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A REALIST SEMANTICS FOR COCCHIARELLA'S T*
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0 Introduction Russell's paradox has two versions. The first version
concerns "the set of all sets which are not members of themselves". The
second version concerns "the property of being a property which is not a
property of itself": the so-called Russell property. This second version
of Russell's paradox is called RusselΓs paradox of predication.1

Nino Cocchiarella* designed a logistic system, which he christened T*,
whose purpose was to represent the original ontological context behind
Russell's paradox of predication [10]. The grammar of T* is essentially
that of standard second-order logic but goes beyond it by allowing predicate
terms to occupy subject positions in the formulas of T*. Cocchiarella
generated the axioms and inference rules of T* by explicitly and appropri-
ately generalizing the axioms and inference rules of Church's formulation
of standard second-order logic [l] to the extended grammatical context of
T* and by adding a new axiom schema whose effect is to represent the
realist assumption implicit in the ontological background of Russell's
paradox of predication that every relation2 is an individual.

It is a remarkable fact that T* is consistent. It even turns out that T*
is a conservative extension of standard second-order logic. Thus, Russell's
"paradox" of predication is not really a paradox after all—at least not in
the logistic context of T*. These discoveries signify the genesis of a
radically new, important, and fruitful approach to predication theory.3

Be forewarned, however, that T* is not without its (apparent) ontologi-
cal oddities. One particularly interesting example of such an oddity
concerns identity. Cocchiarella [10] showed that indiscernibility cannot be
construed as identity in T* since, in the ontology of T*, there must be
properties which are indiscernible and yet not co-extensive. Going further,
Meyer [14] showed that there is no binary relation in the ontology of T*
satisfying full substitutivity.4

Many other nonstandard second- (and even higher-) order theories of
predication have grown up around T*, and we will call these logistic

*My thanks to Professor Cocchiarella who made many valuable criticisms of an earlier version
of this paper. And for introducing me to Logic.
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systems the brethren of T*. Some of these logistic systems are immune
to the ontological oddities of T*, but others are not.5

Cocchiarella devised a formulation of standard second-order logic [8]
which is equivalent to that given by Church [1] but whose only inference
rule is modus ponens and whose axiom set involves neither the notion of
proper substitution of a term for a generalized variable of the same type
nor the notion of proper substitution of a formula for a generalized
predicate variable, i.e., Coechiarella's formulation of standard second-
order logic is substitution free.6 Cocchiarella [3] used this substitution
free formulation of standard second-order logic to generate a brother of T*
just as he used Church's formulation of standard second-order logic to
create T*. This brother of T* we will call T**. It is noteworthy that T**
is also substitution free. It seems only natural that TJ* should be equiva-
lent to T*, but, as Cocchiarella showed, it is not. In fact, there is a
problem of more immediate interest concerning Tg*. In [3] it is not shown
that the principle of universal instantiation of a predicate term for a
generalized predicate variable of the same type, whichxwe will call (U.l.*),
is derivable in TJ*. If (U.l.|*) is not derivable in T*, *, then TJ* can hardly be
understood to capture the meaning of the universal quantifier—much less
the original ontological background of Russell's paradox of predication.
However, Cocchiarella did show that if T*,* is supplemented with an
especially natural axiom schema, called (A4'), to the effect that every
relation is indiscernible from and co-extensive with some relation of the
same type, then (U.I.*) is derivable. The logistic system which results from
T** by supplementing it with (A4') is called T**; we may say that T** =
T** + (A4') Since it is a trivial matter to verify that TJ* + (U.I..*) is
equivalent to T**, our feeling of anxiety about the relation of (U.I.*) to T*,*
may be formulated in this way: Is T*,* equivalent to T**?

Cocchiarella went on to introduce a so-called Fregean model-set-
theoretic semantics whose purpose is to reflect the Fregean notion that to
say "the property P has the property Q" is to mean that "some individual
associated with P has Q". He also introduced a set of formulas, called
(Ext*), to the effect that two relations that are co-extensive are indis-
cernible as well. (Ext*) reflects the Fregean notion grounding the above-
mentioned Fregean s e m a n t i c s . Cocchiarella then used his Fregean
semantics to show that T* + (Ext*) is a proper extension of T** + (Ext*)
(and therefore of TJ* + (Ext*) which, by the way, he showed to be equivalent
to T** + (Ext*)) by noting that T* is an extension of T** and by producing a
Fregean frame which is a model of T** but not of T*. This result implies
that T* is a proper extension of T** (and therefore of TJ*).

Now, this is a very interesting fact, and the question immediately
arises as to just why there should be such a difference between T* and T**
since, after all, they appear to have arisen from two equivalent formula-
tions of standard second-order logic in just the same way. Cocchiarella
localized the difference between T* and T** in the following way. Now,
whereas Church's formulation of standard second-order logic includes the
principle of universal instantiation of a formula for a generalized predicate
variable, which we will call (U.l.3), Cocchiarella's formulation of standard
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second-order logic includes a comprehension principle (CP). When each of
these formulations of standard second-order logic is generalized to the ex-
tended grammatical context of T*, (U.l.3) becomes (U.I.*), and (CP) becomes
(CP*). Cocchiarella showed that the logistic system which results from T*
by replacing (U.I.*) with (CP*) is equivalent to T** and, furthermore, that
the logistic system which results from T** by replacing (CP*) with (U.I.*) is
equivalent to T*. Thus he demonstrated that the difference between T* and
T** lies in the fact that (U.I.*) is stronger than (CP*). He then noted that a
comprehension principle, which we will call (CP**), more general than
(CP*) is derivable in T*. T** + (CP**) is called T***. Cocchiarella asked
the following question: Is T*** equivalent to T*? If it is, then we can
easily understand how it is that T** is weaker than T* for in generalizing
(CP) to the extended grammatical context of T* we have two natural
options, viz. (CP*) and (CP**), although, viewed from the context of
standard second-order logic, (CP*) is really more natural than (CP**).

The main result of [3] is a completeness theorem for T** + (Ext*). As
in the usual semantics for standard second-order logic, there is a
distinction in Cocchiarella's Fregean semantics between standard, non-
standard, and general Fregean frames (general Fregean frames being those
Fregean frames which are models of (CP*)), and the completeness theorem
for T** + (Ext*) is given relative to the general Fregean frames.
Cocchiarella noted that it remains an open problem to provide a model-set-
theoretic semantics natural to the ontology of T* or T**.7

This paper is essentially a response to Cocchiarella [3]. In what
follows we introduce a logistic system, W*, whose grammar is that of T*
and whose primary syntactical logistic purpose is to capture the meanings
of the propositional connectives to be introduced and the universal
quantifier. Accordingly, W* is weaker than almost all of the brethren of
T*. Then we provide a model-set-theoretic semantics natural to the
apparent ontology of W*, and show that this semantics characterizes W* via
a strong completeness theorem. Accordingly, we will have provided a
strong completeness theorem for every brother of T* which is stronger
than W*.

Now, although in W* relations are projected grammatically as being
entities which, significantly, may serve as the subjects of predication, they
are not projected logistically as individuals, for the principle that whatever
holds of all individuals also holds of all relations is not derivable in W*8

(nor is it intended to be so derivable). Accordingly, the strong complete-
ness theorem for T*, among the other logistic systems alluded to, which
arises from the strong completeness theorem for W* is somewhat
unfaithful to the intended realist ontology of T*. We therefore add to W*
the principle that whatever holds of all individuals holds of all relations,
and, using the techniques previously developed for W*, prove a strong
completeness theorem for this supplemented logistic system relative to
structures of our semantics which are more natural to the ontology of T*.
This results in a strong completeness theorem for T* faithful to its
intended realist ontology.

The remainder of this paper is then devoted to investigating various
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brethren of T*, the relations between them, and the relation between our
semantics and Cocchiarella's Fregean semantics. We produce the logistic
system which is characterized by the Fregean semantics, in the process
providing it with a strong completeness theorem, and thereby give an
alternate route to Cocchiarella's completeness theorems. We produce a
realist model of T*** which is not a model of T*, thereby showing that
T*** is not equivalent to T*. We also show that T*** + (Ext*) is equivalent
to T* + (Ext*), thereby showing that T*** is not equivalent to T**. Finally,
among other things, we show that T*,* is not equivalent to T**, i.e., that it
is truly defective.

In spite of the cursory nature of this introduction, this paper has only
a minimum of prerequisites. We assume only naive set theory and a basic
acquaintance with metalogic. All but the most common notions are
rigorously presented, including those of this introduction, and only a few
outside results are employed (mostly from [3]).

1 Grammar As logical particles of the logistic systems which we
consider, we include only ~, —>, and ,Λ: the negation symbol, the material
implication symbol, and the universal quantifier, respectively. We assume,
of course, that ~, —», and Λ are distinct.

For each ne ω,9 we assume that V(n) is a denumerable set and C(n) is a
proper class. Furthermore, for all n, m e ω, if n Φ m, we assume that V(n),
V(m), C(n), and C(m) are pairwise disjoint. By an individual variable,
individual constant, or individual term we understand an element of V(0),
C(0), or V(0) U C(0), respectively. For neω, by an n-place predicate
variable, n-place predicate constant, or n-place predicate term we under-
stand an element of V(n + 1), C(n + 1), or V(n + l)UC(w+ 1), respectively.
By a predicate variable, predicate constant, or predicate term we under-
stand an w-place predicate variable, w-place predicate constant, or n-place
predicate term, respectively, for some neω. By a variable, constant term,
or term we understand an individual variable or predicate variable;
individual constant or predicate constant; or, individual term or predicate
term, respectively. We say that two terms we of the same type iff either
both are individual terms or, for some neω, both are rc-place predicate
terms. We use a, β, and y to refer to individual variables; π, p, σ, and r to
refer to predicate variables; μ and v to refer to variables; and ζ and η to
refer to terms.

By a language we understand a set of constant terms. If -έ is a
language, then we say ζ is an individual ^-constant, individual £-term,
etc., iff ζ is an individual constant which is a member of £, ζ is an
individual variable or ζ is an individual constant which is a member of .£,
etc.

Let ^ be a language. We say that φ is an atomic £-formula iff for
some ne ω, φ is the result of applying an n-place predicate -£-term, ζ, to
n -ί-terms, η0, . . ., ηn^: ζ(η0, . . ., ηn-ι)', if « = 0we understand this result
to be φ itself. We say that φ is an £-formula iff φ is a member of the
smallest set K such that: (i) every atomic -^-formula is an element of K,
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and (ii) if ψ, XeK and μ is a variable, then ~ψ9 ( ψ—*X), and Aμψ are
elements of K. We use φ, ψ, and X to refer to ^-formulas; K and Γ to
refer to sets of .^-formulas; and Δ and Σ to refer to sequences of
^-formulas. If φ is an ^.-formula, then by a generalization of φ is
understood a formula of the form Λμ0 . . . Aμn.xφ, where ne ω and
μ0, . . ., μw_i are variables; if n = 0 we understand Λμ0 . . . Aμn^φ to be φ
itself. Where φ, ψ are .^-formulas and μ is a variable, we define (φ*ψ),
(φvψ), (φ<-+ψ), and Vμφ t o b e ~(φ -* ~ψ), (~φ -> ψ), [(φ -* ψ) Λ (ψ -> φ)],

and ~Aμ~φ, respectively.
Notions of bondage and freedom remain as usual, but note that an

occurrence of a predicate term in some ^-formula φ may be bound or free
in either predicate position or subject position. If φ is an ^-formula and
ζ, η are -£-terms, we say that η may be properly substituted for ζ in φ iff
every free occurrence of ξ may be replaced by a free occurrence of 77; if

m
this is the case we let φ\ be the result of replacing every free occur-ΓΠrence of ξ in φ by 77, else we let φ\ be φ itself. If φ is an ^-formula,

ne ω, ζ0, . . ., ζn.ly η0, . . ., ηn-i are ^ - t e r m s , we say that η0, . . ., η n - 1 mα^
5^ simultaneously properly substituted for ζ0, . . ., ζΛ.x zw (p iff for each
ze w, τ)t may be properly substituted for ζt in <̂?; if this is the case we let

J ζ o ' * * " H be J H . . . Γ H h i . . . P H where β0> . . ., a^ are

any ^ distinct variables which do not occur in φ, else φ itself.

