propositional calculus. The head default
is used to carry out this scheme (and for more general purposes in Section 7.2).

Head defaults (general) Consider a basic ontology O = (£>, #). Δ is a head
default for O iff Δ is a function such that:

a. DA = the union over r G TS - {L} of Seq({τ}, /(O, r)>
b. for all r and/such that <r, /> G DA, Δ<r, /> G /(O,r) and, where

Δ<r,/> = / '
c. for all w G Wo, f'(w) is a total element of DT(O, r) and either w £.

£>/or/'(w)n/(w)=/(w).
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Clause a of the foregoing definition provides the generality which will be
required in Section 7.2. Clauses b and c assert that the default yields a total
intension which determines total designations agreeing with the designations
determined by the intension with which one began.

t = <t, A) is a classical interpretation for the propositional calculus iff
t = <O, /> is an intensional interpretation and Δ is a head default
forO.

Consider a classical interpretation for the propositional calculus, t =
<t, Δ), and define Γ(ψ, t), DE'(ψ, w, t), and EX'(ψ, w, 0, respectively, as
the default intension, default designation, and default extension oft, as follows,
where / is a formula of the propositional calculus.

Case 2'(PC): t is a variable or constant.

Let/be iHφ, t), and let/' = Δ<[],/>.
DE'(ψ, w, t) =f'(w).

Γ(Ψ, t) =/ ' .
EX'(φ, w9t)=EX(O, w,/').

Cases 3'-5'(General): Replace ' f by '" everywhere in the specifications of cases

3^5*.

IX(Ψ, t) = p(ψ, t), and DEHΨ, W, t) = DE^ψ, iv, t).

Note that the intension and designation of / in a classical interpretation for
the propositional calculus are the same as t's intension and designation in the
intensional interpretation which is a part of the classical interpretation in
question.

EXHΨ, W, t) =EX'(Ψ, w, t).

But /'s extension in a classical interpretation for the propositional calcu-

lus is its default extension.

6 Basic semantical concepts (continued) In preparation for the develop-
ments of Section 7, the definitions of basic semantical concepts will now be
completed.

Determination of extensions (continued)

For o G DT(O,L) and w G Wo\

a. £X(O, w, o) = the O extension (if any) determined by ρ in w.
b. EX(O, w, o)

bl. = p, if oED{w)
b2. = undefined, otherwise.

Thus, o determines an extension in w iff o exists in w, and that extension
is o if o exists in w.

Consider feDT(O, [τ{.. .τn]) (n > 1) and we Wo. For all /(I < /< n),
let x, = DT(O, r/), if 7/ ^ i, and let x, = D(w) Π i)Γ(O, r,), if 7, = 6. Then:
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a. EX(O, w, f) = the extension of f in w.
b.EX(O, w , / ) = {«yl9...,yn)): <yu...,yn) € Seq(xu... ,*„>,

and/(<w, yl9. ..,yn)) = Γ}.

That is, the extension of the property or relation/in the world w is deter-
mined by fixing w, restricting attention to individuals existing in w, and pick-
ing off the appropriate set of ^-tuples. This makes the extension of a relation
the sort of object which is usually called a "relation" when one is doing set
theory.

The preceding definition is an idle wheel as far as the language currently
under discussion is concerned, because notations for talking about extensions
of properties and relations are not available. Evidently, introducing them would
be no problem.

For w E Wo:
a. EX{O, w) = the set of w extensions of O.
b. EX(O, w) = {EX(O, w, x): for some τ<ΞTS,x<Ξ DT(O, r)}.

Thus, the set of w extensions of O is the set of extensions determined by
O designations in w.

And:
a. EX(O) = the set of O extensions.
b. EX(O) = the union over w E Wo of EX{0, w).

For/<E /(O) and w E Wo\
a. EX(Of w, /) = the O extension (if any) determined by f in w.
b.EX(O9 w9f) =EX(Oi w,f(w)).

So the extension determined by the intension/in w is the extension deter-
mined by the designation determined b y / i n w.

Attribution Consider [τx...τn] (n > 0), w e Wo,/e /(O, [τx . . .r n ]), and
g i € / ( O , r O ^ . ^ ^ G / ί O , r Λ ) .

a. PR(O, w, </, g i , . . . , gΛ>) = the O proposition (if any) determined by
fandgu.. .,gΛ m w.

b.P/?(O, w,</, g l f . . . , g Λ > )
bl. is undefined, if w £ Df
b2. ={<«w 1 >,/(w)«w 1 ,g 1 (w 1 ) > . . . , g I I (w 1 )>)» : wxe Wo}, other-

wise.

