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0 Introduction Russell’s paradox has two versions. The first version

concerns ‘‘the set of all sets which are not members of themselves’’. The
second version concerns ‘‘the property of being a property which is not a
property of itself’”’: the so-called Russell property. This second version
of Russell’s paradox is called Russell’s paradox of predication."

Nino Cocchiarella* designed a logistic system, which he christened T*,
whose purpose was to represent the original ontological context behind
Russell’s paradox of predication [10]. The grammar of T* is essentially
that of standard second-order logic but goes beyond it by allowing predicate
terms to occupy subject positions in the formulas of T*. Cocchiarella
generated the axioms and inference rules of T* by explicitly and appropri-
ately generalizing the axioms and inference rules of Church’s formulation
of standard second-order logic [1] to the extended grammatical context of
T* and by adding a new axiom schema whose effect is to represent the
realist assumption implicit in the ontological background of Russell’s
paradox of predication that every relation® is an individual.

It is a remarkable fact that T* is consistent. It even turns out that T*
is a conservative extension of standard second-order logic. Thus, Russell’s
‘‘paradox’’ of predication is not really a paradox after all—at least not in
the logistic context of T*. These discoveries signify the genesis of a
radically new, important, and fruitful approach to predication theory.’

Be forewarned, however, that T* is not without its (apparent) ontologi-
cal oddities. One particularly interesting example of such an oddity
concerns identity. Cocchiarella [10] showed that indiscernibility cannot be
construed as identity in T* since, in the ontology of T*, there must be
properties which are indiscernible and yet not co-extensive. Going further,
Meyer [14] showed that there is no binary relation in the ontology of T*
satisfying full substitutivity.*

Many other nonstandard second- (and even higher-) order theories of
predication have grown up around T*, and we will call these logistic

*My thanks to Professor Cocchiarella who made many valuable criticisms of an earlier version
of this paper. And for introducing me to Logic.
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systems the brethven of T*. Some of these logistic systems are immune
to the ontological oddities of T*, but others are not.’

Cocchiarella devised a formulation of standard second-order logic [8]
which is equivalent to that given by Church [1] but whose only inference
rule is modus ponens and whose axiom set involves neither the notion of
proper substitution of a term for a generalized variable of the same type
nor the notion of proper substitution of a formula for a generalized
predicate variable, i.e., Cocchiarella’s formulation of standard second-
order logic is substitution free.® Cocchiarella [3] used this substitution
free formulation of standard second-order logic to generate a brother of T*
just as he used Church’s formulation of standard second-order logic to
create T*. This brother of T* we will call T*. It is noteworthy that T*
is also substitution free. It seems only natural that T}* should be equiva-
lent to T*, but, as Cocchiarella showed, it is not. In fact, there is a
problem of more immediate interest concerning T%*. In [3] it is not shown
that the principle of universal instantiation of a predicate term for a
generalized predicate variable of the same type, which we will call (U.L.}),
is derivable in T§*. If (U.1.}) is not derivable in T§*, then T}* can hardly be
understood to capture the meaning of the universal quantifier—much less
the original ontological background of Russell’s paradox of predication.
However, Cocchiarella did show that if T}* is supplemented with an
especially natural axiom schema, called (A4’), to the effect that every
relation is indiscernible from and co-extensive with some relation of the
same type, then (U.1.¥) is derivable. The logistic system which results from
T}* by supplementing it with (A4’) is called T**; we may say that T** =
Ti* + (A4’). Since it is a trivial matter to verify that T¥* + (U.L3) is
equivalent to T**, our feeling of anxiety about the relation of (U.l.¥) to T5*
may be formulated in this way: Is T}* equivalent to T**?

Cocchiarella went on to introduce a so-called Fregearn model-set-
theoretic semantics whose purpose is to reflect the Fregean notion that to
say ‘‘the property P has the property Q’’ is to mean that ‘‘some individual
associated with P has Q’’. He also introduced a set of formulas, called
(Ext*), to the effect that two relations that are co-extensive are indis-
cernible as well. (Ext*) reflects the Fregean notion grounding the above-
mentioned Fregean semantics. Cocchiarella then used his Fregean
semantics to show that T* + (Ext*) is a proper extension of T** + (Ext*)
(and therefore of T}* + (Ext*) which, by the way, he showed to be equivalent
to T** + (Ext*)) by noting that T* is an extension of T** and by producing a
Fregean frame which is a model of T** but not of T*. This result implies
that T* is a proper extension of T** (and therefore of T}*).