2 Syntax We say that T is a theory iff T is a 2-place sequence (.£, A)
where / is a language and A is a set of -^-formulas. If T = (-£, A) is a
theory we set -£ τ = ^ and Aτ = A, and if, in addition, Γ is a set of
.^-formulas, we set T + Γ = (.£, A U Γ ) .

Let T be a theory. If φ is an -^τ-formula and Γ is a set of -£ τ -
formulas, we say that Δ is a derivation of φ from Tin T iff Δ is a finite
sequence (Δo, . . ., Δ ^ ) of -£rr-f° r mulas such that Δ ^ = φ and for each ten
either Δ, e ΓUAy or Δ, follows from preceding sequents in Δ by modus
ponens, i.e., there are j , kei such that Δ& = (Δ; —* Δ, ) If φ is an -£if-
formula, we say that Δ is a proof of φ in T iff Δ is a derivation of φ from 0
in T. 1 0 Again, let φ be an ^ τ -formula and Γ be a set of -£τ-formulas.
Then we say φ is derivable from Γ in T, in symbols Γ bf φ, iff there is a
derivation of φ from Γ in T, and we say φ is provable in T, in symbols
\γψ, iff there is a proof of φ in T, i.e., 0 hf φ.

Let T and T' be theories such that -£ τ c ^ l τ1/. Then we say T is a
subsystem o/T ' , or T r is an extension o/T, iff for every -<τ-formula φ, if
hf <̂> then \ψφ. If -^T = -^T'> w e s a y ^' ^ s & proper extension of 1 iff T' is
an extension of T and there is an -£τ-formula such that ^<ρbut tffψ', we
say T and T' are equivalent iff each is a subsystem of the other.

Let JC be a language. Then we define θ to be an element of (Λl^), . . .,
(Λ6^) iff θ is a generalization of an ^-formula of the form:

(Al) φ-+(ψ-.φ)
(A2) [φ->(ψ->χ)]-+[(φ->ψ)->(φ-+χ)]
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(A3) (~φ- ~ i / / ) - (ψ-+ φ)
(A4) Aμ(φ — ψ) — (Λμ<p -» Λμψ)

(A5) ςp —* Aμφ, where μ does not occur free in ψ

(A6) Aμφ —» φ\ , where ζ is an -£-term of the same type as μ, respec-

tively.

We now let W,, be the theory (.£, Az) where A^ = (Aί^) U . . . U (A6^), and
from now on we will write A_£ for Aw .

Our primary interest is in Wo, which we will call W*, and our motiva-
tion for discussing non-empty languages in general is that they provide a
simple way of proving the following completeness theorems for W* as well
as some of the other logistic systems we will be considering.

We now prove some useful syntactic lemmas. Where proofs are
especially trivial they are omitted.

Lemma 1 Let T and T' be theories, Γ be a set of £j-formulas, Γ" be a
set of -£iT1/-formulas, and φ be an ^-formula. If -^ τ c -£ τ/, Γ U i τ c Γ ' U
Aτt, and Γ hf φ, then Γ' Kp? φ.

Lemma 2 Let T be a theory, Γ be a set of -£τ-formulas, and φ be an
j£j-formula. If φe Γ UAT, then Γ bfψ.

Lemma 3 Let T be a theory, Γ be a set of ^-formulas, and φ and ψ be
^-formulas. If Γ \γ φ and Γ'hf (φ -* ψ), then Γ'\γψ.

We take the notion of tautology as given. We state the following lemma
for convenience, but in principle succeeding references to it could be
routinely, if tediously, omitted.

Lemma 4 Let -£ be a language, Γ a set of ^.-formulas, and φ an
^.-formula. If φ is a tautology, then Γ \^- φ.

Proof: See [16] and [12].

Lemma 5 Let £ be a language, Γ a set of ^-formulas, and φ and ψ

^-formulas. Γ U {φ}\^ψ iff Γ \^(φ - ψ).

Proof: The right-to-left direction follows from Lemmas 1-3. To prove the
other direction, assume that Γ U {φ}\yf.ψ. Let Δ = (Δo, . . ., ΔΛ.X) be a
derivation of ψ from Γ U {φ} in W^. We prove by induction on i that iί ten
then Γ |^- (φ —> Δ^ ). To this end, let ie n and assume that the hypothesis is
true for all je i. Case 1: Δ, € Γ U A^. Then Γ Ί ^ Δ , by Lemma 2. But
Γ\γf [Δ{ —» (φ-* Δ f )] by (Al) and Lemma 2. Hence, by Lemma 3, Γ |^- (φ —>
Δ f ). Case 2: Δ, = φ. Then T\^f(φ —» Δz ) by Lemma 4. Case 3: Δ ; =
(Δ^ -* Δ^ ) where j , kei. Then by the induction hypothesis we have
Γlw" (<P ~* Ak) a n d Γ l w > [ ^ ~* (Ak -* Δ# )]. By (A2) and Lemma 2 Γ|^-{[<^ ->
(Δk —> Δ t )] -+[(φ-* Δk) —> (φ -* Δ,)]}; so by two applications of Lemma 3 we
obtain Γ \yf (φ —* Δ{). Since ψ = Δn.ly we are done. QED

Lemma 6 Let /_ be a language, Γ a set of ^-formulas, and φ an
/^-formula. If μ is a variable which does not occur free in any member of
Γ and Γ \$j- φ, then Γ \^j\Aμφ.
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Proof: Assume that μ does not occur free in any member of Γ and let
Δ = (Δo, . . ., ΔWβl) be a derivation of φ from Γ in W^. We show by induction
that for each ten, Γ I^ΛμΔ/. To this end, assume that ten and that the
hypothesis is true for all je i. Case 1: Δ t e Γ. Then μ does not occur free
in Δ t by hypothesis; so Γ | ^ ( Δ f —» AμΔ{) by (A5) and Lemma 2. But Γ \ψ-.Δ{
by Lemma 2, too; so Γ \^r ΛμΔt by Lemma 3. Case 2: Δf eA£. Then
Γ |γγ^ΛμΔf by Lemma 2 since every generalization of an element of A^ is
again an element of A& Case 3: Δ ; = (Δ& —• Δ, ) for some j , &e z. Then by
the induction hypothesis we have Γ \^-ΛμΔk and Γ \^r Aμ(Δk —» Δ, ). But
Γ|^\[Λμ(Δ^ —> Δ, ) -* (ΛμΔ& -* ΛμΔf )] by (A4); so by two applications of
Lemma 3, Γ | ^ Λ μ Δ z . Since φ = Δw_1? we are done. QED

Lemma 7 Let -C. and JC be languages, Γ a set of ^.-formulas, and φ an
^-formula. If ^ c ^ ' and Γ ^φ, then Γ \^φ.

Proof: Let -^ c •£' and Δ = (Δo, . . ., Δw_x) be a derivation of φ from Γ in
W^/. Let ζo> •> ζm-i be those distinct constant terms in -£'~-£ which
occur in the sequents of Δ; let μ0, . . ., μm-ι be distinct variables that occur
in no sequent of Δ and are such that for each ie m, μ, is of the same type as

ζ, ; and, finally, for each ie n, let Δ = Δ J ? 0 ' * ' #> ^ Λ I " 1 1. Then Γ % Δ/ for
Lμ0, . . ., μ^-ij -̂

each f e n, and we proceed to prove this fact by induction on i. To this end,
assume that ie n and that the hypothesis is true for all je i. Case 1: Δ^e Γ.
Then by assumption no constant in -£'~-£ occurs in Δf ; so Δt = Δ, . Hence
Γ Ivv̂ Δ̂  by Lemma 2. Case 2: Δ e A^t. Then it is easy to see by inspection
that Δt'e Aj_\ so Γ IjfiΠΔJ by Lemma 2. Case 3: Δ ; = (Δ^ —• Δ f ) where j , ke i.
Then by the induction hypothesis Γ \yf Δ'k and Γ t ( Δ ^ —* Δ, )'. But
(ΔΛ r- Δ,-)' = (Δί — Δ{); so Γ I^ΔJ by Lemma 3. Since φ = Δw.x = Δ ^ , we
are done. QED

Lemma 8 Let ^Cbe a language, Γ a set of ^-formulas, φ an 4L-formula,
ζe -£, and μ α variable. If μ zs o/ the same type as ζ, μ can be properly
substituted for ζ in φ, μ, ξ do not occur free in any member of Γ, and

T^φ, then Γ\^Aμφ^.

Proof: Let μ be a variable of the same type as ζ which can be properly
substituted for ζ in φ and which does not occur free in any member of Γ,
and let Δ = (Δo, . . ., Δw_x) be a derivation of φ from Γ in W .̂ Now let v be
a variable of the same type as μ which does not occur in any member of Δ,

ft!and for each ten let Δ,- = Δλ . Finally, assume that v does not occur in

any member of Γ. By the method of the proof for Lemma 7 we can
prove that for each ie n Γ" \^- Δ where Γ' = Γ Π {Δ0, . . ., Δw.x}. Hence

[ζ l *

since φ = Δn-1# Now, since v does not occur in any member of
m Γ>Ί

Γ", we may conclude that V br l\vφ\ by Lemma 6; so Γ \sff l\vφ\ by

Lemma 1. But by (A6) and Lemma 2 Γ |γy- (Λιx/> —> φ ); so by Lemma 3
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we conclude that Γ \$f φ\ . Since μ does not occur free in any member of
r ? η •* LμJ

Γ, rlyy- Aμφ\ by Lemma 6. QED

If T is a theory and Γ is a set of ^-formulas, then we say Γ is
consistent in T iff there is an ̂ jτ-formula φ such that Γ Y/jψ.

Lemma 9 Let ^Lbe a language and Γ be a set of ^-formulas. Then Γ is
consistent in W^ iff there is no -(-formula φ such that Γ \yf φ and Γ |yy- ~φ.

Proof: Assume that there is an ^-formula, φ, such that Γ \yf φ and
Γ lv\Γ,~<p Let ψ be any -^-formula. Then Γ \ΰf\ [φ —> (~φ -» ψ)] by Lemma 4.
By two applications of Lemma 3 we obtain T\ψrψ. This shows that Γ is
inconsistent in W .̂ On the other hand, assume that Γ is inconsistent in W .̂
Then the desired result follows trivially. QED

Let /_ be a language and Γ be a set of ^-formulas. Then we say/is
an ^-external constant term realization of Γ iff / i s a 1-1 function whose

domain is the set of variables which occur free in some member of Γ, and
/(μ) is, for each μ in the domain of /, a constant term of the same type as μ
and not in £. If / is an -^-external constant term realization of Γ, then we
let Sf be the function whose domain is the set of -^-formulas and which is
such that, for each -^-formula φ, Sf (φ) is the result of replacing each free
occurrence in φ of any variable μ in the domain of / by /(μ). The following
lemma makes the observation that free variables in the hypothesis set of a
derivation serve as constant terms.

Lemma 10 Let Jibe a language, Γ be a set of ^.-formulas, and f be an
^-external constant term realization of Γ. Then, for each ^.-formula φ,
Γkrc

(Piff sflτ] i w ^ ^ ^ M 1 1 Accordingly, Γ is consistent in W^ iff sf[T]
is consistent in W ^ ^ ) .

Proof: Essentially the same as the proof of Lemma 7.

Lemma 11 Let Ji be a language and Γ be a set of ^-formulas. Then Γ

is consistent in W^ iff every finite subset of Γ is consistent in W;̂ .

Let T be a theory and Γ be a set of -£|τ-formulas. We say that Γ is
maximally consistent in T iff for every -£|τ-formula φ, if Γ U {φ} is
consistent in T, then φe Γ.

Lemma 12 Let £be a language and T be a set of -(.-formulas. If Γ is
maximally consistent in W ,̂ then, for every ^.-formula φ, φe Γ iff Γ |^- φ.