Understanding the foregoing definition is crucial for understanding what
goes on in Section 7. Note first that if n = 0, then PR(O, w, </, gi,. . .,
£/?)) = / ( w ) . This ensures that the definitions given in Section 5 really are
special cases of the ones to be given in Section 7.

Suppose n > 1. PR(O, w, </, g{,.. ., gn)) will be undefined iff w <£ Df
Suppose w .e Df. Then PR(O, w, </, gi,. . . , gn>) will be the proposition
which, for all wx E Wo, is true at wx if/(w)«ιv 1, gx{wx),..., gn(w{))) = Γ,
is false at wx iff(w)((wu g i(wi), . . . ,gΛ(τvi)>) =F, and is undefined at w{ if
f(w)((wu g\(wι),...,gn(wι))) is undefined. f(w)((wu g^w^,... ,gn(w{)))
may be undefined either because there is an / such that gi(wχ) is undefined or
because, although there is no such /, (wu gι(wγ),..., gn(w\)) ί Df(w). In
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Section 7.2, the head default will be used to deal with the latter source of
undefinedness and the tail default will take care of the former.

The logical relations and intensions Definitions 1 and 2 under this heading
say that the identity constants really express identity.

1. IDE(O9 [TT])
a. = the [TT] identity designation ofO
b. = the/G DT(O9 [TT]) such that/is total, and for all w, x, and y

such that <w, x, y) G Df,/(<w, x, y)) = Tiff x = y.
2. //(Q, [TT])

a. = the [TT] identity intension ofO
b. = the element of RI(O, [TT] ) which has IDE(O, [TT] ) as its value.

3. EDE(O, [T])
a. = the [r] existence designation ofO
b. = the/G DT(O, [r]) such that/is total, r = ι only if for all w and

x such that <w, x) G Df, /(<w, x)) = Tiff x G £>(w), and r ^ t
only if for all w and x such that < w, x> G Df, f((w,x)) = T.

Thus, existence at higher types is boring —every relation, property, and
proposition exists in every world.

4. EI(O, [T])

a. = the [T] existence intension ofO
b. = the element of RI(O, [r]) which has EDE(O, r) as its value.

The logical operations (continued)

5. Π(O, r)
a. = the r universal quantification operation of O
b. = the function / such that

(1)/E Seq{Wθ9 DT(O, r) => PΛ(O)> => {Γ, F}
(2) if DT(O,τ) = 0, then for all w <Ξ Wo, f((w, 0)) = T
(3) if DT(O9τ) ΦO, ge DT(O, r) =* PR(O), and g is not total,

then/is undefined for <vv, g)
(4) if £>Γ(O, r) Φ 0, g G Z)Γ(O, r) =» PR(O), and ^ is total, then

for all w G PFO:
(a)/«w, g>) = T, if for all x G Z>Γ(O, r), g(x)«w>) = T
(b) f((w,g))=F9 if for somex£DT(O9 τ)9 g(x)((w)) =F
(c) f(<w, g)) is undefined, otherwise.

This definition paves the way for interpreting universal quantification as
a variety of infinite conjunction. To see how this will work, consider a formula
Vχ̂ 4, and suppose the designation of A is defined at every world, for every
assignment of values to variables. Where r is the type symbol of χ, a function
g G DT(O, T) => PR(O) will be defined by letting the value of χ vary over RI(O,
r). By fixing this function and considering f((w, g)) as w varies over Wo, a
designation for VχA will be obtained. Clause (2) allows for the possibility that
there may be no individuals. Clause (3) causes undefinedness, if the indexing of
propositions by elements of DT(O9 r) fails anywhere.



