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SEMI-MONOTONE SERIES OF ORDINALS

JOHN L. HICKMAN

The- task of calculating the sum of a series of ordinals is greatly
facilitated by the absorption law, and with regard to the use of this law,
increasing series of ordinals provide the example par excellence: if you
can only keep going long enough, you can forget about some of the early
terms. In this note* we define a generalization of the increasing series,
and by means of this generalization we obtain some conditions under which
a series of ordinals has minimal sum.

Let s = (Sg)s<qs be a sequence of ordinals: we denote by ‘“o(s)’’ the
ordinal a—the ‘‘order-type’’ of the sequence—and by ‘‘Z(s)’’ the sum of the
associated series. A second sequence f = (f)r<o() iS called a ‘‘permuta-
tion’’ of s if o(f) = o(s) and there is a bijection f: o(s) — o(f) such that
se =tz for all £ <o(s). In some of our previous papers ([1], [2], [3]) we
have been interested in the set S(s) = {Z(#); ¢ is a permutation of s}, and in
[3] we had occasion to introduce the concept of a semi-monotone sequence.
A sequence s = (Sg);¢, Of ordinals is called ‘‘semi-monotone’’ if for each
pair (u,v) of ordinals u, v < a there is a third ordinal ¥ < @ such that
v<y and sy <sy. We showed in [3] that if s is a semi-monotone sequence
of positive ordinals with o(s) a regular initial ordinal, then for any
permutation ¢ of s we have ¢ semi-monotone and =(#) = Z(s). Since we shall
be mainly concerned with series of ordinals, we make the blanket assump-
tion that unless the contrary is either obvious or explicitly stated, all
sequences referred to henceforth will have only positive terms.

Let 7, s be any two sequences. We define 7 U s to be the sequence ¢
such that o(#) = o(%) +o(s), t =7, for & < 0(7), and to(;)+r= S; for € < ofs).
If s=7U¢tUufor some sequences 7, ¢, u, then we call £ a ““segment’’ of s,
and say that ¢ is initial (final) if o(#) = O(c(u) = 0). For any sequence s with
o(s) # 0, we put sup(s) = sup{sg; £ < 0(s)}. Finally, we say that s is non-
empty if o(s) # 0.

*The work contained in this paper was done while the author was a Research Officer at the
Australian National University.
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Result 1 Let s be any nonempty sequence. Then s is semi-monotone if and
only if sup () = sup(s) for every nonempty final segment v of s.

Proof: Suppose that s is semi-monotone and let 7 = (Sg);csco(s) b€ any non-
empty final segment of s. If { = 0 then of course » = s and so sup(¥) = sup(s).
Hence we may assume that { > 0, and we take any ordinal 7 with 0 < 7 < &.
By semi-monotonicity there exists § < o(s) such that { <9 and s, <s4. It
follows that sup(7) = sup(¢), where ¢ is the unique sequence defined by
s=tUr. Since it is clear that sup(s) = max{sup(#), sup(#)}, we see that
sup(1’) = sup(s).

Now suppose that sup(7) = sup(s) for every nonempty final segment » of
s, and take any pair (u,v) of ordinals u, v < o(s). Now if o(s) = 8 + 1 for
some B, then we must have sz = sup(s), and it follows at once that s is
semi-monotone. Hence we may assume that o(s) is an infinite limit ordinal,
from which it follows that £ = max {u,v} + 1 <o(s). Put 7 = (S;);<eco(s); then
¥ is a nonempty final segment of s and so sup(%) = sup(s). Since u < ¢, it
follows that there exists 6 < o(s) such that v < ¢ and s, < sy, as desired.

Result 2 Let s be any nonempty sequence. There exists a finite family
{s'},c, of semi-monotone sequences s’ such that sup(s’) = sup(s‘*') for
i<m-lands=s"0Us"0...0s"N

Proof: Since this result is trivial if o(s) =1, we may proceed by
induction on the order-type of a sequence. Thus let s be given, and
consider the set C ={sup(#); # a nonempty final segment of s}. C is a
nonempty set of ordinals, and we take { < o(s) such that sup ((Sg)r<e<ols)) =
minC with { minimal in this respect. Put 7 = (S;);<zco(s) and ¢ = (Sy)zc;. Now
7 is certainly nonempty, and if # is any nonempty final segment of 7 then
because u is also a nonempty final segment of s we have sup(#) = minC <
sup (%) < sup(#), and so sup(u) = sup(7).

Thus # is semi-monotone, and so if o(¢) =0, then we are through.
Hence we may assume o(f) # 0, and because o(f) < o(s) the induction
hypothesis tells us that £ = U#' U...U#" " for some finite family {¢’ }, m
of semi-monotone sequences ¢ w1th sup(t’) sup(t"“) forallj<m-1. It
follows that the full result will be established once we show that
sup(t™ ") = sup (7).

Suppose that this is not the case and put = t”' U #., Then we would
have % = (S¢)ycrco(s) fOr some ordinal ¢ < ¢: but sup() = max {sup(£""),
sup(7)} = sup(¥) = minC, and we have contradicted our choice of ¢.

The inequalities given in the preceding result cannot of course be made
strict; one has only to consider the sequence (Sp)p., With So=w and s, =k
for £ > 0 in order to see this.

Result 3 Let s be any nonempty semi-monotone sequence with o(s) a limit
ordinal. Then Z(s) = sup(S)a for some ovdinal a with 1 < a < o(s).

Proof: If this is not the case, then Z(s) = sup(s)a + 6 for some ordinals a,
5 with 0 <6 < sup(s). Now o(s) is a limit ordinal, and so there must be a
nonempty final segment # of s with () < 6. But s is semi-monotone, and
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S0 sup(7) = sup(s). Since Z(») = sup(¥), this yields a contradiction, whence
2(s) = sup(s)a for some ordinal a. The bounds for @ are obvious.