Proof: Assume that Γ is maximally consistent in W .̂ Let φ be any
^-formula. If φe Γ, then Γ \γf φ by Lemma 2. Assume, on the other hand,
that Γ \w,ψ but φffT. Then, since Γ is maximally consistent in W ,̂
Γ U {φ} is inconsistent in W .̂ Hence, Γ U {φ\^Γ/^φ\ wherefore, by
Lemma 5, Γ \qf (φ -» ~φ). It follows by Lemma 3 that Γ%- ~φ. We
therefore conclude by Lemma 9 that Γ is inconsistent in W ,̂ but this
contradicts our assumption that Γ is maximally consistent in W .̂ Accord-
ingly, we have shown the right-to-left direction. QED
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Lemma 13 Let JL be a language and Γ be a set of ^-formulas. If Γ is
consistent in W^, then Γ is a subset of some set of ^-formulas which is
maximally consistent in W^.

Proof: Assume that Γ is consistent in W^. Let Σ = (Σβ>β)elαbe an enumera-
tion of the .^-formulas for some ordinal a. We define by transfinite
induction on β ^ α - I 1 2 : Γ£ = Γ; Γ ^ = Γβ U {Σβ} if Γβ'u{Σβ} is consistent in
W^, else ηj; and, for β a limit ordinal, Iβ' = \J Γf Let K = Γ<£. It is easy to

Y£ίβ

show by transfinite induction on β that Tβ is consistent in W^ for each
β ^ a, and, in particular, therefore, K is consistent in W^. We next show
that K is maximally consistent in W^ as well. To this end, assume that φ
is an -^-formula with the property that K U {φ} is consistent in W^. Now,
φ = Σβ for some βe α; so Tβ U {Σβ} is consistent in W^, whence φe Γβ+1 c K.
This proves our assertion. Since Γ c K, we are done. QED

Lemma 14 Let -Cbe a language, a be an ordinal, (Σβ)βιe0L be a sequence of
^-formulas, (μβ)β/eα be a sequence of variables, (ζβ)βe0[ be a sequence of
constant terms, and Γ be a set of ^-formulas. If ζβ Φ ζγfor all β Φ γ in a
such that μβ and μy occur free in Σβ and Σ y, respectively, ζβ<j! -£. and is of
the same type as μβfor each βea such that μβ occurs free in Σβ, | Γ is
consistent in W^, and no member of {μp: βe a} occurs free in any element of

Γ, then ΓU < (~ΛμβΣβ -* ~ΣβΓβ ): βea> is consistent in W^,, where j£' =

JC U {ζβ . βe a. and μβ occurs free in Σβ}.

Proof: Assume the hypotheses. For convenience, let Δβ = ί~ΛμβΣβ —*

~Σβ \ / ) for each βeoί. We define by transfinite induction on β: Ko = Γ,
IΛβJ/

Kjg+i = K/β U {Δβ} for βe a, and Kp = Ll K/y for β < a a limit ordinal. Note that

ζβ does not occur in Δβ if μβ does not occur free in Σβ; so every member of
Kα is an .£'-formula. We now show by transfinite induction on β that for
each β ^ α, K/β is consistent in Wι̂ ,. That Ko is consistent in W /̂ follows
from Lemmas 7 and 9. Now let βeα and assume that Kg is consistent in
Ŵ i/ but Kβ+x = Kiβ U {Δβ} is not. Then Kβ U {Δβ} \γf~ι ^Δβ; so by Lemma 5
K,β lyf-, (Δβ -^ ~Δβ). Since [(Δβ —* ~Δβ) —> ̂ Δ^] is a tautology, it follows from

Lemmas 4 and 3 that K^l^-~Δ β , i.e., K β ^ - ^ - Λ μ β Σ β - ^ Σ β [ ς β ] ) ' Ag*in,

since [~(φ-* ~ψ) -> φ] and [~(<^ -• ~ψ) -* ψ] are tautologies for any
^'-formulas φ and ψ, it follows from Lemmas 4 and 3 that Kβ (yy— ̂ ΛμβΣβ

and K/βlyy—f Σβ ^ . Our hypotheses guarantee that μβ occurs free in no

element of Kjβ and that ζβ occurs in no element of K$. Hence, by Lemma 8,
Kβi|y\Π;|ΛμβΣβ. But this implies by Lemma 9 that Kβ is inconsistent in W^p,
which is contrary to assumption. Hence, if βe a and Kβ is consistent in W^/,
then so is K ^ . Next let β < a be a limit ordinal and assume that for each
ye β K/y is consistent in W^/. Then so is Kβ = y K^ by Lemma 11.

Consequently, our assertion is proved, and, in particular, we have shown
that Kiα is consistent in W^r. But Kα = Γ U {Δβ: βe a}. QED



10 JOHN CARSON SIMMS

3 Semantics Let ^ be a language. We say that 51 is an ^,-structure iff
$1 is a 4-place sequence (&, (Dn)neω, H, I) such that: (i) for all ne ω,
0φDnc&; (ii) H c &x \J Γ^)13; and (iii) / is a function whose domain is

the set of ^-terms and which is such that for every individual ^f-term, ζ,
I(ζ)eDQ and for every ne ω and w-place predicate ^-term, η, I(η)eDn&1.
Now let 51 = (&, Φn)neω> H> I) b e a n -^-structure. If ζ is an -£-term, then we
define the category of ζ in 51 to be Do if ζ is an individual ^-term and Dn+ι

if ζ is an /z-place predicate -ί-term. If de & and ζ is an -£-term, then we

set 5l[j] = (ff, (Dn)neω, H, l(^, where / Q = (J~ {(ζ, I(ζ))}) U {(ζ, d)}, i.e.,

11 ) is the function which agrees with / everywhere except, possibly, at ζ

where it takes the value d. If -£' c -£, then by 511-£' we will understand
(^, (Dn)nβω, H, /!-£'), where / | ^ r is the function whose domain is the set of
-£'-terms and which agrees with / on those terms.

Let / b e a language, 51 = (&, Φn)neω, Hf I) be an .£-structure, and φ be
an ^-formula. We define φ to be true in 5ί by induction on ^-formulas as
follows:

1. if φ = ζ(?7o, . ., τ?n-i) is an atomic ^-formula, then φ is true in 51 iff
I(ζ)H(l(η0), . . .,/(!]„-!)>, i.e., iff (/(ζ), (I(η0), . . ., 1(η^)))e H

2. if φ = ~ψ9 then φ is true in 51 iff ψ is not true in 51

3. if φ = (ψ -• X), then <̂  is true in 51 iff either ψ is not true in 51 or X
is true in 51

4. if φ = Λμψ, then φ is true in 51 iff for every d in the category of μ in

51, ψis true in^lj^l.

We write \= φ for ^ is true in 51. We say that 51 is a model of φ iff (= <ρ.
Let Γ be a set of .^-formulas. We say that 51 is a model of Γ, in symbols
(=Γ, iff 51 is a model of every member of Γ. Now let N be a class (which
may be proper) of ^-structures. We say that φ is an tt-valid consequence
of Γ, in symbols Γ |== φ, iff every member of N which is a model of Γ is
also a model of φ. We also say that φ is #-valid, in symbols \^φ, iff φ is
an N-valid consequence of 0, i.e., iff 0 (^ φ.

Let -*f be a language and 51 = (&, (Dn)n€ω, H, I) be an .£-structure. Then
we will say that 51 is strict iff (1) Dn Π Dm = 0 for all n, meω such that
rc * m, (2) ^ = U Dm and (3)ffc (J (D^ x w ^ ) . By the cardinality of 51 we

will understand the cardinality of 0. For convenience we let Sjf be the
class of -^-structures and tf/be the class of strict .£-structures.

We now state a few useful semantical lemmas. In most cases the
results are so obvious that they need no proof.

Lemma 15 Let £be a language, Γ and K be sets of ^-formulas, tf and
1 be classes of ^-structures, and φ be an ^-formula. //ΓCK, -Hie tf, and
Γ|=<p, thenK^φ.
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Lemma 16 Let -Cbe a language, T be a set of ^.-formulas, N be a class
of ^-structures, and φ be an ^-formula. If φe Γ, then Γ f== φ.

Lemma 17 Let -(_ be a language, % be an 4L-structure, φ be an 4L-
formula, and μ be a variable. If μ does not occur free in φ, then, for every
d in the category of μ in 51, \ET φ iff (=== φ

•β]
Proof: A trivial induction on .£-formulas.

Lemma 18 Let £ be a language,% = (j&9 Φn)neω, H, I) be an ^-structure,
ψ be an ^-formula, and ζ and η be £-terms. If I(η) is in the category of ζ

in 51, and η can be properly substituted for ζ in φ9 then \^φ\ \iff | φ.

Proof: Let ^ be a language and ζ and 77 be ^f-terms. We prove by
induction on ̂ -formulas (^that, for every ^-structure % = (&, (Dn)neω,H,ί)9

if I(η) is in the category of ζ in ϊ l , and 77 can be properly substituted for ζ in

φ, then b= φ\ iff I r ζ-1 φ. The only case of this induction worth

considering is when φ is of the form Aμψ. K μ = ζ then φ\ \ = φ and the
UIJ

desired result is seen to follow from Lemma 17. If μ = 77, then, since 77 can
be properly substituted for ζ in φ, it follows that ζ does not occur free in

Γζl
φ\ so φ\ = φ9 and the desired result again follows by Lemma 17. Finally,

if μ Φ ζ and μ Φ 77, then the conclusion we want is drawn from induction
hypothesis and the last clause in the definition of truth in an -£-structure.

QED

Lemma 19 Let ^_be a language, X be a class of ^-structures, and ψ be
an -C-formula. If φe A^, then |==(p.

Proof: Assume the hypothesis. If φ falls under (A1)-(A4), then the result
is trivial. If φ falls under (A5), then Lemma 17 guarantees the result.
Finally, if φ falls under (A6), then the desired result follows from
Lemma 17 in conjunction with Lemma 18. QED

Lemma 20 Let J£ be a language, T be a set of -£-formulas, N be a class
of -£-structures, and φ and ψ be ^.-formulas. If Γ (= φ and Γ |== (φ —* ψ),
then Γ(=ψ.

Lemma 21 Let £be a language, Γ be a set of ^-formulas, N be a class
of ^.-structures, and φ be an ̂ -formula. If T \^- φ, then T \= φ.

Proof: By Lemmas 16, 19, 15, and 20.

Lemma 22 Let £ and JC be languages. If JLς: -£'', φ is an ^.-formula,
Γ is a set of ^.-formulas, and tf is a class of -έj-structures, then Γ (= φ iff
Γ (= φ, where W = {«!.£: 51 e «}.

Proof: A trivial induction on ^-formulas.
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4 Completeness

Theorem 23 Let -Cbe a language and Γ be a set of -£-formulas. If Γ is
consistent in W ,̂ then there is a strict ^.-structure (whose cardinality is
ω + |-£|) which is a model of Γ.

Proof: Assume that Γ is consistent in W .̂ Let/be an .^-external constant
realization of Γ, -£' = £ U -#(/), and Γ' = sf[Γ]. By construction no
variable occurs free in any member of Γ", i.e., every member of Γ" is
closed. Furthermore, by Lemma 10, Γ' is consistent in W^'.