INTENSION, DESIGNATION, AND EXTENSION 331

6. J(O, T)

a. = the τ description operation of O
b. = the function / such that

(l)feSeq( WO,DT(O, r) => PR(O)) => DT(O, r)
(2) if DT(O, r) = 0, then for all w G Wθ9 f is undefined for

<w, 0)
(3)ifZλΓ(O, r) gfcO, gGDT(O, r) =*«?(O), and Z>g * DE(O,

r ) , then for all w G Wo* / i s undefined for <w, g>
(4) if DT(O, T) Φθ, g<Ξ DT(O, r) => PR(O), and Z)g = £>Γ(O,

r), then
(a) if there is an x <Ξ Z)Γ(O, r) such that £(x)(<w>) = Γand

for all^GZ)Γ(O, r), x Φ y only if g(j)(<w>) = F, then
/ « w , g > ) = x

(b)/(<w, g)) is undefined, otherwise.

Given what was said, above, about the quantifier, it should be clear that
this is the natural way to interpret the description operator. Clauses (a) and (b)
will ensure that a description has a designation iff the customary existence and
uniqueness conditions hold intensionally.

7 The full system The definitions given in Section 5 will now be extended
to cover all terms.

7.1 Intensional interpretations For ψ G F1" and w G Wo, define / t ( ^ , 0>

DE*(ψ9 w, 0, and EXHψ, w, t) as follows:

Case 1t: Ms a constant or variable with type symbol r and r Φ [].

If Ms a variable, then 7 t(^, /) = ψ(t).
I f / i s s l T 1 T l ] , thent(ψ, t) = 7/(O, [u^]).
lftisE[τι], thenlHψ, t) = E I ( O , [ τ x ] ) .
If t is a nonlogical constant, then Piψ, t) = I(t).
D&W, W, t) = DE(O, w, Z 1 ^ 0 ) .
^2ίf(Ψ, w, 0 = EX(O, w, /t(0, 0).

Case 2^: t = uυx ... υn (n > 0), where either π = 0 and u is a variable or con-
stant with type symbol [] or n > 1, vu. .., υn are terms with type symbols
τ i , . . . , τn, respectively, and u is a term with type symbol [τι . . . r j .

If ft = 0, I^iψ, t) is determined as in Case 1.
Let/, g\,...,gn b e / 1 " ^ , w), 7 t (^, i O, . . .,7f(i//, yΛ), respectively.
1 ) ^ ( 0 , w, 0 =PR(O, w, </, ^ i , . . . , ^ > ) .
iHφ, t) = { «w l f P ^ f ( ψ , w l f 0 ) > : w, G PFo}.
EXHt, wit)=EX(O, w,lHΨ,0).

In the remaining cases, I^(ψ, t) and EX^iΨ, w, t) are always defined
from DE^iψ, w, 0 in the preceding manner.

Case 6\' t is Vχ^4, where r is the type symbol of χ

If there is a ^i G Kf such that ψι agrees with ψ off x and DE't(φι, w, A)
is undefined, then DE^iψ, w, 0 is undefined.
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Suppose there is no such φ{9 and specify/E DT(O9 T) => PR(O) as fol-
lows. If DT(O9 T) = 0, then/= 0. Suppose DT(O, r) Φ 0, and for each
x E DT(O, r), let ψx be the member of F1" such that φx agrees with φ off
X and ψx(χ) is the element of RI(O9 r) which has x as its value. Then for
all x E DT(O9 τ),f(x) = DE\φx, w, A).

DE\φ, W, t) = {<«*>!>, Π(O, ^((W!,/)))>: W l E Wo}.

Case 7^: t is lχA, where r is the type symbol of φ.

If there is a i/̂  E K1" such that ψt agrees with φ off x and DE^{φu w>, >1)
is undefined, then DE^iφ, w, /) is undefined.

Suppose there is no such φλ9 and let/be specified as in Case 6.

DEHφ, W, t) = 1(O, r)«w,/>).

This concludes the definitions of Z1, pZi1, and ^^ί1. Observe that 7 f is
defined for all φ e Vf and all /.

As usual, for closed t, Γ(φ, w, t), DE^(φ, w, /), and EX^iΦ, w, 0 do
not depend on φ. So p(t), DE\w, t)9 and EX\w9 t) can be defined by
quantifying over V^ in the customary way. For such t, DE\t) = DE^(#, t)
and EX\t) = EX1'(ft, t). If A is open, but does not contain free variables with
type symbol t, let A' be its universal closure, and define l\A)9 DE^(w9 A),
and EX\w9 A) to be t(A'), DE\w9 A')9 and ^ ^ ( w , A')9 respectively.17

A is intensionally valid iff for every intensional interpretation | ,

£ar f(i4) = Γ.