Now, this is a very interesting fact, and the question immediately
arises as to just why there should be such a difference between T* and T**
since, after all, they appear to have arisen from two equivalent formula-
tions of standard second-order logic in just the same way. Cocchiarella
localized the difference between T* and T** in the following way. Now,
whereas Church’s formulation of standard second-order logic includes the
principle of universal instantiation of a formula for a generalized predicate
variable, which we will call (U.l.;), Cocchiarella’s formulation of standard
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second-order logic includes a comprehension principle (CP). When each of
these formulations of standard second-order logic is generalized to the ex-
tended grammatical context of T*, (U.l.;) becomes (U.I1.¥), and (CP) becomes
(CP*). Cocchiarella showed that the logistic system which results from T*
by replacing (U.l.}) with (CP*) is equivalent to T** and, furthermore, that
the logistic system which results from T** by replacing (CP*) with (U.l.¥) is
equivalent to T*. Thus he demonstrated that the difference between T* and
T** lies in the fact that (U.1.¥) is stronger than (CP*). He then noted that a
comprehension principle, which we will call (CP**), more general than
(CP*) is derivable in T*. T** + (CP**) is called T***, Cocchiarella asked
the following question: Is T*** equivalent to T*? If it is, then we can
easily understand how it is that T** is weaker than T* for in generalizing
(CP) to the extended grammatical context of T* we have two natural
options, viz. (CP*) and (CP**), although, viewed from the context of
standard second-order logic, (CP*) is really more natural than (CP**),

The main result of [3] is a completeness theorem for T** + (Ext*). As
in the wusual semantics for standard second-order logic, there is a
distinction in Cocchiarella’s Fregean semantics between standard, non-
standard, and general Fregean frames (general Fregean frames being those
Fregean frames which are models of (CP*)), and the completeness theorem
for T** + (Ext*) is given relative to the general Fregean frames.
Cocchiarella noted that it remains an open problem to provide a model-set-
theoretic semantics natural to the ontology of T* or T**."

This paper is essentially a response to Cocchiarella [3]. In what
follows we introduce a logistic system, W*, whose grammar is that of T*
and whose primary syntactical logistic purpose is to capture the meanings
of the propositional connectives to be introduced and the wuniversal
quantifier. Accordingly, W* is weaker than almost all of the brethren of
T*. Then we provide a model-set-theoretic semantics natural to the
apparent ontology of W*, and show that this semantics characterizes W* via
a strong completeness theorem. Accordingly, we will have provided a
strong completeness theorem for every brother of T* which is stronger
than W*.

Now, although in W* relations are projected grammatically as being
entities which, significantly, may serve as the subjects of predication, they
are not projected logistically as individuals, for the principle that whatever
holds of all individuals also holds of all relations is not derivable in w*®
(nor is it intended to be so derivable). Accordingly, the strong complete-
ness theorem for T*, among the other logistic systems alluded to, which
arises from the strong completeness theorem for W* is somewhat
unfaithful to the intended realist ontology of T*. We therefore add to W*
the principle that whatever holds of all individuals holds of all relations,
and, using the techniques previously developed for W*, prove a strong
completeness theorem for this supplemented logistic system relative to
structures of our semantics which are more natural to the ontology of T*.
This results in a strong completeness theorem for T* faithful to its
intended realist ontology.

The remainder of this paper is then devoted to investigating various
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brethren of T*, the relations between them, and the relation between our
semantics and Cocchiarella’s Fregean semantics. We produce the logistic
system which is characterized by the Fregean semantics, in the process
providing it with a strong completeness theorem, and thereby give an
alternate route to Cocchiarella’s completeness theorems. We produce a
realist model of T*** which is not a model of T*, thereby showing that
T*** is not equivalent to T*. We also show that T*** + (Ext*) is equivalent
to T* + (Ext*), thereby showing that T*** is nof equivalent to T**. Finally,
among other things, we show that T}* is not equivalent to T**, i.e., that it
is truly defective.

In spite of the cursory nature of this introduction, this paper has only
a minimum of prerequisites. We assume only naive set theory and a basic
acquaintance with metalogic. All but the most common notions are
rigorously presented, including those of this introduction, and only a few
outside results are employed (mostly from [3}).

1 Grammar As logical particles of the logistic systems which we
consider, we include only ~, —, and A: the negation symbol, the material
implication symbol, and the universal quantifier, respectively. We assume,
of course, that ~, —, and A are distinct.