Let Σ = (Σβ)βιeαbe, for some ordinal a, an enumeration of all the -£'-
formulas which contain at most one free variable. For each βe <x9 let μβ be
the variable which occurs free in Σβ if such a variable exists, else let μβ be
any variable. Next let (ζβ)βeαbe a pairwise distinct enumeration of constant
terms which are not members of -£' and are such that, for each βe α, ζβ is
of the same type as μβ. Finally, let .£" = -£' U {ζβ . βe a}. It follows from

Lemma 14 that Γ'U <(~ΛμβΣβ-* ~ΣβΓβ |Y. βe a> is consistent in Ŵ //. It

then follows from Lemma 13 that Γ'U <(~AμβΣβ — ~Σβrβ |Y. βeαl is a

subset of some set K of .£"-formulas which is maximally consistent in W#".
We use K to construct an -£"-structure. Let β = .£"; Dn= C(n) Π JL"

for each we ω; H = {(ζ, (η0, . . ., τjΛ-i»: ne ω, ζ, η0, . . ., η«-i€ ^ " , and
ζ(?7o, . ., T7«-i)e K}; and / be any function which coincides with the identity
function on the constant -£" -terms and is such that /(μ) is a constant
-£"-term of the same type as μ for every variable μ. Then 51 =
(j&, (Dn)mω, H, I) is a strict -£"-structure. Furthermore, if we chose the
sequents of Σ to be pairwise distinct, then the cardinality of 31 is just

We now prove by induction on the number of occurrences of logical
particles in φ that for every closed -^"-formula φ, φe K iff |j= φ.
Case 1: The number of occurrences of logical particles in φ is 0. Then φ
is atomic and the desired result follows from our definition of H. Case 2:
Assume that the number of occurrences of logical particles in φ is n + 1
and that the result holds for every closed -£"-formula in which the number
of occurrences of logical particles is n. Ίi φ is of the form ~ψ or (ψ —> X),
then the desired result again follows easily. Hence, assume that φ is of the
form Λμψ. For the left-to-right direction, assume that Λμψe K. Then, for

every constant -£"-term ζ of the same type as μ, ψ eK by (A6),

[ η LsJ

by the induction hypothesis, whence l=niηψ
by Lemma 17. Since the category of μ in % is just the set of constant
-£"-terms which are of the same type as μ, this implies that [= Λμψ, i.e.,
that \ξφ. For the right-to-left direction assume that |=Λμψ but Λμψ/K.
Since Aμψ is closed, ψ contains at most one free variable; so there is some
βea such that ψ = Σβ. Now, if ψ itself is closed, then by (A6), and
Lemmas 2, 3, 6, and 12 we find Aμβψe K, and by Lemma 17 we find t^Λμ^ψ.
In any case, we may assume that μ = μβ. Now, since we have assumed that
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Λμψ/K, it follows that ~ΛμβΣβeK. But, by construction, ί~ΛμβΣβ —»

~Σβ[^βT\e K; so K b- ~ Σ β r ί β by Lemmas 2 and 3. Accordingly, ~ΣβP β ]e K
LΛβJ/ ^ LsβJ 1>0J

by Lemma 12. On the other hand, j=ΛμβΣβ; so \=f==^ Σj3> whence |ξ= Σβ ^

«[tJJ L βJ

by Lemma 18. Thus, by the induction hypothesis, Σβ Me K. But then K is
LζβJ

inconsistent in Ή^—a contradiction. Hence, the right-to-left direction is
proved, and we have established our assertion.

Since Γ ' c K and every member of Γ" is closed, it follows that t^Γ".
Since /is essentially arbitrary on the variables, we may require that / c /,
and, when we do so require, we find that |= Γ by Lemma 18. Hence, by
Lemma 22, t=fτΓ. QED

The proof of Theorem 23 has been adapted for our purposes from the
proof of the corresponding theorem for first-order logic in Mendelson [13],
pp. 65-67.

Let Z b e a language and M = (0, (Dn)^eω, H,I) be an ^-structure. If
(mk)«eω is a sequence of cardinals, then we say that 51 has cardinality
structure (mιn)nιeω iff for each ne ω, \Dn\ = m«. By adjusting the cardinality
of repetitions of -^-formulas in Σ of the proof of Theorem 23, we can
prove:

Theorem 24 Let JL be a language, Γ be a set of JL-formulas, and
m = (tt\)w€ω be a sequence of cardinals. If mιn ^ ω + I -£| for each ne ω, and
Γ is consistent in W ,̂ then there is a strict ^.-structure which is a model
of Γ and whose cardinality structure is m.

Theorem 23 provides the means for proving the following two com-
pleteness theorems, the latter of which is a corollary of the former.

Theorem 25 Let £ be a language, Γ be a set of ^.-formulas, and φ be
an ^-formula. T \$f φ iff T \==φ.

Proof: In light of Lemma 21, we need only prove the right-to-left direction.
To this end, assume that Γ |== φ but T\^f-φ. Then ΓU {~φ} is consistent

in W/̂ . For, otherwise, Γ U {~<£?} \γf φ\ so Γ (yf (~φ —* φ) by Lemma 5,
whence Γ tyf φ by Lemmas 4 and 3—a contradiction. Accordingly, Theorem
23 guarentees that Γ U {~φ} has a model which is a strict -^-structure.
But such an .£-structure cannot also be a model of φ. QED

Theorem 26 Let j(_be a language, Γ be a set of ^.-formulas, and φ be an
^.-formula. Then Γ \^- φ iff Γ \= φ.

As mentioned in Section 1, the preceding strong completeness theorems
yield corresponding strong completeness theorems for any theory T at
least as strong as W^γ. If T is a theory, we say that 21 is a T-structure iff
51 is an |^fp-structure which is a model of AΊ. We let #(s)i be the class of
(strict) T-structures.
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Theorem 27 Let T be a theory, T be a set of ^-formulas, and φ be an
^ij-formula. If T is an extension of W^ , then Γ \γφ iff Γ L φ.

Proof: By Theorems 25 and 26, Γ \γφ iff Γ UAT b — <ρ iff Γ U i τ 1 , φ
. U)(V)

iff Γ f ^ <p. QED

5 Results and Applications In this section we are concerned only with
that part of our theory corresponding to the language 0, viz. with W* and its
extensions. Henceforth, when reference to a language is omitted, we
assume reference to 0, e.g., formula, structure, etc., refer to 0-formula,
0-structure, etc. Furthermore, unless otherwise indicated, theory refers
to theories whose associated languages are 0.

*5.1 A Substitution Free Axiom Set for W* In this section we will
formulate a substitution free axiom set for W*. See [8] for the general
importance of substitution free axiom sets, particularly as regards modal
contexts. We will see how the substitution free axiom set for W* becomes
simplified and expanded as we pass to extensions of W* in later sections.

We say that t is a type iff te ω. If a is an individual variable, we say
that the type of a is 0. And if we ω and π is an w-place predicate variable,
we say that the type of π is n + 1.

Let ne ω and t = (t0, . . ., tn.j) be an w-place sequence of types. If
ten + ί9 μ is a variable, and φ is a formula, then we say that μ has a
t, i-occurrence in φ iff an atomic formula of the form Ή(V0, . . ., v^l} μ,
viy . . ., vn-γ) occurs in φ where, for each jen, the type of Vj = tj. (We
understand τr(i/0, . . ., *>, -i, μ, viy . . ., ιv-i) to be: τr(μ, vQ9 . . ., iVi) if i = 0;
π(i/0, . , Vn-u μ) if i = w; and π(μ) if n = 0.) If π is an n-place predicate
variable and φ is a formula, we say that π has a t-occurrence in φ iff an
atomic formula of the form τr(μ0, . . ., μw_i) occurs in φ where, for each
ie n, the type of μ, = t{.

If ie n+ 1 and μ,μ' are variables, we say that φ is a ί, i-indiscernibility
formula for μ, μ' iff ^ is a formula of the form

Λy0 . ΛiViΛπίπK, . . ., i/^, μ, uif . . ., vn^)<->Ή(i/θ9 . ., ^-i, μ',
ι/f , . . ., i/β-J) ,

where μ has a ί, z-occurrence in φ; μ, μ' are each distinct from π,
i/0, . . ., ^-i; and π, ι/0, ., vn-ι a r ^ pairwise distinct. If μ, μ' are
variables, we say that φ is a general indiscernibility formula for μ, μ' iff
there are an we ω, w-place sequence of types £, and ze w + 1 such that φ is a
ί, z-indiscernibility formula for μ, μ\ If π, σ are «-place predicate
variables, we say that φ is a t-coextensiυity formula for ir, σ iff <̂  is a
formula of the form Λμ0 . . . Aμn-ι('n(lh, ,μ«-i) <-^σ(μ0, . . ., μw-J), where
π, σ are each distinct from μ0, . . ., μw-x; μo, . . ., μ̂ -i are pairwise distinct;
and, for each ien, the type of μ, = t{. K TJ, σ are n-place predicate
variables, we say that φ is a general coextensiυity formula for π, σ iff
there is an w-place sequence of types t such that φ is a ί-coextensivity
formula for π, σ.

We now define three new sets of formulas. We say that θ is an
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element of (A7), (A8), or (A9) iff θ is a generalization of any formula of the
form:

(A7) Vβ(φ0Λ. . . Λ φn-ι), where β is an individual variable, weω, and there
is an individual variable a such that (i) a Φ β, and (ii) for each ten, ψ{ is a
general indiscernibility formula for α, β

(A8) Vσ(<p0Λ. . . Λ ^ Λ Ψ O Λ . . .Λψm-ι), where σ is a predicate variable,
n, me ω, and there is a predicate variable π of the same type as σ such that
(i) π Φ σ, (ii) for each ie n, ψi is a general indiscernibility formula for π, σ,
and (iii) for each ie m, ψ{ is a general coextensivity formula for π, σ

(A9) φ—* (ψ<->X), where there are an neω, w-place sequence of types t,
ten + 1, and distinct variables μ, μ' such that (i) φ is a t, i-indiscernibility
formula for μ, μ', (ii) ψ = τr(^0, . ., I 'M, μ, ι>f , . . ., ι>n-i) is an atomic
formula in which μ' has a ί, z-occurrence, and (iii) X = Ή(V0, . . ., v^u μ',

I'M , Vn-l)'

Now let W*/ be the theory whose axiom set is the union of (A1)-(A5) and
(A7)-(A9). We will prove that W*/ is equivalent to W*. Since it is clear that
W£/ is a subsystem of W*, it will suffice to prove that every instance of
(A6) is a theorem of W*/. Note that Lemmas 4, 5, and 6 hold for W*/.

Lemma 28 Let [φ -> (ψ -* X)]e (A9). Then \y^r[<P -• (X<->ψ)]

Proof: Since [<p -> (ι// -» X)]e (A9), φ is of the form

Λi/0 . . . Au^iAirtiriuo, . . ., ι/^l9 μ, ^ t , . . ., I/Λ-I)<->TΓ(I/0, . . ., ^/-i, μ',

^ , , Vn-l)),

where μ, μ', π, î o, . ., vn-ι a r e pairwise distinct. By Lemma 2 and (A9),

\w*j[φ-+ (π(ι/0, . ., î i-i, μ', ^, , . ., ^-i)<->7r(ι/0, , ^/-i, μ, ^ή . .,

^-l))]

By several applications of Lemma 6, (A4), (A5), and Lemmas 4 and 3, we
obtain \γ$*-(φ —* φ')f where φ' is obtained from φ by interchanging μ and μ'.

Now, [φf -> (X -^ ψ)]e (A9). It follows from Lemmas 2, 4, and 3 that

tw|y[<P- ( x ^ ^ ) ] - QED

Lemma 29 Let n e ω, t be an n-place sequence of types, i e n + 1, μ and μ'
be variables, and ψ and X be formulas. If φ is a t, i-indiscernibility
formula for μ, μ', and X results from ψ by replacing a free t, i-occurrence
of μ by a free occurrence of μ', then f̂ *- [φ —> (ι// <-»X)].