Let a variable x with type symbol [] be chosen, and define:

T = « r v x s » " ] ] x x .

R = ^ ! χ s l ι l l l l χ - χ .

The foregoing definitions recast in official notation the definitions of T,
R, and F given in Sections 4.1 and 4.2.

Theorem 7.1.1 Consider an intensional interpretation t = <O, / ) .
a. DE\Ί) = ίhefe PR(O) such that f is total, f is constant, and f has T as

its value.
b. DEHR) = 0 .

c. DE^F) = thefe PR(O) such that f is total, if is constant, and f has F as
its value.

d. DEH&Ύ ~ T) = DE\¥).
e. Z ^ ί - R ) =Z)£'t(R).
f. DEH&R-R) =DEHR).

g. DE\=[[][]] & R ^ R & T ^ T ) ^ ^ ^ ( F ) .

h. DEH~=[IU]] & R - R & T ^ T ) =DEHΎ).

i. EX\Ύ) = T.
j . ^ ^ ( R ) is undefined.
k. ^ ( F ) = F .

Proof: By inspection of the foregoing definitions.
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Corollary 7.1.2
a. T is intensionally valid.
b. ~ = l [ 3 1 ] 1 & R ~ R & T ~ T is intensionally valid.
c. If A is intensionally valid, then = [[][]] AΎ is intensionally valid.

Theorem 7.1.Id, e, and f and Corollary 7.1.2b substantiate the claims
about intensional validity made in Sections 4.1 and 4.2.

7.2 Classical interpretations In providing default intensions, designations,
and extensions for formulas of the full system, it suffices to blow everything up
to totality in the predication case and in the case of descriptions with type symbol
[]. Application of the head default will suffice in the latter case. In the former,
it may be necessary to use the tail default, even after applying the head default
to the intension of the head term. (Cf the remarks following the definition of
attribution in Section 6.)

V is a tail default for O iff V is a function such that:

a. DV is the union over r = \τx . . .τn] G TS — {ι, []} of {<r, w, /,
gu . . . , gn) G Seq({τ}, Wo, /(O, r ) , /(O, n ) , . . . , /(O, r)):wG Df
f(w) is a total element of DT(O,τ), and w £ {Dgx) Π . . . Π(Dgn)}

b. for all x G DV, Vx G {T, F)
c. i f * = < [ τ i τ i ] , w,II(O, [τxτγ]),g, g,)9 then Vx= T

d. ifx=([τιτι], w, 11(0, [τιτι])fgug2> and w G (Dg{) U (Dg2), then
Vx = F

e. if x = < [n . . . ηr. . . r Λ ] , w, /, ^ , . . . , gh . . . , ĝ > G £>V, j = < [τ/7,], w,
//(O, [τ/T/1), ft, Λ> G Z)V, and Vj = Γ, then * ' = <[n . . . τf . . . r j , w,
/, g j , . . . , ft,..., ft,) G I)V and Vx = Vx'

f. i f J C = < [ r 1 ] , w,EI(O, [TX])9g) G £ V , t h e n Vx = F.

Clause a says that the domain of V is precisely what it needs to be in order
to ensure that a truth value will be assigned in the predication case, even if
application of the head default is insufficient to achieve this result. Clause b says
that, in fact, application of the tail default will provide a truth value in this sort
of situation. Clause c sees to it that = [ τ τ ] tt will always have T as its extension,
and Clause d makes = [ τ τ ] tu false if one of / and u has a designation and the
other does not. Clause e says that the overall effect of the tail default is com-
patible with its effect on identity, and Clause f says that E[τ] t is never true by
default.

An extension default for O is a sequence <Δ, V> such that Δ is a head
default for O and V is a tail default for O.

* = <t, <Δ, V>> is a classical interpretation iff t = <O, /) is an inten-
sional interpretation and <Δ, V) is an extension default for O.

Consider a classical interpretation * = <t, <Δ, V)), and define Γ(ψ, t),
DE'(ψ, w, 0 , and EX'(ψ9 w9 t) as follows.
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Case Γ: t is a c o n s t a n t o r v a r i a b l e w i t h t y p e s y m b o l r a n d r Φ [].

DE'(ψ9w9t)=DEHφ9w,t).
EX'(ψ,w,t)=EXHψ9w,t).