For each n¢ w,® we assume that V(z) is a denumerable set and C() is a
proper class. Furthermore, for all n, me w, if n + m, we assume that V),
V(m), Cn), and C(m) are pairwise disjoint. By an individual variable,
individual constant, or individual term we understand an element of V(0),
C(0), or V(0) U C(0), respectively. For new, by an n-place predicate
variable, n-place predicate constant, or n-place predicate term we under-
stand an element of V(r + 1), C(n + 1), or Ve + 1) U C(n + 1), respectively.
By a predicate variable, predicate constant, or predicate term we under-
stand an z-place predicate variable, n-place predicate constant, or n-place
predicate term, respectively, for some ne w. By a variable, constant tevm,
or term we understand an individual variable or predicate variable;
individual constant or predicate constant; or, individual term or predicate
term, respectively. We say that two terms are of the same type iff either
both are individual terms or, for some 7ne w, both are z-place predicate
terms. We use @, 3, and ¥ to refer to individual variables; 7, p, 0, and T to
refer to predicate variables; p and v to refer to variables; and { and 7 to
refer to terms.

By a language we understand a set of constant terms. If Z is a
language, then we say € is an individual Z-constant, individual Z-term,
etc., iff ¢ is an individual constant which is a member of Z, ¢ is an
individual variable or ¢ is an individual constant which is a member of Z,
ete.

Let Z be a language. We say that ¢ is an atomic Z-formula iff for
some ne w, ¢ is the result of applying an n-place predicate Z-term, ¢, to
n Z-terms, 7o, « « « Nptt EMoy « + +, Mu-r); if 7 = 0 we understand this result
to be ¢ itself. We say that ¢ is an Z-formula iff ¢ is a member of the
smallest set K such that: (i) every atomic Z-formula is an element of K,
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and (ii) if ¥, Xe K and p is a variable, then ~y, (Y — X), and Apy are
elements of K. We use ¢, {, and X to refer to Z-formulas; K and I to
refer to sets of Z-formulas; and A and T to refer to sequences of
Z-formulas. I ¢ is an Z-formula, then by a genervalization of ¢ is
understood a formula of the form Ap, . . . Ap,.,¢, where #new and
Wos - - -y bp-1 are variables; if n =0 we understand Ay, . . . A, ¢ to be ¢
itself. Where ¢, Y are Z-formulas and p is a variable, we define (¢ Ay),
(pvy), (pe>y), and Vug to be ~(¢ — ~y), (~¢ — ¥), [(¢ = Y) A — )],
and ~Au~gq, respectively.

Notions of bondage and freedom remain as usual, but note that an
occurrence of a predicate term in some Z-formula ¢ may be bound or free
in either predicate position or subject position. If ¢ is an Z-formula and
¢, n are Z-terms, we say that n may be properly substituted for € in o iff
every free occurrence of { may be replaced by a free occurrence of 7; if

this is the case we let w[c] be the result of replacing every free occur-
rence of § in ¢ by 7, else we let @[S] be ¢ itself. If ¢ is an Z-formula,

new, Cy -« Coty Moy -+« Mpey are Z-terms, we say that ng, . . ., n,., may
be simultaneously propevly substituted fov &, . .., {,-, in ¢ iff for each
ien, n; may be properly substituted for {; in ¢; if this is the case we let

Cos « - o Cn-x] [Co] [Cn-l] l:ao] l:an-l]
be where a,, . . ., @, are
gpl:no, L] 7771-1 q) a an-l Mo Nn-1 ° P
any #n distinct variables which do not occur in ¢, else ¢ itself.

2 Syntax We say that T is a theory iff T is a 2-place sequence (Z, A)
where Z is a language and A is a set of Z-formulas. If T =(Z, 4)isa
theory we set Zt = £ and Ay = A, and if, in addition, T is a set of
Z-formulas, we set T+ I'=(Z, AU D).

Let T be a theory. If ¢ is an Zy-formula and I' is a set of Zy-
formulas, we say that A is a derivation of ¢ from T in T iff A is a finite
sequence {Aq, . . ., A, of Zy-formulas such that A,_, = ¢ and for eachien
either A;e TUAt or A; follows from preceding sequents in A by modus
ponens, i.e., there are j, kei such that A, = (A; — A)). If ¢ is an Zy-
formula, we say that A is a proof of ¢ in T iff A is a derivation of ¢ from 0
in T." Again, let ¢ be an Z;-formula and I be a set of Z¢-formulas.
Then we say ¢ is devivable from T in T, in symbols I' k5 ¢, iff there is a
derivation of ¢ from T in T, and we say ¢ is provable in T, in symbols
k¢, iff there is a proof of ¢ in T, i.e., 0 ¥ ¢.