Proof: We prove this by induction on formulas with respect to ψ. If μ = μr,
then there is nothing to prove in any case; so assume that μ Φ μ\ Case 1:
ψ is atomic. Then the desired result follows by (A9). Case 2: ψ is
of the form ~ι//' or (ψf -• ι//") Then the desired result follows by
tautologous transformations, i.e., Lemmas 4 and 3, and induction hypothe-
sis. Case 3: ψ is of the form Λvψ'. Then X may be written as Λ^X', and as
the induction hypothesis we assume that \ψr[φ~* (ψ'*->X')] By tautolo-
gous transformations we therefore obtain bft*-[φ —* (ψr —» X')], whence, by
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generalization, i.e., Lemma 6, f^prhv[φ —> (ψf -* X')]. Applying (A4), and

Lemmas 2 and 3, we get (^-[Λi^φ —> (ψ -* X)]. Since our assumption

requires that v Φ μ, μ', (φ -+ Λvφ)e (A5). It follows by Lemma 2 and

tautologous transformations that \w$r[φ—> (ψ —• X)]. Similarly, hj/v*~ [<P—*

(X —> ;//)]. Hence, again by tautologous transformations, lyγ*-[<ρ —» (ψ<->X)].
S / QED

Lemma 30 Let μ ίmd i/ δe variables and ψ and X be formulas. IfX is
obtained from ψ by replacing some {or none or all) free subject position
occurrences of μ in ψ by v, then there are an ne ω and general indiscern-
ibility formulas φQ, . . ., φn.ι for μ, v such that \^r[φ0 Λ . . . Λ φn.1 —*
(Ψ<->X)]. S /

Proof: If μ = v, then the result is trivial. Otherwise, merely apply
Lemma 29 and tautologous transformations repeatedly. QED

Lemma 31 Let μ, v be variables and φ be a formula. If μ and v are of
the same type, and μ does not occur free in predicate position in φ, then

^ ( Λ μ ^ ΐ ] )
Proof: First assume that μ Φ V and that v can be properly substituted for μ
in φ. By Lemma 30 there are an we ω and general indiscernibility formulas

Ψo> - •> Ψn-ι for μ, v such that t ψ0A. . . A ^ - * [ψ<^φΓ ) . Let

Φ = ψo A. . .Λψβ.1( It follows by tautologous transformations that \^*- \φ —>

IΦ —» <̂  ) and, therefore, that (y^- \φ -* (~φ\ —» ~^j . Accordingly,

by generalization, (A4), and t a u t o l o g o u s transformations, we obtain

hs*T[Λμ<3P-* ίΛμ^^Γ -»Λμ~ΦJJ, whence [̂ *- IΛμ~^rJ — ̂ Λμ^ -* Λμ-^jJ.

Since μ does not occur free in ~φ , it follows that (~φ\ —* Λ.μ~<̂  Me

(A5); so, by Lemmas 2, 4, and 3, fw*~ ~<P ~* (Aμ^ -• Λμ-'ΨJ . Conse-

quently, by more tautologous transformations, \ψr~ VμΨ —• (hμφ —• φ j .

But Vμ^e (A7) U (A8). Therefore f^r(Λμ^-^ φy ) by Lemmas 2 and 3.
ι s / v L l / J / ΓμΊ

If μ = v, or v cannot be properly substituted for μ in φ, then φ\ = φ. In

this case, let v' be a variable distinct from and of the same type as μ which

does not occur in φ. Then h^*- ίΛμ<p —* φ\ , 1 by what we have just proved.

It follows from generalization, (A4), and Lemma 3 that f^sr ίΛ^'Λμφ —*

l\v'φ , ) . But (Λμφ -> Λv'Λμφ)e (A5), and we have already shown that

ίyγ*-(Λι/<ρ I —> φ). Accordingly, by Lemmas 2, 4, and 3, f^-(Λμ^—> (/?).
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Lemma 32 Let ne ω, t be an n-place sequence of types, π and σ be
n-place predicate variables, and ψ and X be formulas. If φ is a t-
coextensiυity formula for π, σ, and X results from ψ by replacing a free
t-occurrence of Ή in ψ by a free occurrence of σ, then f̂ p- [φ -* (ψ «-»X)].

(s/

Proof: Just like that of Lemma 29, except for Case 1: ψ is atomic. Let
μ0, . . ., μw-i be distinct variables which do not occur in [φ—> (ψ<->X)] and
are such that for each ten, the type of μ, is t{. Then by Lemma 31 fyp- [φ —>

(π(μ0, . . ., μw-i)<->σ(μ0, . . ., μw-i)]. Repeatedly applying generalization,
(A4), and Lemmas 2, 4, and 3, and (A5), we obtain hpr [φ —• Λμ0 . . .

Λμw-i(τr(μ0, . . ., μnj <-^σ(μ0, . . ., μn-L))]. But f^*y[Λμ0 . . . Λμ^Mμo, . . .,

μw-i)<^->cr(μo> •> M'w-i)) -> (Ψ^-^ X)] by Lemma 31. Hence, by Lemmas 4
and 3, \ψr [φ — (ι// <->X)]. QED

By repeatedly applying Lemma 32 and then using Lemma 30, we can
now prove:

Lemma 33 Let π and σ be predicate variables and ψ and X be formulas.
If Ή and σ are of the same type, and X is obtained from ψ by replacing some
{or none or all) free occurrences of π in ψ by free occurrences of σ, then
there are n, me ω, general indiscernibility formulas φ0, . . ., φn.γfor π, σ,
and general coextensivity formulas ψr

0, . . ., φn.γ for π, σ such that
\ψr [ φ0 Λ . . . Λ φn.γ Λ ^ Λ . . . Λ φn.γ —» (ψ <-> X)].

If we use L e m m a 33 instead of L e m m a 30 in the proof of L e m m a 31 we

thereby obtain a proof of:

Lemma 34 Let π and σ be predicate variables and φ be a formula. If Ή

and σ are of the same type, then \^prU\τiφ —> φ\ j .

Lemma 31 (for generalized individual variables) and Lemma 34
together imply the following theorem, which in turn shows that W*/ is,
indeed, equivalent to W*.

Theorem 35 Every instance of (A6) is a theorem of W£y.

5.2 Relations as Individuals Although in W* relations are projected
grammatically as being entities which may serve as subjects of predica-
tion, they fail to be fully projected logistically as individuals. As a formal
representative of a realist ontology, such as the intended ontology of T*,
then, W* is too weak. We will remedy this situation by considering,
instead of W*, the theory W** which is defined to be W* + (A10), where
(A10) is the set of all formulas Θ such that θ is a generalization of some
formula of the form:

(A10) y\aφ —* φ\ J, where a is an individual variable, and μ is any
variable. L μ J /

Now, we already have a completeness theorem for W**, viz. Theorem
27. But as a semantical reflection of the intended realist ontology for W**,
Theorem 27 is quite unnatural because of its inclusion of, say, strict
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structures wherein the category of the individual variables is disjoint from
the categories of the predicate variables. The semantics which we now
describe, however, is faithful to this realist ontology.

We say that 31 is an Aristotelian structure, or, for brevity, A-
structure, iff 91 = (&, {D^)mωi H,l) is a structure and \J Dn+ί c DQ. If

neω

51 = (jp9 (βn)njeω, H, I) is an A-structure, then we say that 31 is semi-strict
iff (i) jy - Do, (ii) for all n, me ω, if n Φ m, then Dn&ι Π Dm+1 = 0, and
(iii) He U|(ZViX nD0). We define «A to be the class of A-structures, KSA

wjeω

to be the class of semi-strict A-structures, and, if T is a theory, (̂5)47- to
beS τ Πtf ( 5 ) Λ .
Theorem 36 Let T be a set of formulas. If Γ is consistent in W**, then
there is a semi-strict A-structure which is a model of Γ.

Proof: We can directly utilize the proof of Theorem 23. Take this proof,
replace Γ by Γ U (A10) at the outset, and, when it comes time to construct
the model, set Do equal to & instead of C(0) Π -£". That the A-structure so
defined is a model of Γ follows in essentially the same way as before. QED

We can now derive the following two theorems in the usual manner.

Theorem 37 Let φ be a formula and T be a set of formulas. Then
Γ \q^φ iff Γ \— φ.

Theorem 38 Let T be a set of formulas, T be a theory, and φ be a
formula. If T is an extension of W**, then Γ\fψφ iff T 'L φ.

' j(5)AT

We can also provide Wi** with a substitution free axiom set. If ne ω,
ie n+ 1, and μ, v are variables, we say that φ is an n, i-indiscernibility
formula for μ, v iff φ is a t, z-indiscernibility formula for μ, v where t is
the w-place sequence each of whose sequents is 0. We say that φ is a
special indiscernibility formula f o r μ, v iff t h e r e i s a n ne ω a n d a n i e n s u c h
that φ is an n, i-indiscernibility formula for μ, v. (All), (A12), or (A13) is
defined as the set of all θ such that θ is any generalization of any formula
of the form:

(All) Vβ(φ0 Λ . . . Λ φn-ι), where β is an individual variable, ne ω, and there
is a variable μ distinct from β such that for each ie n, ψj is a special
indiscernibility formula for μ, β

(A12) Vσ[φ0Λ. . .Λ^ΛΛtfo . . . AaM^(ir(aθ9 . . ., am^)<->σ(a09 . . ., α^.J)],
where n, me ω, and TΓ, σ are distinct m-place predicate variables such that
(i) for each ten, ψι is a special indiscernibility formula for π, σ, and
(ii)\a09 . . ., am.γ are pairwise distinct individual variables

(A13) φ —> (ψ<r->X)9 where there are an neω, ί'en + 1, and distinct
variables μ, μ' such that (i) φ is an n, i-indiscernibility formula for μ, μ',
(ii) ψ = Ή(V0, . . ., u^ly μ, vif . . ., iVi) is an atomic formula, and (iii) X =

We define W!** to be the theory whose axiom set is the union of
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(A1)-(A5) and (A11)-(A13). It is a simple matter to adjust the proofs of
Lemmas 28-34 to show that W*̂  is equivalent to W**.

5.3 Reducing the Indiscernibilities Let ne ω and t be an n-place sequence
of types. If π, σ are rc-place predicate variables, a0, . . ., an^ are distinct
individual variables, and φ is a ί-coextensivity formula for π, σ, then
ϊw**[Λα!0 . . . Ao^Ti^o, . . ., an.1)<r^σ(aθ9 . . ., an^)) -^ φ] by (A10), gener-
alization, (A4), and (A5). Similarly, if ze w + 1, μ, v are variables, φ is an
n, f-indiscernibility formula for μ, v, and ψ is a t, z-indiscernibility
formula for μ, v, then \ψ^\(φ -+ ψ). Thus, in W**, t, z-indiscernibility is
reduced to n, z-indiscernibility.

It will be convenient to go further and reduce n, z-indiscernibility to
0, O-indiscernibility. If μ, v are variables, let us say that φ is a simple
indiscernibility formula for μ, v iff φ is a 0, O-indiscernibility formula for
μ, v, i.e., φ is of the form Λπ(π(μ) <->π(i/)), where π is distinct from μ and
v. Now let (A14) be the set of all formulas θ such that θ is any generaliza-
tion of any formula of the form:

(A14) Λτr(7r(μ)<->π(̂ )) -» φ, where Λπ(τr(μ) <->7rM) is a simple indiscern-
ibility formula for μ, v, and φ is a special indiscernibility formula for μ, v.

One syntactical advantage of studying the theory W** + (A14) is that it
can be given a particularly simple substitution free axiom set. To this end,
let (A15), (A16), or (A17) be defined as the set of all formulas θ such that θ
is any generalization of some formula of the form:

(A15) VαΛπ(7r(μ)<->7r(α)), where a is an individual variable, μ is any
variable distinct from a, and π is distinct from μ and a

(A16) Vσ[Λτ(τ(τr)<->τ(σ))ΛΛα!0... Ao^Trfao, . . ., an^) <-* σ(a0, . . ., α«-i))],
where ne ω, π and σ are distinct w-place predicate variables, τ is distinct
from 77 and σ, and a0, . . ., an^ are pairwise distinct individual variables

(A17) Λπ(π(μ) <->π(î )) —* (</?<->ψ), where μ, v, and π are pairwise distinct,
ψ is an atomic formula, and ψ is obtained from φ by replacing an
occurrence of μ in subject position by an occurrence of v.

M** is defined to be the theory whose axiom set is the union of (A1)-(A5)
and (A15)-(A17). It is not difficult to show that M** is equivalent to
W** + (A14). To show that W** is a subsystem of M**, just adjust the
proofs of Lemmas 28-34. Every instance of (A14) can be derived inM** by
generalizing on (A17) and then applying (A4) and (A5). Then W** + (A14) is
shown to be a subsystem of M**. Now, (A15) c (All), (A16) c (A12), and
every instance of (A17) can be derived in W** + (A14) from (A14) and (A13).
Thus, M** is shown to be a subsystem of W** + (A14). Accordingly, M**
is, indeed, equivalent to W** + (A14).

We can even go further. If μ, v are variables, we will say that φ is an
indiscernibility formula for μ, v iff φ is of the form Λ7r(π(μ) —* π(v)) where
7Γ is distinct from μ and v. If μ, v are variables, then we will write μ = v
for any indiscernibility formula for μ, v. Now let (A18) be the set of all
formulas θ such that θ is any generalization of any formula of the form:
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(A18) μ = v —> A7r(7r(μ)<->τr(i/)), where μ, v are distinct variables, and π is
distinct from μ, v.

