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AXIOMATICS FOR IMPLICATION

DAVID MEREDITH

This paper presents a basic axiomatic and two increments thereto, for
propositional systems with implication as the sole functor. The basic
axiomatic gives exactly the set of Modus Ponens formulae (defined below);
addition of the first increment gives Positive Logic; and with addition of the
second increment we reach the complete Classical Logic.
After some preliminaries in section 1, the axiomatics are presented in
section 2. Section 3 establishes their properties.

1 Preliminaries. Modus ponens formulae Lower case Greek letters,
with and without subscripts, are used for well-formed propositional
formulae whose only functor is implication. Braces—'{' and '}'—form
ordered sets of such formulae. *~9 denotes a relationship between an
ordered set of formulae and a single formula which is defined below.

Definition 1 {aλ, . . ., αw} closes β (written {α1? . . .,αw}~β) is defined
inductively in two steps.

I. Let there be some α, (1 ̂  i^ n) such that α; = β: then {aί, . . ., an} ~β.

II. Let there be some γ such that {alf . . ., αw} ~ Cγβ and {aly . . ., αw} ~y:
thenfo, . . ., an}~β.

Definition 2 Caλ . . . Canβ (n ^ 1) is a Modus Ponens formula iff β is

elementary and {al9 . . ., an} ~β.

Examples of Modus Ponens formulae are: Cpp, CpCqp, CCpCqrCCpqCpr.
Formulae which are not Modus Ponens formulae are: CCCpqrCqr,
CCCprsCCCqprs.

2 Axiomatics The three axiomatic systems are based on a single
axiom, and—including substitution—six inference rules. Axiom and rules
are as follows.

Axiom. Cpp

Rule 1. Where [#/β]α is the result of replacing every occurrence of the
variable x in a by β. ah[x/β]a
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Rule 2. CCUJ . . . COnCβγV-C^ . . . CβCoίnγ (n > 1)
Rule 3. ahCβa
Rule 4. CaCβγV CaCCaβγ
Rule 5. Caβ, av-β
Rule 6. Caβ \- CCCotγaβ

System 1 is defined by the axiom and rules 1 through 4.
System 2 is obtained from system 1 by the addition of rule 5.
System 3 is obtained from system 2 by the addition of rule 6.

3 Properties of the systems The following theorems establish the
properties of the three systems.

Theorem 1 a is a thesis of System 1 iff a is a Modus Ponens formula.

Proof: (1) All theses of system 1 are Modus Ponens formulae: Cpp is a
Modus Ponens formula, and this class of formulae is closed under the
operations in rules 1 through 4.

(2) Every Modus Ponens formula is a thesis of system 1:
Let Ca.ι . . . Canβ be a Modus Ponens formula, then either there is some
αz (1 ̂  i^ n) such that a{ = β, or there is some αέ = Cγ1 . . . Cγmβ, where
for every yy (1 ̂  j^ m), {a1} . . ., αw}~y; . In the former case we can use
rule 1 to obtain Cββ from the axiom, and then by means of rules 3 and 2
insert and order all the remaining a-antecedents. In the latter case we
obtain CCγmβCγmβ from the axiom, and then for each γj(l^j<m) in
decreasing succession, using rules 3 and 4 when there is no γk(k > j) such
that γj = γk and rules 2 and 4 otherwise, we obtain Cγj.CCγjCγj+1 . . .
CγmβCbγ . . . Cδ/β where every γp (j + 1 ̂  p < m) is identical with some
δ^ (1 ̂  q ̂  ΐ) and there is no δr (1 ̂  r ^ I and q Φ r) such that δq< - δ r . From
this, rule 2 yields CCΎiCγj+1 . . . CγmβCγjCδ, . . . Cδ//3. When j = 1 we will
have CCy^ . . . CγmβCδ^ . . . Cδ/β where every γp (1 ̂  p^ m) is identical to
some δ# (1 < q^ I) and there is no δr (1 < r ^ I and q Φ r) such that δ# = δ r .
From the fact that for every yy , {al9 . . ., an} ~yy , it follows that for every
δq, either there is some α,- = δ^ or there is some a{ = Ctι . . . Cεsδq where
for every ε& (1 ̂  k ̂  s), {alf . . ., an} ~εk. In the former case no action is
required. In the latter case we proceed with each εk exactly as we
proceeded with each yy (\ ̂  j < m). When for every δq every εki has been
dealt with, the number of α-antecedents in our formula will have increased
by t > 0. The reasoning applied to δ̂  applies to any such new antecedent ξ,
and we can use on every ξ the procedure we used for each δ^. Since
Ca1 . . . Canβ is finite, the process must eventually terminate, and we can
use rule 3 to insert any remaining α -antecedents, and rule 2 to order the
formula.

Theorem 2 a is a thesis of system 2 iff a is a thesis of Positive Logic.

Proof: (1) All theses of system 2 are theses of Positive Logic: Cpp is a
thesis of Positive Logic, and rules 1 through 5 are valid Positive Logic
rules.

(2) Every thesis of Positive Logic is a thesis of system 2:
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Both CpCqp and CCpCqrCCpqCpr are Modus Ponens formulae and, a
fortiori, theses of system 2. These two formulae with rules 1 and 5
constitute a known Positive Logic base.

Theorem 3 a is a thesis of system 3 iff a is a thesis of Classical Implica-
tional Logic.

Proof: (1) All theses of system 3 are theses of Classical Logic: Cpp is a
thesis of Classical Logic, and rules 1 through 6 are valid rules in that sys-
tem.

(2) All theses of Classical Implicational Logic are theses of system 3:
From the axiom we can obtain Cpp which by rule 6 gives CCCpqpp. This
thesis and the two Modus Ponens formulae CCpqCCqrCpr and CpCqp
together with rules 1 and 5 constitute the Tarski-Bernays base for
Classical Implicational Logic.

It is perhaps worth pointing out that the proof of CCCpqpp just given
illustrates a general mechanism for replacing an axiom Caβ by the axiom
Cpp and the rule Cβγh Caγ, in any system where Modus Ponens holds, and
both Cpp and CCpqCCqrCpr are theses.
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