Let T and T' be theories such that £y ¢ Z,. Then we say T is a
subsystem of T', or T’ is an extension of T, iff for every Z;-formula o, if
ko, then . If Zy= Zqi, we say T' is a proper extension of T iff T' is
an extension of T and there is an Z¢-formula such that ¢ but Hs; we
say T and T’ are equivalent iff each is a subsystem of the other.

Let Z be a language. Then we define 6 to be an element of (41,), . . .,
(A6,) iff 6 is a generalization of an .Z-formula of the form:

A1) ¢o— @ — @)
A2) [¢— W —-X)]—=[(¢—¥) = (¢—X)]
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(A3) (~o—~Y) = (b — 9)
(Ad) Ap(p— ) — (Apg — Apy)
(A5) ¢ — Ape, where p does not occur free in ¢

(A6) Apg— (p[‘é], where ¢ is an Z-term of the same type as p, respec-
tively.

We now let W, be the theory (Z, A,) where A, = (Al/)U . ..U (46,), and
from now on we will write A, for Ay,

Our primary interest is in Wy, which we will call W*, and our motiva-
tion for discussing non-empty languages in general is that they provide a
simple way of proving the following completeness theorems for W* as well
as some of the other logistic systems we will be considering.

We now prove some useful syntactic lemmas. Where proofs are
especially trivial they are omitted.

Lemma 1 Let T and T' be theories, T be a set of Ly-formulas, T' be a
set of ZLy-formulas, and ¢ be an Ly-formula. If L+ C Ly, TUAL Cc TV U
Aqi, and T k5 @, then T |55 @.

Lemma 2 Let T be a theory, T be a set of ZLy-formulas, and ¢ be an
ZLy-formula. If e T'U Ay, then T b5 ¢.

Lemma 3 Let T be a theory, T be a set of Zy-formulas, and ¢ and | be
Zy-formulas. If T k5@ and Tl (¢ — V), then T .

We take the notion of fautology as given. We state the following lemma
for convenience, but in principle succeeding references to it could be
routinely, if tediously, omitted.

Lemma 4 Let Z be a language, T a set of Z-formulas, and ¢ an
Z-formula. If ¢ is a tautology, then T lW.Z ®.

Proof: See [16] and [12].

Lemma 5 Let £ be a language, T a set of Z-formulas, and ¢ and Y
Z-formulas. T U {‘P}*WQ‘P iff T Iw_{((p — ).

Proof: The right-to-left direction follows from Lemmas 1-3. To prove the
other direction, assume that I' U {(p}l— Y. Let A = (Ao, ..., A,) be a
derivation of ¢ from I'U {¢}in W,. We | prove by induction on i that if ie n
then T’ I-— (p — A;). To this end, let ie » and assume that the hypothesis is
true for all jei. Case 1: A;e U Az, Then T'lg,A; by Lemma 2. But
Ty, [A; — (¢ — A;)] by (Al) and Lemma 2. Hence, by Lemma 3, T f— ((p -
,) Case 2: A; = ¢. Then Ff—z(w — A;) by Lemma 4. Case 3
(A — A;) where j, kei. Then by the induction hypothesis we have
l"l—_((q)—» ay) and Tlhy,[¢ — (&, — 4;)]. By (A2) and Lemma 2 I‘f—'{[(p -
(A= A)] = [(@ — Ap) = (¢ — A;)]}; so by two applications of Lemma 3 we
obtain T 'W.-t (p — A;). Since ¢ = A,.,, we are done. QED

Lemma 6 Let £ be a language, T a set of ZL-formulas, and ¢ an
Z-formula. If U is a variable which does not occur free in any member of
Tand T lwch, then T I@Aucp.
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Proof: Assume that p does not occur free in any member of I' and let
A ={Aq, . . ., A,)) be a derivation of ¢ from I in W,. We show by induction
that for each 7 e #, I‘IWﬁAuA,-. To this end, assume that ie » and that the
hypothesis is true for all jei. Case 1: A;e I'. Then p does not occur free
in A; by hypothesis; so T’ }'VQ(A — AuA;) by (A5) and Lemma 2. But T }VT(A"
by Lemma 2, too; so r‘f—/\uA by Lemma 3. Case 2: A;e Ay. Then
r I-‘@,AMA by Lemma 2 smce every generalization of an element of A, is
again an element of A,. Case 3: A; = (Ap— A;) for some j, ke i. Then by
the induction hypothesis we have I‘I-—i/\uA;a and I‘I— Ap(ap — A;). But
Ty [/\u(Ak — A;) — (ApAp — ApA;)] by (A4); so by two applications of
Lemma 3, I"}— ApA;. Since ¢ = A,.,, we are done. QED

Lemma 7 Let Z and £’ be languages, T a set of Z-formulas, and ¢ an
Z-formula. If Z CZ' and T l@,q), then T }Wéq).