Case 2': t = uυx ... vn (n > 0), where either n = 0 and u is a variable or con-
stant with type symbol [] or n > 1, υu..., υn are terms with type symbols
τ i , . . . , τn, respectively, and u is a term with type symbol [rγ... τn].

L e t / , gu...,gn be p(ψ, u), t(ψ9 v{),..., t(ψ9 vn), respectively, let

/ ' = Δ<[n .. . r π ] , / ) , let Λ = PΛ(O, w, </', ^ , . . . , gn))9 and let W =
Seq{Wo-{wx: (w{)eDh}).

Since/' was obtained by applying the head default to/and the appropri-
ate type symbol, / ' is a total intension which determines total designations in
each world. But h may be partial, because one or more of the g's may not be
total. The next order of business is to fix that by applying the tail default.

Define h' as follows. If W = 0, then hf = 0. Suppose W Φ 0, note
that this implies n Φ 0, and consider {w{) E W. It follows that wx £
(Dgι) Π...Π (Dgn). h'{{wx)) = V<[n .. . τ π ] , / ' , " I , Si,.. .,&,>.

/Γ will provide a truth value at exactly those worlds where h fails to do so
because one of the g's does not determine a designation. The default designa-
tion of t is obtained by combining h and h'.

DE'(ψ, lv, t) =hU hf.
ΓW, t) = {((wu DE'(φ, wl9 0 » : HΊ G *FO}.
^ ' ( ^ w, t)=EX(O, w.I'W.t)).

In the remaining cases, I'iψ, t) and EX'(ψ, w, 0 are always defined
from DE'(ψ, w, 0 in the preceding manner.

Case 6': Replace ' t ' by '" everywhere in the specifications of Case ό1^ except-
ing ' F 1 ' .

Case 7': t is lχA, where r is the type symbol of χ.

If r Φ [], then Γ(ψ, t)9 DE'(ψ, w9 t)9 and EX'(ψ, w9 t) are f(φ9 /),
DE^iφ, w, 0, and EX*(ψ9 w, t)9 respectively.

If r = [], let/be ?(ψ9 t)9 and let/' = Δ< [],/>. P F ( ^ , w, ί) =/ /(w).
/ ' (^ 0 =/', *ndEX'(ψ, w9 t)=EX(O9 w9f).

Γ(φ9 t) =lHφ, t)9 and DE*(ψ9 w, t)=DEHt, w, t).

Note that, as in the case of the propositional calculus, the defaults do not
affect the intension and designation of a term in a classical interpretation.

If the type symbol of t is not [], then EX*(ψ, w, t) = EXHψ, w, t). If
the type symbol of t is [], then EX*(ψ, w, t) = EXf(ψ, w, /).

And, in fact, if the type symbol of t is not [], the defaults will not affect
t's extension either.
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For closed t9 I*(t)9 DE*(w, t)9 and EX*(w9 t) are defined as usual, and
DE*(t), and EX*(t) are DE*(tt, t)9 and EX*(β9 t)9 respectively. These notions
are extended to open formulas not containing free individual variables via
universal closures, and classical validity is defined in the obvious way.

Theorem 7.2.1 Consider a classical interpretation * = <|, <Δ, V)), let
f =<o, />, let O = (D, #), and consider φ G K1" and w G Wo.
a. Γ(ψ,t)=lHψ,t).
b . DE*(ψ, w, t) = DEt(φ, w, t).
c. If the type symbol of t is not [], then EX*(φ9 w, t) = EX^(φ9 w, t) =

EX{O9w9?(φ9t)).
d. // (w) is in the domain ofDE*(φ, w9 A)9 then EX*(φ, w, A) = EX*(φ9

w9A) =EX(Oi w9lHφ9A)).

e. EX*(φ9 w9A) = TorEX*(φ, w, A) = F.
f. EX*(φ9 w, =ίττ]uv) = T iff either DEHΦ, W, W) and DE\φ, w, y) αr^

defined and equal or DEf(φ9 w, w) α«t/ DEf(φ, w, u) are undefined and
V<[τr], w, //(O, [rr], /t(^, W ) , /t(^, ϋ)> = T.

g. £2ί*(^, w, =[ττ]uu) = T.
h. IfEX*(φ9 w, = [ τ r ] i /i;] = Γ, then EX*(φ, w, uvx...Vi... υn) = £2i*(0, w,

i. EX*(φ, w9 E
[τ] u) = T iff either r = L and EX*(φ9 w9 u) is defined or

7 Φ t and DE^(φ, w, u) is defined.
j . EX*(Φ, w, -A) = TiffEX*(φ9 w,A) Φ T.
k. EX*(φ9 w,&AB) = TiffEX\φ, w, A) = Tand EX*(φ9 w, B) = T.
1. Where r is the type symbol of χ, EX*(φ, w, \/χA) = T iff either DT(O,

T) = 0 or DT(O, r) Φ 0 and for all x G DT(O, r), EX*(φx, w9 A) = Γ.