Then simple indiscernibility is reduced to indiscernibility in M** +
(A18), and no further reduction is possible. As might be expected,
M** + (A18) can be given an even simpler substitution free axiom set than
M**. To this end, we define (A19), (A20), or (A21) to be the set of all
formulas θ such that θ is any generalization of any formula of the form:

(A19) Vaμ = a, where a is an individual variable distinct from the
variable μ

(A20) Vσ[ττ = σΛ|Λ,α0 . . . Aα^Mαo, . . ., αβ-i)<->"σ(α0, , α»-i))L where
ne ω, π, σ are distinct n-place predicate variables, and α0, •> O w-i are
pairwise distinct individual variables

(A21) μ Ξ v -* (φ —> ψ), where μ, v are distinct variables, ψ is an atomic
formula, and φ is obtained from ψ by replacing an occurrence of μ in
subject position by an occurrence of v.

The theory whose axiom set is the union of (A1)-(A5) and (A19)-(A21)
is Cocchiarella's M*, introduced in [9].14 It is a simple matter to verify
that M* is equivalent to M** + (A18).

5.4 Comprehension and Instantiation of Formulas for Generalized Predicate
Variables Cocchiarella's formulation of standard second-order logic [8]
contains a comprehension principle, and Church's formulation of standard
second-order logic [l] contains a principle for the substitution of formulas
for generalized predicate variables. When generalizing standard second-
order logic to the extended grammatical-logistic context of W**, therefore,
it is of great interest to investigate the addition of generalizations of such
principles to W1**. One of the most interesting facts about W** is that it
affords a great variety of such generalizations, not all of which are
equivalent. This is quite in contrast to the logical context of standard
second-order logic where there is only one natural comprehension prin-
ciple or principle for the substitution of formulas for generalized predicate
variables.

We say that φ is a comprehension formula iff φ is a formula of the
form V7rΛμo . . . Aμn-Λπiμo, . . ., μn-1)<^ψ), where ne ω, and π, μ0, . . ., μn-i
are pairwise distinct. We also say that φ is a standard second-order
formula iff φ is a formula in which no predicate variable occurs in subject
position.

We begin our study of comprehension principles by noting the
axiomatic simplifications which result from adding two especially simple
comprehension principles to W1**. Let (CPA) be the set of all θ such that θ
is any generalization of any comprehension formula of the form:

(CPA!) VπΛαo . . . hxtn-iiitioto, . . . , an^) <-»̂ φ), where φ is an atomic standard
second-order formula in which π does not occur, and a0, . . ., an.γ are
individual variables.

Then W!** + (CPA) is equivalent to M** + (CPA). That W** + (CPA) is a
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subsystem of M** + (CPA) follows from the previously mentioned fact that
W** is a subsystem of M**. To show that M** + (CPA) is a subsystem of
W** + (CPA), and, hence, that they are equivalent, it will suffice to show
that every instance of (A14) is provable in W** + (CPA) since M** is itself
equivalent to W** + (A14). To this end, let ne ω, π be a 1-place predicate
variable, a> β, y0, . . ., yn.γ be pairwise distinct individual variables,
ie n + 1, and σ be an (n + 1)-place predicate variable distinct from π. Let
φ = σ(y0, . , Ύi-u <*, Ύi, . , Ύn-ι) and ψ = σ(γ0, . . ., γimL, β, y, , . . ., y^.J.
By (A6) and the usual transformations, (-vy*̂ {Λ7r(π(α) <->π(β)) -» [Λα(π(α!) <-»
<ρ) -* ((/?<->ι//)]}, whence hyv**-{Λπ(π(ύ!) <—>7r(β)) -> [~(<JP<->^/) -> ~Λα(7r (<*)<->
φ)]}by tautologous transformations. It follows from generalization, (A4),
and (A5) that \ψ**>{ATΓ(π(α)<-> π(β)) -• [^(<^<->^) -* Λπ^Acu(π(θ!) <->< )̂]} and,
hence, by t a u t o l o g o u s transformations, that f^^{VπAα(π(α) <->φ) —»
[Λ7r(τr(α!)^^π(β)) -> (φ <-^ ι//)]}. Accordingly, lw**H.ι(CPA) [ΛTΓ(TΓ(Q!) ^^π(β)) —
(^><->ψ)]. From this result we can easily derive every instance of (A14)
using generalization and (A4) and (A5). Thus, W** + (CPA) is equivalent to
M** + (CPA..).

Let (CPN) be the set of all θ such that θ is any generalization of any
comprehension formula of the form:

(CPN) VπAcn0 . . . Aan^(τΐ(aOi . . ., α»-i)<-><ρ), where α0, . . ., an^ are indi-
vidual variables, φ is either an atomic standard second-order formula or
the negation of an atomic standard second-order formula, and π does not
occur in φ.

Then W** + (CPN) is equivalent to M* + (CPN). Since W** + (CPN) is
obviously equivalent to M** + (CPN), and M* is equivalent to M** + (A18),
it suffices to prove that every instance of (A18) is a theorem of M** +
(CPN). But this follows in essentially the same way as in the preceding
paragraph.

Consequently, if Γ is a set of formulas and every element of (CPN) is
provable in W** + Γ, then W** + Γ is equivalent to M* + Γ with its simpler
axiom set.

Now, Cocchiarella's formulation of standard second-order logic con-
tains only one inference rule, modus ponens, and its axioms are just the
standard second-order instances of (A1)-(A5), (A19), (A21), and (CP),
where (CP) is the set of all θ such that θ is any generalization of any
comprehension formula of the form:

(CP) VTΓACCQ . . . Λα^.Xαfo, . . ., <*n-i) <-> <p)> where a0, . . ., an.x are
individual variables, φ is a standard second-order formula, and π does not
occur free (in predicate position) in φ.15

The most straightforward generalization of this formulation of standard
second-order logic to the extended grammatical context of non-standard
second-order logic is just the theory whose set of axioms is the union of
(A1)-(A5), (A19), (A22), where (A22) is the set of all θ such that θ is any
generalization of any formula of the form:
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(A22) Vσπ = σ, where σ is a predicate variable distinct from and of the

same type as π,

(A21), and (CP*), where (CP*) is the set of all θ such that θ is any

generalization of any comprehension formula of the form:

(CP*) VπΛo!0 . . . Λan^iπioio, . . ., an.ι)<r-^φ), where a0, . . ., an.γ are indi-

vidual variables, and π does not occur free in φ\

we call this theory T*,*. This is the theory that Cocchiarella initially

introduced in [3]. l β

By all rights T*,* should be equivalent to M* + (CP*), which we will

call T**, and the only difference between these two theories is that whereas

T*,* contains (A22) in its axiom set, T** contains the "slightly" stronger

set of axioms (A20), which, after [3j, we will also call (A4') As a matter

of fact, T*,* also has included in its axiom set, subsumed under (CP*), all

formulas of the form VσΛα0 . . . /\an^(σ(aOf . . ., an^) «-> 7r(α0, . . ., an.j)),

where ne ω, a0, . . ., an^ are distinct individual variables, and σ is distinct

from 7τ; and from this, generalization, (A4), and (A5) we can prove in T*,*

every formula of the same form but with π and σ interchanged in the

biconditional. Cocchiarella shows in [3] that every instance of (A10) is

provable in TJ*, that every instance of (A6) in which μ does not have a free

occurrence in predicate position in φ is provable in T*,*, and that every

instance of (A6) in which μ does not have a free occurrence in subject

position in φ is provable in T*,*. Clearly, then, T** is equivalent to

T*j* + (A4') which, in turn, is equivalent to T*,* + (U.I.*), where (U.l.*) is

the set of instances of (A6) in which μ is a predicate variable.

In spite of all this, T** is not equivalent to T**; and we now prove this.

Let Do = co, and, for each ne ω, let Dn+ι = -PCDQ). Let O = {(i): i e ω and i is

odd} and E = {(i): i e ω and i is even}. Let/: \J Dn -> ω such that: (1) for all
neω

ie ω, f(i) = i, (2) f(O) = 0, and (3) f[D2~{θ}] c ω-{θ}. Let π* and σ* be

distinct 1-place predicate variables. Finally, let c: \J V(n + 1) —> ω such

that (1) c(σ*) = 0, and (2) c(π*) = 1. n'eω

If a is an individual variable, we will say that the category of a is Do; if

ne co and ir is an w-place predicate variable, we will say that the category of

7Γ is Dn+ί. We will say that 51 is an assignment iff 31: U V(n) -> JJ Dn such
ήeω n\eω

that for every variable μ, 31 (μ) is a member of the category of μ. If 31 is an

assignment, π is a predicate variable, and μ is any variable, we will define

i*\ji(π,μ) to be /(3l(μ)) + c(π). If φ is a formula, we define φ to be true with

regard to any assignment 31, in symbols b= φ9 by induction on formulas φ as

follows:

1. if φ = τr(μ0, . . ., ^ . J is atomic, then |= φ iff (Fn(Ή9μ0)> •>

FsIι(7Γ,μn-1))e3I(π)

2. if φ=~ψ,then\=φiϊi\%ίψ

3. if φ= (ψ-X), then^<^iff ^ ψ o r ^ X

4. if φ = Λμψ, then f= φ iff for each d in the category of μ, |=y=τ Ψ>
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If φ is a formula, we will say that φ is valid, in symbols \=φ9 iff φ is true
with regard to every assignment.

It is an easy exercise to verify that every axiom of T*,* is valid. From
this it follows that every theorem of TJ* is valid. But it is not the case that
every instance of (A4') is valid; in particular, Y Vσ*[Λτ(τ(π*) <->τ(σ*))Λ
Λα(π*(α) <-»σ*(cn))], where τ is distinct from π* and σ*, and of is an
individual variable. To prove this, let $f be any assignment with the
property that $I(7Γ*) = O and a s s u m e that |= Vσ*[Λτ(τ(π*) <->r(σ*))Λ
Λα(π*(α)<->σ*(α!))]. Then there is a PeD2 such that (i) for every QeD2,

< ^ ( ; * ) Q ^ * » € K P X ) ( T ) m ( ^(")(δ) ( τ > σ * ) ) e 1 M OG) ( τ ) ' a n d (iυfor

T-wβVDo' **($$*'a)U9$(*)(1ι*) ifί (Mσp)© ( σ*'α ) ) €

%( )K )(<**)• On the one hand, (i) implies that for every Qe D2, (0 + c(τ))e
Q iff (fip) + c(τ))e Q. Choosing Q to be {^(τ)1} shows that f(P) must be 0.
But / was constructed so that only O is assigned the value 0. Hence,
(i) implies that P = 0. On the other hand, (ii) implies that for alldeD0,
(d + l)e O iff (d + 0)e P. This requires that P = E. Thus, (i) and (ii) are
contradictory; so |̂ j Vσ*[Λτ(τ(τr*) <-> τ(σ*)) Λ Λa(π*(a) «-̂  σ*(α))], whence
^ Vσ*[Λτ(τ(π*)<-> τ(σ*))Λ Λcn(π*(α)<->σ*(ci!))]. Accordingly, T** is a proper
extension of T£*.

(CP*) is clearly the most natural generalization of (CP) when one is
thinking along the lines of definitional extensions of, say, W**, but there is
another way of looking at the restriction on free occurrences of the
existentially quantified predicate variable in the formula being compre-
hended in instances of (CP), and that is seeing it as applying only to free
occurrences in predicate position. We let (CP**) be the set of all θ such
that θ is any generalization of any comprehension formula of the form:

(CP**) VπΛcϋo . . . Aan^(ir(a09 . . ., an^) «-><?), where α0, . . ., an-ι are indi-
vidual variables, and π does not occur free in φ in predicate position.

Then T*** is defined to be M* + (CP**). Since (CP*) c (CP**), it is clear
that T*** is an extension of T**. We will show later that T*** is actually a
proper extension of T**.