Proof: Let Zc Z' and A ={A,, ..., A, be a derivation of ¢ from T in
W, Let &, . . ., {,., be those distinct constant terms in £’'~Z which
occur in the sequents of A; let g, . . ., ky-, be distinct variables that occur

in no sequent of A and are such that for each ie m, ; is of the same type as

¢;; and, finally, for each ie n, let A/ = Ai[cm T C""I]. Then I"'IWiA,-’ for

Moy « « +5 Bmmy
each ¢e n, and we proceed to prove this fact by induction on 7. To this end,

assume that {e # and that the hypothesis is true for all je i. Case 1: A;e T.
Then by assumption no constant in Z’~_Z occurs in A;; so A} = A;. Hence
r IW A} by Lemma 2. Case 2: A;e Ay . Then it is easy to see by inspection
that™- AleAg;so T l‘— A} by Lemma 2. Case 3: A; = (A, — A,;) where j, ke i.
Then by the 1nduct10n hypothesis T }_:tAk and r I-W—, (Ap — Ay)'. But
(Ap— A;) = (80— Al); so T I— Al by Lemma 3. Since (p A=A, we
are done. QED

Lemma 8 Let Z be a language, T a set of Z-formulas, ¢ an Z-formula,
e Z, and 1 a variable. If p is of the same type as ¢, u can be properly
substituted for ¢ in @, p, ¢ do not occur free in any member of T, and

¢
I"IW_{_(p, then I‘lWI_/\uqJ[u .
Proof: Let u be a variable of the same type as ¢ which can be properly
substituted for ¢ in ¢ and which does not occur free in any member of T,

and let A = (A, . . ., A,.)) be a derivation of ¢ from I' in W,. Now let v be
a variable of the same type as p which does not occur in any member of A,

and for each ien let A} = Ai[ﬂ. Finally, assume that v does not occur in

any member of I'. By the method of the proof for Lemma 7 we can
prove that for each ien I' l— A} where I" = T'n {A,, ..., A,,}. Hence

I’ IW; qo[S] since ¢ = A,.,. Now, since v does not occur in any member of
I'Y, we may conclude that I" 'WLAV(p[E] by Lemma 6; so T kg AWP[E] by
Lemma 1. But by (A6) and Lemma 2 T’ lW-{</\ugo[§:|—» <p[i]), s0 by Lemma 3
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we conclude that T’ IW?(‘O[E] Since p does not occur free in any member of

T, F‘WQ/\[J.([J[E:I by Lemma 6. QED

If T is a theory and T is a set of Z;-formulas, then we say I is
consistent in T iff there is an Zyr-formula ¢ such that T b4 o.

Lemma 9 Let Z be a language and T be a set of £-formulas. Then T is
consistent in W, iff theve is no £L-formula ¢ such that T ‘E oand T lw:t~<p.

Proof: Assume that there is an Z-formula, ¢, such that T kg ¢ and
r l"- ~@. Let ¢ be any Z-formula. Then T’ |— [ = (~0 — ¥)] by Le'rinma 4.
By two applications of Lemma 3 we obtain I‘F‘;xp This shows that T is
inconsistent in W,. On the other hand, assume that I' is inconsistent in W,.
Then the desired result follows trivially. QED

Let Z be a language and I" be a set of .Z-formulas. Then we say f is
an Z-external constant tevm realization of T' iff f is a 1-1 function whose
domain is the set of variables which occur free in some member of I', and
f(u) is, for each pu in the domain of f, a constant term of the same type as
and not in Z. If fis an .Z-external constant term realization of T', then we
let Sf be the function whose domain is the set of Z-formulas and which is
such that, for each Z-formula ¢, Sy (¢) is the result of replacing each free
occurrence in ¢ of any variable p in the domain of f by f(r). The following
lemma makes the observation that free variables in the hypothesis set of a
derivation serve as constant terms.

Lemma 10 Let Z be a language, T be a set of Z-formulas, and f be an
.{ external constant term vealization of I'. Then, for each .{—formula ®,

cp iff S, WMS/ (@).'* Accordingly, T is consistent in W, iff S; (1]
is conszstent in W e

Proof: Essentially the same as the proof of Lemma 7.