Proof: By induction on the complexity of terms.

Define:

V-45 =4^ ~&~A - B.
=AB =df&^AB-+BA.

Given the proof sketches of Section 4 and what has been said since then,
one can see that the following three theorems are true.

Theorem 7.2.2 The following formulas are classically valid:
a. s RR.
b. ~ Ξ=R ~ R.
c. D = & R ~ R & T ~ T .

Theorem 7.2.2 gives the official versions of the claims about classical
validity made in Sections 4.1 and 4.2, and the next two theorems provide official
formulations of the ontological arguments discussed in Section 4.3.

Let 7r be a variable with type symbol [t], let Π be a nonlogical constant
with type symbol [[ι]], let x be a variable with type symbol t, and let g be a
nonlogical constant with type symbol ι.

Theorem 7.2.3 There is a classical interpretation * such that 1-3 below have
T as their extension in * and 4 has F as its extension in *.
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1. V π v D = [ [ ] [ ] 1 Π π T D = [ [ ] [ ] 1 ΠTΓF.

2. Π=[u]g\zΏVτc^nτcΏτcx.
3. UE[ί].
4. E^g.

Theorem 7.2.4 If 1-4 below have T as their extension in the classical
interpretation *, then 5 has T as its extension in *.
1. VTΓVD = [ [ 1 [ 1 ] Π T Γ T D = [ [ ] [ ] 1 Π T Γ F

2. D =[αl£UDV7r-+Π7rDτrΛ:
3. UE[ί]

4. ~ D ~ £ [ t ] g
5. ΠE[ι]g.

8 Concluding remarks Section 8.1 discusses the problem of getting the
system of logic defined by the semantical theory presented here under control.
Section 8.2 relates the semantical theory to set abstraction in the cumulative
hierarchy.

8.1 Proof theory As yet, no proof theory for the system of logic defined
by the semantical theory exists. Some needs to be created. The following remarks
show that a sound and complete axiomatization of the set of formulas which
are classically valid does not exist.

*χA =df ~Vχ~A .

Let Z symbolize "is a number", let S symbolize "is a successor of", and
let 0 symbolize "0" . P is to be the conjunction of the following formulas.

l. avx = Zxπzx
2. Dvxvy s SxyΠSxy
3. 3ΛΓD =[u]x0

4. Z0
5. Vx -» Zxly & ZySyx
6. vxvyvz^>&SzxSzy = [u]xy
7. Vx - SxO
8. D Vπ, -> &πθvx -> πxvy -» Syxπy Vx -• Zxπx.

Let A be a closed formula of ordinary, second-order arithmetic, and let A' be
the natural translation of A into the language under consideration. Then A is
true in the standard model of second-order arithmetic iff -+ΫA' is classically
valid in the sense defined above. It follows via the first Incompleteness Theorem
that the set of classically valid formulas is not recursively enumerable.

Given this, it will be necessary to introduce a more general class of interpre-
tations in order to state and prove a completeness theorem. [10] is the source
of this technique. The version of the technique developed in [9] would provide
an appropriate starting point for an attempt to apply it to the theory presented
here.

Before passing on to Section 8.2, it is worth pointing out that P cannot
designate the totally true proposition in any interpretation —quantification over
partial properties in the induction axiom will prevent this.
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8.2 Set theory Although a set abstraction operator is not present in the
language considered here, λ-abstraction can be defined. Using type symbol
superscripts in the obvious way, consider χτ and A, and let χ[τ] be chosen from
among the variables not free in A.

λχτA = ^ ! χ I r l V χ r s » ] [ ] ] χ [ r ] χ M ^

What one can say about convertibility, given this definition, remains to be
figured out. But it can be used to apply the theory presented here to set abstrac-
tion in the cumulative theory of types, as follows.