We now turn to the substitution of formulas for generalized predicate
variables. Let «eω, π be an n-place predicate variable, a0, . . ., an.L be
distinct individual variables, and ψ and φ be formulas. We say that ψ can
be properly substituted for π with regard to α0, . . ., αfw.x in φ iff

1. 7Γ does not occur free in predicate position in φ within a subformula of φ
of the form ΛμX where μ is a variable distinct from a0, . . ., an.ι which
occurs free in ψ; and

2. for all variables μ0, . . ., \in-u if π(M-o> . , μ«-i) occurs in φ in such a
way that the (predicate position) occurrence of π is a free occurrence, then,
for each ten, there is no subformula of ψ of the form Λμ̂  X in which cϋ; has
a free occurrence.
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If ψ can be properly substituted for π with regard to a0, . . ., an.x in φ, then

we let 5 . °' ' '.*' n'i Ψ b e the result of replacing each subformula

77(μ0, . . ., μw-i) of φ in which TΓ occurs free in predicate position in φ by

4 μ Γ ' ' "' μ " 1 ] 5 elSΘ Wθ l e t S π ( α 0 > " 'ψ''
 a"~l)<p\ b e Ψ i t s e l f

Let (U.l.f *) be the set of all Θ such that θ is any generalization of any
formula of the form:

(U.I.J*) Aπφ—>$ί °' ' ' "' w - 1 <ρ , where ne ω, ir is an n-place predicate

variable, α0, . . ., αn-i are distinct individual variables, ψ and φ are
formulas, and π does not occur free in subject position in φ.

Cocchiarella has noted [3] that M* + (U.I J*) is equivalent to T**. So the
correspondence between comprehension and substitution of formulas for
generalized predicate variables can be quite close in the context of
nonstandard second-order logic, much as it is for standard second-order
logic.

The restriction in (U.l.£*) that TΓ not occur free in subject position is
really quite natural since in general we cannot, of course, substitute a for-
mula for a predicate variable in subject position, and in any other principle
of substitution for a generalized predicate variable we would expect to have
to replace every free occurrence of the generalized variable by a free
occurrence of that to which it is being instantiated in the generalized
formula. It is an interesting fact that we need not make this restriction
when we generalize the standard second-order principle of substitution of a
formula for a generalized predicate variable to the context of W**. We let
(U.I.J) be the set of all θ such that θ is any generalization of any formula of
the form:

(U.l ί ) Λτr<p-*5i °' ' ",'' W 1 Ψ 9 where neω, ir is an n-place predicate

variable, a0, . . ., an.γ are distinct individual variables, and ψ and φ are
formulas.

We will define T* to be M* + (U.l.|). T* was the first nonstandard second-
order logistic system to be created, introduced by Cocchiarella in [10] to
analyze RusselΓs paradox of predication. In [10] Cocchiarella shows that
T* is not only consistent, but is even a conservative extension of standard
second-order logic.

It is of interest to delineate in just what way T* is related to T**.
Since (U.I.J*) c (U.I..J), T* is at least an extension of T**. Cocchiarella
has shown [3] that T* is equivalent to the theory which results from T** by
adding a particularly simple form of (U.l.jf) to its axiom set, viz. (U.l.f),
where (U.L.f) is the set of all θ such that θ is any generalization of any
formula of the form:
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(U.I.*) Λ7T(p-*5 / °' ' ' ' n"\ Ψ , where ne ω, π is an n-place predicate

variable, and α0, , α»-i are distinct individual variables.

Actually, it is shown in [3] that T* is even equivalent to TJj* + (U.I.*).

We now give an even simpler formulation of T* relative to T**. Let

(/**) be the set of all θ such that θ is any generalization of any formula of

the form:

(/**) Vp[Λα0 . . . λan_1(τr(a0, . . ., αw-i)<->ρ(αf0, . . ., α J ) Λ σ = p ] , where

we ω, α0, . . ., anmml are distinct individual variables, and π, σ, and p are

distinct.

Then T* is equivalent to T** + (/**). We first show that every instance of

(/**) is provable in T*. To this end, let neω,a0, . . .,αw-i be distinct

individual variables, and TΓ, σ, and p be distinct rc-place predicate variables.

For convenience, set Λα0 . ^an^L(τr(aθ9 . . ., czw.1)«->p(Qfo, . . ., a^)) = φ,

and let ψ be the result of replacing p in φ with π. By (U.I.*) we have

\fl [Ap^(φ AO = p) —> ~(ψ Λσ = p)]. From this it follows that '^[Λp^t^Λσ =

p) -+ ~σ = p]. Then, by generalization, (A4), and (A5), we have \*f%[Λp~(φΛ

σ = p) -> Λp~σ = p]. Hence, \^ [Λp~(</?Λσ = p) -> ~σ = σ)]; so ]\fpVp(φΛσ =

p). Accordingly, by generalization, every instance of (/**) is provable in

T*, whence we have shown that T** + (/**) is a subsystem of T*. It is an

easy exercise, using (/**) and appropriate forms of Lemmas 30 and 33, to

show that every instance of (U.I.*) is provable in T** + (/**). Hence, T* is

a subsystem of T** + (/**). We have, therefore, proved that T* is, indeed,

equivalent to T** + (/**), and this is a substitution free formulation of T*

as well.

Cocchiarella also notes in [3] that T*** is a subsystem of T*. The

proof of this is quite simple. Let n, π, a0) . . ., an.u and φ be as in (CP**).

Then

\j-*[/\v~Aa0 . . . Λαw_i(π(α0, . . ., O < - > < ^ ) — ~Aao Aa^iφ<->φ)].

From this (CP**) follows quite readily by tautologous transformations and

generalization. It is of immediate interest to know whether T*** is actually

equivalent to T* since they arise from T** in analogous ways. It turns out

that T* is proper extension of T***.

To prove this, we will construct a semi-strict A-structure which is a

model of the axioms of T*** but not of T*. To this end, let T, F, T',

d0, du . . . be any sequence of pairwise distinct objects. Let 0 - Do =

{T, F, T , d0, . . .}. Let A = {T} and B = {F, T , d0, . . .}. For each ne ω, let

S,n = ^aA, B}). Let (ZVn)»'eω form a disjoint partition of Do such that

DL = {T, F, T'} and, for each ne ω, if n Φ 0, then the cardinality of D^ is

equal to the cardinality of Sn. Then, for each n Φ 0, let /„ be a bijection

from Dn+ι onto Sn. Now let Ho = {(T, ()), (T', ())}, and, for each ne ω, if

n Φ 0, let Hn = {(a, <60, . . ., δ 8 j ) : ae Dnι+ί and there is a <C0, . . ., Cn^)efn(a)

such that boe Co, . . ., and bn.ye Cw-J. Finally, let H = \J Hn, and let 7 be

such that SI = (0, (Dn\eω, H, I) is a structure. nleω
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Now, it is clear that 31 is a semi-strict A-structure. A little reflection
shows that the equivalence classes of the elements of Do under indis-
cernibility are just A and B and that since, for each ne ω, all and only
"representations" of subsets of the set of w-place sequences of AandJ?
are included amongst the extensions of the elements of Dn&li 31 is a model of
T**. Furthermore, since (/**) holds in 31 for each n Φ 0, it is clear that
(CP**) does, too. But (/**) does not hold for n = 0; so31 is not a model of
T*. It only remains to show that (CP**) holds in for n = 0. To this end, let
π be a 0-place predicate variable and φ be any formula in which π does not
occur free in predicate position. We need to show that there is ^PeDι

such that f=p= Ή iff | = = φ, i.e., PH() iff | = 3 φ. K Wηψ\φ, then P = F

*{p] *[?] «[pj *[F\
satisfies the condition. Otherwise, P = T' satisfies the condition since F
and T' are in the same equivalence class under indiscernibility. Thus, 31 is
a model of T***, and we have proved that T* is a proper extension of T***.

For the purpose of constructing structures which are models of T***,
it would generally be useful to have a simpler characterization of T***
relative to T**, since, after all, it is fairly easy to construct structures
which are models of T**. It is not difficult to show that T*** is equivalent
to T** + (A23), where (A23) is the set of all θ such that θ is any generaliza-
tion of any formula of the form:

(A23) VπΛα!0 . . . Aa^br (a09 . . ., αΛ-i) <-»σ(7r,α0, . . ., α«-i)), where ne ω,
a0, . . ., αw_1 are pairwise distinct individual variables, and π and σ are
distinct,

and this characterization serves our purpose to some extent.
In [9] Cocchiarella has explored an entirely different approach to

extending (CP). If φ is a formula, we say that φ is stratified iff there is a
function / whose domain is the set of variables which occur in φ, whose
range is included in ω, and which is such that for every atomic formula
τr(μ0, . . ., μw-i) which occurs in φ, /(π) = max(/(μo), . . ,/(μw-i)) + 1. We let
ST* = M* + (SCP*), where (SCP*) is the set of all θ such that θ is any
generalization of any comprehension formula of the form:

(SCP*) VπΛμ0 . . . Λμ^.iίπίμo, . . ., μw-i) <->(?), where φ is a stratified
formula in which π does not occur free.

We will only take time to remark that although indiscernibility cannot
satisfy full substitutivity in T** (see, e.g., [10]), it does satisfy full
substitutivity in ST* (see [9]). Thus, if ST* is consistent, both T** and ST*
are proper extensions of M* + (CP).

5.5 The Fregean Semantics We now describe the Fregean semantics
which Cocchiarella introduced in [3]. Our main results are two: (1) we will
produce the minimal theory characterized by the Fregean semantics, and
(2) we will show that T* + (Ext*) is equivalent to T*** + (Ext*), where
(Ext*) is defined below.

We will say that 3ί is a Fregean structure, F-structure for brevity, iff
31 is a 4-place sequence {&, (Dn)neω, f, I) such that (i) & Φθ, (ii) for each
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ne ω, 0 Φ Dn c PC&), (iii) / is a function whose domain is 0\J \J Dn, whose
neω

range is included in ff, and which is such that for all de &,f(d) = d,lΊ and
(iv) / is a function whose domain is the set of variables and which is such
that for each individual variable α, I(a)e &9 and, for each ne ω and w-place
predicate variable π, /(π)e Dn. Let 31 = (&, (Dn)neω) /, /> be an F-structure.
If a is an individual variable, we say that the category of a in 31 is &\ if
ne ω and ir is an n-place predicate variable, we say that the category of π in
31 is Dn. If φ is a formula, we define φ to be ίrw# in any F-structure
31 = (&, Φn)neω, /, />, in symbols |= <ρ, by induction on formulas φ as
follows:

1. if φ = π(μ0, . . ^ μ ^ ) is atomic, then f= φ iff (/(/(μ0)), . . ,/(/(μ βJ))e 7(τr)
2. if <p= -ι//, then \=φmfaψ
3. if <jp= (ψ-X), then \= φ iff b | ψ or (= X
4. if <ρ = Λμψ, then \= φ iff for all x in the category of μ in $ί, | ψ,

where, of course, 31 is taken to be {̂ T, (Dn)neω,f, l( ) \ The notions of

model, validity, etc., are understood as usual. We let NF be the class of
F-structures, and if T is a theory, we define NFT to be the class of
F-structures which are models of the axioms of T.

The main obstacle to giving a model-set-theoretic semantics for T*
and its brethren is interpreting formulas such as π(π). In the usual kind of
semantics, π would denote a set and predication would be interpreted as set
membership. Thus, π(π) would always be construed as false. But it is
easily seen that there is, in the ontology of T**, for example, a property
which holds of everything—and, therefore, of itself. Our realist semantics
gets around this problem by not necessarily mirroring predication as
set-membership. The Fregean semantics gets around this problem by
regarding subject position occurrences of predicate variables as denoting
not the relations that they denote when in predicate position but, rather,
associated individuals. In this way the Fregean semantics can continue to
mirror predication as set-membership.

It is clear that every axiom of W** is valid in the Fregean semantics.
We define (Ext**) to be the set of all θ such that θ is any generalization of
any formula of the form:

(Ext**) Λα0 . . . Λαw.1(π(Q!o, , α»-i) <->σ(α0, . , otn-ι)) — φ, where ne ω,
α0, . . ., (*„„! are pairwise distinct individual variables, and φ is a special
indiscernibility formula for π, σ.