Lemma 11 Let £ be a language and T be a set of ZL-formulas. Then T
is consistent in W, iff every finite subset of T is consistent in W.

Let T be a theory and I' be a set of Zy-formulas. We say that I' is
maximally consistent in T iff for every ZLi-formula ¢, if TU {¢} is
consistent in T, then ¢e T.

Lemma 12 Let Z be a language and T be a set of Z-formulas. If T is
maximally consistent in W, then, for every Z-formula ¢, @e T iff I‘t‘,—v2<p.

Proof: Assume that I' is maximally consistent in W,. Let ¢ be any
Z-formula. If e T, then I' kg, @ by Lemma 2. Assume, on the other hand,
that l"l—‘ @ but ¢ ¢T. Then, since T is max1mally consistent in W,,
T U {o} 1s inconsistent in Wy,. Hence, I' U {(p} ¢, wherefore, by
Lemma 5, I‘IW(q) — ~g). It follows by Lemma 3 that T kg, ~¢. We
therefore conclude by Lemma 9 that I' is inconsistent in W,g, but this
contradicts our assumption that I'" is maximally consistent in W,. Accord-
ingly, we have shown the right-to-left direction. QED
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Lemma 13 Let £ be a language and T be a set of Z-formulas. If T is
consistent in Wy, then T is a subset of some set of Z-formulas which is
maximally consistent in Wi.

Proof: Assume that I' is consistent in Wy. Let Z = <2{3>ﬁieu be an enumera-
tion of the Z-formulas for some ordinal a@. We define by transfinite
induction on B <a =+ 1'% T§=T; Iy, = I3 U {Z4}if T;U{Zs} is consistent in
W_, else I}; and, for B a limit ordinal, T} = |J Ij. LetK = T}. It is easy to

€
show by transfinite induction on B that l";’ gs consistent in W, for each
B < a, and, in particular, therefore, K is consistent in Wy;. We next show
that K is maximally consistent in W, as well. To this end, assume that ¢
is an Z-formula with the property that KU {(p} is consistent in W,. Now,
@ = Zg for some Be a; so Ty U {Zg} is consistent in Wy, whence ¢e T}, C K.
This proves our assertion. Since I' ¢ K, we are done. QED

Lemma 14 Let Z be a language, a be an ovdinal, <EB>6/ea be a sequence of
Z-formulas, {Ug)gee be a sequence of variables, (., be a sequence of
constant teyms, and T be a set of L-formulas. If {g+ § forall By ina
such that pg and uy occur free in Tg and T, respectively, Lg¢ £ and is of
the same type as g for each Be a such that ug occurs free in %g,| T is
consistent in Wy, and no member of {uﬁ: Be a}occurs free in any element of

T, then I' U {<~/\u‘;23 - ~Eﬁ[%ﬁ]>: Be a} is consistent in W, wheve £’ =
Z U {8: Be a and pg occurs free in Zgh.

Proof: Assume the hypotheses. For convenience, let Ag = <~/\uﬁ2¢3 -
"'Zﬁ[uﬂ]> for each Bea. We define by transfinite induction on B: K, =T,

S
Kji = Kp U {ag) for Bea, andKg = U_K,y for B < a a limit ordinal. Note that
Ve

{g does not occur in Agif ug does not occur free in Zg; so every member of
K, is an Z’-formula. We now show by transfinite induction on B that for
each 8 < a, Kg is consistent in W,,. That K, is consistent in W, follows
from Lemmas 7 and 9. Now let Bea and assume that K,ﬂ is consistent in
W, but Kgi, = K U {Ag} is not. Then Kz U {Aﬁ}h@~A6; so by Lemma 5
Kg b, (&g — ~Ag). Since [(Ag — ~Ap) — ~Ag] is a tautology, it follows from

Lemmas 4 and 3 that Kﬁiw—_i/ ~Ag, i.e., Kg ‘WZ'N(NA“BZB - ~Zg[‘éi]). Again,

since [~(¢p — ~y¢) — ¢] and [~(¢ — ~y) — Y] are tautologies for any
2Z'-formulas ¢ and y, it follows from Lemmas 4 and 3 that Kg Iw—£~/\u‘323
and KBIW:, Eﬁ[‘éﬁ} Our hypotheses guarantee that pg occurs free in no
- B
element of Kg and that CB occurs in no element of Kg. Hence, by Lemma 8,
Kptw 7 \AuBZ)g. But this implies by Lemma 9 that Kg is inconsistent in Wy,
which is contrary to assumption. Hence, if Be @ and K is consistent in Wi,
then so is Kzi;. Next let B < a be a limit ordinal and assume that for each

ve B Ky is consistent in W,. Then so is Kg = U K, by Lemma 11.
YEB
Consequently, our assertion is proved, and, in particular, we have shown

that K, is consistent in W,i. ButK, = T'U {As: Beal. QED
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3 Semantics Let .Z be a language. We say that ¥ is an Z-structure iff
A is a 4-place sequence (0, (D,).., H, I) such that: (i) for all new,