As usual, Ro = 0, Ra+\ is the power set of Ra9 and, where a is a limit
number, Ra is the union over β less than a of Rβ. In order to make things as
simple as possible, attention will be restricted to interpretations in which the
actual world is the only world. This means that one can forget about D.

Consider an ontology, conforming to the condition just imposed, which has
Ra as its individual designation type, and let Pa be Seq({#}, Ra) => {T9F}. Pa

is the [t] designation type of the ontology in question.18 Let E have as its
designation the total element of [u] which, for every member <#, x, y) of
Seq({#}9 Ra, Ra), yields truth iff x is an element of y. Where y is chosen from
among the variables distinct from x and not free in A, define:

{x: A} =df\y = [[L][L]]\xey\xA .

Clearly, {x: £ xx} will have no designation in this interpretation. It fol-
lows that both E {x: £ xx} {χ; £ xx} and ί {x: φ. xx} {x: £ xx} will designate
the Russell proposition. Thus, things work out for these notations in such an
interpretation as they did generally for R and ~R, above.

NOTES

1. From [1], p. 51.

2. For Frege's general semantical theory, see [4], [2], and [3]. For the fundamental part
of the system of logic he developed on this basis, see [5].

3. See [15], [16], and [14]. For references to the sources from which Montague drew
his ideas, see the introductory portions of [6].

4. " . . . we can keep our valuations bivalent —but we have to be clever in the way we
use them," [20], p. 273.

5. The defaults used here are descendants of those used to handle nondenoting singular
terms in the treatment of first-order free logic provided by [22], [23], and [24]. [10]
contains a very clear exposition of the philosophical motivation of the free logic
enterprise. For an excellent text covering this material, see [11].

6. Extensionism cannot be expressed in Frege's formal theory, because no modal
operators are present in his system. It is clear, however, that his general semanti-
cal theory was not extensionist.

" 2 2 " and "2 + 2" do not have the same sense, nor do "2 2 = 4" and
"2 + 2 = 4" have the same sense. ([5], p. 35)

As regards extensionism and Montague's theory, see [15], p. 139. [21] provides a
recent example of a theory which is propositionist, but not extensionist.
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7. That Hume understood the principle of total evidence is clear from [9], Section X.
For the argument just stated, see [8], pp. 189, 201-202, and passim.

8. Borrowed from [11], p. 204.

9. See [12], pp. 502-504 and 714-715.

10. Thus, free logic is seeping into the metalanguage. This makes it possible to write
things down much more smoothly than would otherwise be possible (cf [19],
pp. 181-182). However, the semantical rules for identity formulas in the object
language are not so simple as the condition to which this note is appended — such
a formula may be false, even if neither term flanking the identity sign designates
anything. See Section 7.2.

11. This conforms to Montague's practice ([15], p. 126).

12. Actually, the head default will be applied to a sequence consisting of [] and the
intension, in that order. See Section 5.2 for a precise account of head defaults.

13. See the references cited in Note 5. " . . . logic wherever possible ought not to wait
upon philosophy, for logic wherever possible ought to be neutral between different
philosophical analyses," [11], p. 213. Amen.

14. Evidently, much digging around in [18] and in sources, both primary and second-
ary, published more recently than those just cited would be required in order to nail
this down.

15. This sort of situation can make true the premises and conclusion of the argument
obtained via the analysis of [17], because there quantifiers are restricted to operate
on the set of individuals existing in a world. Proceeding in the manner of the present
paper would remedy this defect.

16. "Godott" is pronounced as if it contained only one occurrence of " t " .

17. In systems of free logic, formulas containing free individual variables are not related
to their universal closures in a pleasant way. For example, if there are no individ-
uals, Vx ~ = [u]xx will be intensionally true, though ~ = [u]xx will never be true for
any assignment of values to variables in any interpretation. The policy adopted here
for dealing with such formulas is to avoid talking about them, insofar as this can
be done. This conforms with the practice of [2]. It would also be possible to proceed
in the manner of [13], where free individual variables are allowed and the usual
relation between open formulas and their universal closures simply fails.

18. Observe that if x if a subset of y, then x => z is a subset of y => z. Consequently, if
a < β, then Pa is a subset of Pβ. This is pleasant. It would not be true if an un-
defined truth value were employed, instead of allowing properties to be undefined
for some arguments.
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