It is also clear that every instance of (Ext**) is valid in the Fregean
semantics. We define WF* to be W** + (Ext**). It turns out thatWF* is
characterized by the full Fregean semantics.

Theorem 39 Let T be a set of formulas. If Γ is consistent in WF*, then
there is an F-structure which is a model of Γ.

Proof: Assume that Γ is consistent in WF*. Then Γ U (Ext**) is consistent
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in W** Accordingly, by Theorem 36 there is a semi-strict A-structure
(&, Φn)mω, H, I) which is a model of Γ U (Ext**). Let K be the set of all
functions J such that the domain of J is the set of variables, and, for each
variable μ, J(μ) is a member of the category of μ in (0, Φn)neω, H, />. For
each Je K, let 21 (J) be (&, <Dw>^ω, H, J>.

We next define a set of equivalence relations. For each ne ω and
ie n + 1 let Rni be the set of all ordered pairs (a, b) such that α, be Do and
for all d0, . . ., dn^e Do and Pe D ^ , PH(d0, . . ., d^19 a, diy . . ., dn^) iff

PH(d0, . . ., dj.l9 b, d{, . . ., dn^). It is clear that Rni is an equivalence
relation for each ne ω and ie n + 1; for each such w and i and ae A)> let [a]ni

be the equivalence class of a under # w > ί . Let F be the function whose
domain is Do and which is such that for all ae Do, F(a) = ([a\n>i)nti, where
n, i ranges over all ne ω and ie n + 1. Set & = F[D0]. Let G be the function
whose domain is (J Dn+1 and which is-such. that for each ne ω and Pe Dn&u

n.eoύ

G(P) = {(F(a0), . . ., F(an^))\ PH(a0, . . ., an^)}. G is well-defined because
(&, (Dn)nleω, H, I) is semi-strict. For each ne ω, set En = GfjD^i]. Let / be
the function whose domain is & U (J En and which is such that (i) for each

weco

xe &, f(pc) = x9 and (ii) for each ne ω and Xe En, iϊ X = G(P), then /(X) =
F(P). f is well-defined because $l(/) is a model of (Ext**) and because if
ne ω, P, Qe Z)w+1, and G(P) = G(Q), then for all d0, . . ., dn^e Do, PH(d0, . . .,
dn.j) iff Q/ί^o, ., ^-i>, for, assume that P # ( d 0 , ., ^-i) Then
(F(c?0), . . ., F(dn^))e G{P). But G(P) = G(Q) by assumption; so (F(d0), . . .,
F(dn.ί))e G(Q). Hence there are (e0, . . ., en^eD0 such that QH(e0, - - .,e»-i>
and <P(e0), . . . , 2 ^ ^ ) ) = (F0 O ), . . , , F ( U But if F(α) =F(&), then for
each ne ω and ie n + 1, #w,/ (α, δ). It follows from this fact that QH(d0, . . .,
dn-i). The converse direction follows similarly. Accordingly, / is, indeed,
well-defined.

For each Je K, let Jf be the function whose domain is the set of
variables and which is such that: (i) for each individual variable a,
J'(a) = F(J(a))y and (ii) for each neω and rc-place predicate variable π,
J/(π) = G(J(π)). For each Je K, let » ( J ' ) be the F-structure (#, (En)neωJt J').

We now prove by induction on formulas with regard to φ that for all
J e Ky ^Wj){φ i f f feαo^ C a s e 1 : φ = π^μo> •' μ«-1) A s s u m e t h a t l^7τ 7 Γ(I JΌ,
. . ., μ^). Then J(π)^(J(μ0), . . ., J(μn^)\ so <F(J(μ0)), . . ., FίJίμ^))) e
G(J(π)). Now, if z/ is any individual variable, then f(J'{v)) = f(F(J{v))) =
F(J(i/)); and if i; is any predicate variable, then/(J/(ι/))=/(G(J(i/)).) = F(J(ι/)).
In either case, f(J'M) = F(J(v)). Accordingly, </(J'(μ0)), . . .,f(J'(v*-i)))e
G(J(π)) - c/'(τr); so | = = π(μ0, . . ., μ«-i) The converse direction follows
similarly, noting, as we did when proving that / is well-defined, that if
(F(d0), . . ., F(dn-y))e. G(P), then PH(dOi . . ., dn.^). Case 2: φ is of the form
~ψ or (ψ —> X). Then the desired result trivially follows from the induction
hypothesis. Case 3: φ is of the form Aμψ. Then the result again follows
trivially from the induction hypothesis keeping in mind that the induction
hypothesis applies to all JeK and that {JΊ JeK} contains all functions L
such that 33(L) is an F-structure.
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It follows, in particular, that for all formulas φ, \ ίΛ φ iff | g ! ( ; ) .
Hence, 33(7') is a model of Γ. ' tjED

From Theorem 39 we can derive the following two theorems in the
usual manner.

Theorem 40 Let T be a set of formulas and φ be a formula. Then
T\wΓ*ψiff )=φ.

Theorem 41 Let T be a theory, Γ be a set of formulas, and w be a
formula. If T is an extension of WF*, then T\ψψiff Γ b = φ.

It is of immediate interest to examine the theories which result from
supplementing extensions of W** with (Ext**). The first thing to notice is
that M* + (Ext**) is equivalent to M* + (Ext*), where (Ext*) is the set of all
θ such that θ is any generalization of any instance of (Ext**) of the form:

(Ext*) Λα0 . . Λα^Xαfo, . . ., α^J <-^σ(α0, . ., <*„_,)) -> π = σ.

Furthermore, it is clear that M* + (Ext*) + (/**) is equivalent to M* +
(Ext*) + (/*), where (/*) is the set of all θ such that θ is any generalization
of any formula of the form:

(/*) 77 Ξ σ, where π and σ are any two distinct predicate variables of the
same type.

Since T* is equivalent to T** + (/**), it follows that T* + (Ext*) is equivalent
to T** + (Ext*) + (/"*), as Cocchiarella has proved in [3]. From this it is
easy to see that T* + (Ext*) is a proper extension of T** + (Ext*). This
result also appears in [3].

Interestingly enough, it turns out that T*** + (Ext*) is equivalent to
T* + (Ext*). To see this, let M = (&, Φn)neω,f, I) be any F-structure which
is a model of T*** + (Ext*). Let n be any element of ω. Let R be the set of
all ordered pairs (a,b) such that a, be& and for all Pe Du if ae P, then
be P. R{a,b) means simply that a and b are indiscernible. (CP**)
guarantees that Oe Dn. Now let P be any element of fif^. By (CP**) there is
a Qe Dn such that for all a0, . . ., an^e.j^9 (a0, . . ., an.,)e Q iff R(f(Q), /(0))
and <α0, ., an^)e P. If Q = 0, then R(f(Q),f(0)) by (Ext*); and if Q Φ 0,
then there are a0, . . ., an.ι e & such that (a0, . . ., an_^) e Q, whence
R(f(Q),f(0)) and (a0, . . ., an^)e P. In either case, Λ(/(Q),/(0)). Hence, for
all OQ, . . ., an^e 0, (aθ9 . . ., αw-i)e Q iff (a0, . . ., an.^eP. Therefore
R(f(Q), f(P)) by (Ext*); so R(f(P), /(0)). Since this holds for arbitrary
Pe Dn, it follows that the elements of Dn are indiscernible from each other.
Since n is arbitrary and % is an arbitrary element of F̂,ιτ***Ψ(Eχt*)> it follows
from Theorem 41 that every instance of (7*) is provable in T*** + (Ext*).
Therefore, T*** + (Ext*) is equivalent to T* + (Ext*). This result also
shows that T*** is not equivalent to T**.

As ST* is closely related to the theory of simple types, lacking only
its grammatical "peculiarities", monadic ST* + (Ext*) is intimately
related to Jensen's NFU, i.e., New Foundations with urelements (see [11]).
Likewise, if we add to monadic ST* + (Ext*) the assumption that every
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individual is a property, we obtain a system intimately related to Quine's
NFy i.e., New Foundations [15]. Cocchiarella has discussed these theories
at length in [9].

6 Remarks It should be noted that the semantics which we have
developed here can be applied to a great variety of systems not mentioned.
For example, first-order predicate logic without identity, standard second-
order logic, monadic W*. Another byproduct of this paper is a substitution
free axiom set for first-order predicate logic without identity, which can be
easily abstracted from the substitution free axiom set which we have given
for W*.

The various theories discussed in this paper may be summarized as
follows, where a connecting line segment indicates proper extension:

wι*

W**

"""" — ^ _ _ W ^ *

M**

^ - — — ^ ^ M * * + (Ext**)

M*

iV̂ * + (Ext*)

M* + (CP)

/

~ ^ •——-__M* + (Ext*) + (CP)

* * c ^ ^ ^ ^

s|τ* ^ " ^ \ ^ ^ ^

T,** + (Ext*)

S|T* + (Ext*)

T***

T ^

T*** + (Ext*)
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NOTES

1. See [10] for this analysis of Russell's paradox.

2. Unless otherwise stated or unless in set-theoretic contexts, 'relation' refers to relations,
properties, and propositions.

3. For technical results and philosophical discussion concerning T* and the logistic systems
which have grown up around it, see Meyer [14] and Cocchiarella [2]-[10]. The conceptual
order of dependence of these papers is probably best analyzed as: [8], [10], [14], [3],
[5], [2], [9], [4], [6], [7].

4. For further discussion of these oddities see [10], [14], [3], [5], [9], [7].

5. See[2]-[10].

6. For the significance of substitution free axiom sets see [8].

7. The preceding four paragraphs are not a wholly faithful summary of Cocchiarella [3]. They
are only meant to pick out those results of [3] which are relevant to motivating this paper.
For example, we have somewhat altered the terminology of [3].

8. My thanks to Professor Cocchiarella for pointing this out to me. See [2] for a thorough dis-
cussion of this distinction.

9. ω is understood to be the first limit ordinal, and it is understood to be the set of natural
numbers in the usual way so that for all n, m e ω, n < m iff n em.

10. By the convention of Note 9, 0 is the empty set.

11. If F is a function and A is a subset of the domain of F, we define F[A] to be the set of all
F(x) such that x e A and-^(F) is understood to be the range of F.

12. We take a -1 = a for a a limit ordinal, else we take it to be the number of which it is the
successor.

13. If A and B are sets, AB is defined to be the set of all functions whose domains are A and
whose ranges are included in B. Thus, n J9"\s the set of all «-place sequences whose sequents
are in ''0.

14. Actually, in Cocchiarella's M* (A1)-(A3) are replaced by the set of generalizations of tau-
tologies.

15. Actually, Cocchiarella's (CP) requires that a0, . . . , an^ be included among the free variables
of φ, but our (CP) is readily derivable from Cocchiarella's, as he himself has noted in, e.g.,
[3], by appending to φ any tautologous formula whose free variables are just α0, . . . , a.n-v

16. The remark of Note 15 applies here, too.

17. In what follows it will be necessary to distinguish the empty subsets of the n£f. One way to

do this formally is to regard / not as a function on & U yj Dn, but as a sequence of func-
fleω

tions (fn)neω such that for each n e ω, the domain of fn+1 is Dn and the range of/w+1 is
included in & and such that f0 is the identity function on £f. Then instead of applying the
usual / we apply the appropriate /„. The reason we need to distinguish the various empty
subsets of the n& is that only 0 may occur common to the n£f, and it is clear from the
following that we do not wish to identify any w-place relations with any m-place relations
where n Φ m. If, however, we do not distinguish the various null relations, we will have to
add to (Ext**) and (Ext*) wherever they occur the set of axioms (Z*), where (Z*) is the
set of all θ such that θ is any generalization of any formula of the form:
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(Z*) [~Vα0 Votn-Moio, . , <*n-i) Λ ~Vj30 . . . Vj3m_1σ(j30, . . . , ft^)] -* 0 ,

where n, m e ω, oto, . . . , ofo-i and j30, . . . , ftw-i are groups of pairwise distinct individual
variables, π, σ are distinct, and 0 is a special indiscernibility formula for π, σ.

M?Γ£: (Added in proof, December 18, 1979). Lemma 28 on page 15 should be deleted.
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