0+D,Cc0; (ii) HC OX U ("0)*%; and (iii) I is a function whose domain is
neEw

the set of Z-terms and which is such that for every individual Z-term, ¢,
I(§)e Dy and for every ne w and n-place predicate Z-term, 7, IM)e D,,,.
Now let U = (0, (D, )ne,s H, I) be an Z-structure. If £ is an Z-term, then we
define the category of {in U to be D, if ¢ is an individual Z-term and D,,,
if £ is an m-place predicate £-term. If de O and ¢ is an Z-term, then we

set *2([2] = <,0’, (D e H, I<§)>, where I(E) = (~{&, 1N U K, @)}, i.e.,

I<§> is the function which agrees with I everywhere except, possibly, at ¢

where it takes the value d. If Z’ C Z, then by A|.Z’ we will understand
(O, (D)ess H, I1 "), where I| £’ is the function whose domain is the set of
Z’'-terms and which agrees with I on those terms.

Let Z be a language, A = (0, (D,),c0, H, I) be an Z-structure, and ¢ be
an Z-formula. We define ¢ to be frue in U by induction on Z-formulas as
follows:

1. if ¢ = €0, . . ., My-1) iS an atomic Z-formula, then ¢ is true in W iff
I(QH{I(Mo), - - -, IM,-1)), e, i (), TMo), - . -, IMp))) e H

2. if ¢ = ~y, then ¢ is true in Y iff Y is not true in A

3. if o= (W — X), then ¢ is true in A iff either ¢ is not true in Y or X
is true in A

4. if ¢ = Ay, then ¢ is true in U iff for every d in the category of p in
AU, Yis true in QI[Z]

We write }7 ¢ for ¢ is true in A. We say that U is a model of ¢ iff }§<p.
Let T be a set of Z-formulas. We say that U is a model of T', in symbols
IﬁI‘, iff A is a model of every member of I'. Now let 8 be a class (which
may be proper) of .Z-structures. We say that ¢ is an 8-valid consequence
of T, in symbols T ks ¢, iff every member of ¥ which is a model of T is
also a model of ¢. We also say that ¢ is 8-valid, in symbols iﬁqo, iff ¢ is
an R-valid consequence of 0, i.e., iff 0 K ¢.

Let £ be a language and U = (7, (D,)scw, H, I) be an Z-structure. Then
we will say that U is strict iff (1) D, N D, = 0 for all #n, me w such that
ntm, (2) 0= Ecju D,,and (3) HCc U (D, X "0). By the cardinality of % we

n neEw

will understand the cardinality of 0. For convenience we let Nf be the
class of Z-structures and Nfbe the class of strict Z-structures.

We now state a few useful semantical lemmas. In most cases the
results are so obvious that they need no proof.

Lemma 15 Let Z be a language, T and K be sets of Z-formulas, 8 and
1 be classes of Z-structures, and ¢ be an Z-formula. If T C K, JICR, and

T ko, thenK £ ¢.
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Lemma 16 Let Z be a language, T be a set of Z-formulas, ¥ be a class
of Z-structures, and ¢ be an Z-formula. If ¢e T, then T }ﬁ Q.

Lemma 17 Let Z be a language, W be an ZL-structure, ¢ be an Z£-
formula, and | be a va'rz'able If p. does not occur free in ¢, then, for every
d in the categovy of p.in U, <p iff |=

Al

Proof: A trivial induction on Z~-formulas.