We now wish to address ourselves to the following problem. It is clear
that for any nonempty sequence s at all, we have Z(s) = sup(s): under what
conditions do we have equality ?

Result 4 Let s be any nonempty sequence with 2(s) = sup(s). Then s is
semi-monotone; fuvthevmove, if o(s) is a limit ovdinal, then sup(s) is a
prime component.

Proof: Let v be any nonempty final segment of s, let ¢ be such that
s =tU 7, and suppose that sup(f) = sup(s). Then we certainly have Z(s) =
sup(f) + Z(v), whence Z(s) > sup(s). Thus sup(f) < sup(s). But sup(s) =
max {sup(#), sup(7)}, and so sup(s) = sup(¥). Therefore s is semi-monotone.

Now suppose that o(s) is a limit ordinal and take any a < sup(s). We
must have a < Z(¢) for some proper initial segment ¢ of s, and we let # be
such that s = ¢ U 7. Since o(f) < o(s), 7 is nonempty, whence sup(#) = sup(s).
Thus @ + sup(s) < Z(£) + sup(?) < Z(s) = sup(s), and so sup(s) is a prime
component.

In the next result we denote by ‘‘cf(@)’’ the cofinality of a nonzero limit
ordinal @, and recall that an initial ordinal « is said to be regular if
cf(k) = k.

Result 5 Let s be any sequence with o(s) a vegular initial ordinal. Then:
(1) =(s) = sup(s) if and only if

(a) sup(s) is a prime component;
(b) cf(sup(s)) = o(s);
(c) sg < sup(s) for all £ < o(s):

(2) If s is semi-monotone, then =(s) = sup(s) or Z(s) = sup(s)o(s).

Proof: (1) Assume that Z(s) = sup(s): then (a) follows from the preceding
result and (b) follows from sup(s) = limy<o(s)Z((Sedscz) and cf(o(s)) = o(s).
Finally, if s; = sup(s) for some £ < o(s), then because o(s) is a limit ordinal
we would have Z(s) > sup(S).

Now assume that =(s) # sup(s); then of course Z(s) > sup(s), and so we
may define ¢ to be the unique initial segment of s such that Z(f) = sup(s) and
Z(u) < sup(s) for every proper initial segment u of £. Suppose that condi-
tions (a), (¢) hold; then it follows easily that o(f) is a limit ordinal, from
which we conclude that Z(£) = sup(s). But then we have cf(sup(s)) = cf(o(£)) <
oft) < o(s), and so (b) fails.

(2) From Result 3 we have Z(s) = sup(s)a for some ordinal a with 1 <a <
o(s). Now we have to have cf(Z(s)) = o(s), and so if a is limit, this leads to
cf(a) = o(s), whence a =o(s). Thus it suffices to show that if =(s) =
sup(s)(B + 1) for some B, then B = 0.

Suppose then that Z(s) = sup(s)(B + 1) for some B = 0. It follows that s
has a nonempty final segment 7 with Z(v) = sup(s). Now of course o(7) = o(s)
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and sup(7) = sup(s). Hence Z(7) = sup(#), and from (1) we conclude that (a),
(b), (c) hold with respect to 7, whence (a), (b), (c) hold with respect to s
(that conditions (a), (b) hold with respect to s is clear, whilst (c) from the
fact that » is a nonempty final segment of a semi-monotone sequence).
Thus by (1), Z(s) = sup(s), i.e., B =0.

Unfortunately, it seems that nothing much can be done with the other
extreme, the case in which o(s) is a successor ordinal.

Result 6 Let s be any sequence such that o(s) = B + 1 for some ovdinal B.
Then T(s) = sup(s) if and only if sp = sup(s) = Z((s)sqp)w-.

Proof: We already know that if Z(s) = sup(s), then s is semi-monotone,
from which it follows that sg = sup(s). The rest is obvious.

There remains the case in which o(s) is a nonregular limit ordinal.
Putting c(s) = cf(o(s)), we see that o(s) = c(s)a for some ordinal a with
either @ = B8 + 1 for some B or else a is limit and cf(a) = c(s).

Result 7 Let s be any nonempty sequence with o(s) a nonvegular limit
ordinal and o(s) = c(s)(B + 1) for some B. Then Z(s) = sup(s) if and only if
s = t U v for some t, v with o(¥) = c(s) and Z(v) = sup(s) = Z(Hw.

Proof: If s has such a decomposition, then the result is clear. On the
other hand, if Z(s) = sup(s), then s is semi-monotone and we can take any
final segment 7 of s with o(#) = c(s) and let ¢ be such that s = # U#. Then
Z(7) = sup(?) = sup(s) by semi-monotonicity and Result 5 (1), and the rest
follows.

We are finally faced with the case in which o(s) = c(s)a for some limit
ordinal a, and here again we are at this stage unable to give a particularly
satisfactory criterion.

Result 8 Let s be any nonempty sequence such that o(s) is a nonregular
limit ovdinal and o(s) = c(s)a for some limit ovdinal a. Then =(s) = sup(s) if
and only if the following hold:

(1) sup(s) is a prime component;

(2) cf(sup(s)) = c(s);

(3) =(s*) < sup(s) for all &< c(s), where {s* Yecets) is some family of se-
quences such that s = U{sf £<c(s)h

Proof: We know that cf(a) = c(s), and so we can express s as U{sf; £E<
c(s)}, where each s? is a segment of s. But now (Z(s%)); (s) i a sequence
whose order-type is a regular initial ordinal, and we can apply Result 5 (1).
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