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AXIOMATICS FOR IMPLICATION

DAVID MEREDITH

This paper presents a basic axiomatic and two increments thereto, for
propositional systems with implication as the sole functor. The basic
axiomatic gives exactly the set of Modus Ponens formulae (defined below);
addition of the first increment gives Positive Logic; and with addition of the
second increment we reach the complete Classical Logic.

After some preliminaries in section 1, the axiomatics are presented in
section 2. Section 3 establishes their properties.

1 Preliminavies. Modus ponens formulae Lower case Greek letters,
with and without subscripts, are used for well-formed propositional
formulae whose only functor is implication. Braces—‘{’ and ‘P—form
ordered sets of such formulae. ‘~’ denotes a relationship between an
ordered set of formulae and a single formula which is defined below.

Definition 1 {a,, ..., a,} closes B (written {a,, ..., a,} ~B) is defined
inductively in two steps.

I. Let there be some a; (1 < i< 7) such that a; = 8: then {a,, . . ., @,} ~B.
II. Let there be some y such that{a,, ..., a,} ~CyBand {a,, . .., a,} ~y:
then {a,, . . ., a,} ~B.

Definition 2 Ca,...Ca,8 (n=1) is a Modus Ponens formula iff B is
elementary and {a,, . . ., a,} ~B.

Examples of Modus Ponens formulae are: Cpp, CpCqp, CCHPCqrCCphpqChr.
Formulae which are not Modus Ponens formulae are: CCCpqrCqr,
CCCprsCCCqprs.

2 Axiomatics The three axiomatic systems are based on a single
axiom, and—including substitution—six inference rules. Axiom and rules
are as follows.

Axiom. Cpp

Rule 1. Where [x/B]a is the result of replacing every occurrence of the
variable x in a by B. a+[x/Bla
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Rule 2. Ca; ... Ca,CBy+-Ca, .. .CBCayy n=1)
Rule 3. a+CBa

Rule 4. CaCpBy = CaCCaBy

Rule 5. Caf, at+p

Rule 6. CaB+CCCayaB

System 1 is defined by the axiom and rules 1 through 4.
System 2 is obtained from system 1 by the addition of rule 5.
System 3 is obtained from system 2 by the addition of rule 6.

3 Properties of the systems The following theorems establish the
properties of the three systems.

Theorem 1 a is a thesis of System 1 iff a is a Modus Ponens formula.

Proof: (1) All theses of system 1 are Modus Ponens formulae: Cpp is a
Modus Ponens formula, and this class of formulae is closed under the
operations in rules 1 through 4.

(2) Every Modus Ponens formula is a thesis of system 1:

Let Ca, ... Ca,3 be a Modus Ponens formula, then either there is some
a; (1< i< n) such that @; = B, or there is some a;=Cy, ... Cy,B, where
for every v; (1<j<m), {1, . . ., an} ~y;. In the former case we can use

rule 1 to obtain CBB from the axiom, and then by means of rules 3 and 2
insert and order all the remaining a-antecedents. In the latter case we
obtain CCy,BCy,B from the axiom, and then for each y; (1<j<m) in
decreasing succession, using rules 3 and 4 when there is no y,(k > j) such
that y; =y, and rules 2 and 4 otherwise, we obtain Cy;CCy;Cy;+, .
Cy,BCs, ... C5;8 where every Yp (j+1<p<m) is identical with some
84 (1< g<1)andthereisno 5, (1<¥ <!Iand g+ 7) such that 6, =5,. From
this, rule 2 yields CCy;Cyj4, . . . CymBCy;Cd, . . . C5;8. When j =1 we will
have CCy, . . .Cy,BC0, . .. C5;8 where every vy, (1< p<m) is identical to
some 8y (1< g<1) and there is no 5, (1< 7 < land g # 7) such that §, = 5,.
From the fact that for every Yis {al, e a,,} ~yj, it follows that for every
84, either there is some a; = §, or there is some a; = C¢, . . . C&sd; where
for every &, (1<k<s), {al, C ey 01,,} ~¢g,. In the former case no action is
required. In the latter case we proceed with each g, exactly as we
proceeded with each y; (1< j<m). When for every §; every &, has been
dealt with, the number of a-antecedents in our formula will have increased
by £ > 0. The reasoning applied to 5, applies to any such new antecedent £,
and we can use on every & the procedure we used for each §,. Since
Ca, ... Ca,B is finite, the process must eventually terminate, and we can
use rule 3 to insert any remaining a-antecedents, and rule 2 to order the
formula.

Theorem 2 a is a thesis of system 2 iff a is a thesis of Positive Logic.

Proof: (1) All theses of system 2 are theses of Positive Logic: Cpp is a
thesis of Positive Logic, and rules 1 through 5 are valid Positive Logic
rules.

(2) Every thesis of Positive Logic is a thesis of system 2:
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Both CpCqp and CCpCqrCCpqCpr are Modus Ponens formulae and, a
fortiori, theses of system 2. These two formulae with rules 1 and 5
constitute a known Positive Logic base.

Theorem 3 a is a thesis of system 3 iff a is a thesis of Classical Implica-
tional Logic.

Proof: (1) All theses of system 3 are theses of Classical Logic: Cpp is a
thesis of Classical Logic, and rules 1 through 6 are valid rules in that sys-
tem.

(2) All theses of Classical Implicational Logic are theses of system 3:
From the axiom we can obtain Cpp which by rule 6 gives CCCpgpp. This
thesis and the two Modus Ponens formulae CCpgqCCqrCpr and CpCgqp
together with rules 1 and 5 constitute the Tarski-Bernays base for
Classical Implicational Logic.

It is perhaps worth pointing out that the proof of CCCpgpp just given
illustrates a general mechanism for replacing an axiom Caf by the axiom
Cpp and the rule CBy+ Cay, in any system where Modus Ponens holds, and
both Cpp and CCpqCCqrCpr are theses.
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