Lemma 18 Let Z be a language, W = {0, {D,),e,, H, I) be an L-structure,
@ be an ZL-formula, and € and n be ZL-terms. If I(n) is in the category of ¢

in W, and 1 can be properly substituted for € in ¢, then }7= [ ]sz |—[——_—]- 0.
A 1),
Proof: Let Z be a language and ¢ and 1 be Z-terms. We prove by
induction on Z-formulas ¢ that, for every Z-structure ¥ = (&, (D,)cc,, H, D),
if I(n) is in the category of £ in W, and 7 can be properly substituted for ¢ in

¢, then ‘ﬁ (p[g] iff };[—;— ¢. The only case of this induction worth
1(n)

considering is when ¢ is of the form Apy. If p = {, then <p[§] = ¢, and the

desired result is seen to follow from Lemma 17. I p = 7, then, since 7 can

be properly substituted for ¢ in ¢, it follows that ¢ does not occur free in

®; SO <p[§:| = ¢, and the desired result again follows by Lemma 17. Finally,

if p # £ and p # n, then the conclusion we want is drawn from induction
hypothesis and the last clause in the definition of truth in an .Z-structure.
QED

Lemma 19 Let Z be a language, N be a class of Z-structures, and ¢ be
an L-formula. If ge Ay, then -

Proof: Assume the hypothesis. If ¢ falls under (Al)-(A4), then the result
is trivial. If ¢ falls under (A5), then Lemma 17 guarantees the result.
Finally, if ¢ falls under (A6), then the desired result follows from
Lemma 17 in conjunction with Lemma 18. QED

Lemma 20 Let Z be a language, T be a set of Z-formulas, 8 be a class
of L-structures, and ¢ and ¢ be L-formulas. If T k5 ¢ and Tl (¢ — Y),
then T ‘ﬁ Y.

Lemma 21 Let Z be a language, T be a set of Z-formulas, ¥ be a class
of Z-structures, and ¢ be an Z-formula. If T 'v_v_'(w’ then T I‘f .

Proof: By Lemmas 16, 19, 15, and 20.

Lemma 22 Let Z and Z’ be languages. If £ C Z’', ¢ is an Z-formula,
T is a set of ZL-formulas, and R is a class of Z'-structures, then T kg ¢ iff
T 5 ¢, where ¥’ = {ulz:we n}.

Proof: A trivial induction on Z-formulas.
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4 Completeness

Theorem 23 Let Z be a language and T be a set of Z-formulas. If T is
consistent in Wy, then theve is a strvict Z-structure (whose carvdinality is
w + |Z|) which is a model of T.

Proof: Assume that I' is consistent in Wz. Let f be an Z-external constant
realization of T, Z' = Z U #(f), and I" = Sf[F]. By construction no
variable occurs free in any member of I, i.e., every member of I is
closed. Furthermore, by Lemma 10, I'’ is consistent in W,:.

Let Z = <26>6150‘ be, for some ordinal @, an enumeration of all the Z’-
formulas which contain at most one free variable. For each Be a, let yg be
the variable which occurs free in Zg if such a variable exists, else let jg be
any variable. Next let ({g)gq be a pairwise distinct enumeration of constant
terms which are not members of Z’ and are such that, for each Be a, g is
of the same type as pg. Finally, let Z” = £’ U {¢: Be a}. It follows from

Lemma 14 that I'"U (~Au523—-> ~2,3‘[%B]): Be a} is consistent in W, It
8

then follows from Lemma 13 that I U {<~/\u{323 — ~26[Léﬁ]): Be a} is a
B8

subset of some set K of Z”-formulas which is maximally consistent in W,

We use K to construct an Z”-structure. Let O'=2Z"; D,=Cnr)NZL"
for each new; H = {(& (Mo, + + « Mur): BEW, & Noy - + +y Mpae L”, and
€Mos + + +» Np-1) € Kf; and I be any function which coincides with the identity
function on the constant Z”-terms and is such that I(p) is a constant
Z"-term of the same type as p for every variable pu. Then U =
(O, (Dppeers H, I) is a strict Z”-structure. Furthermore, if we chose the
sequents of T to be pairwise distinct, then the cardinality of U is just
w+ |2l

We now prove by induction on the number of occurrences of logical
particles in ¢ that for every closed Z”-formula ¢, @eK iff lﬁ(p.
Case 1: The number of occurrences of logical particles in ¢ is 0. Then ¢
is atomic and the desired result follows from our definition of H. Case 2:
Assume that the number of occurrences of logical particles in ¢ iszn + 1
and that the result holds for every closed Z”-formula in which the number
of occurrences of logical particles is #. If ¢ is of the form ~y or (Y — X),
then the desired result again follows easily. Hence, assume that ¢ is of the
form Apy. For the left-to-right direction, assume that Apye K. Then, for

every constant Z”-term ¢ of the same type as p, 1p[p£]eK by (A6),

Lemmas 2, 3, and 12; so },—-ﬁgbl}é} by the induction hypothesis, whence }q;=“= Y

by Lemma 17. Since the category of p in U is just the set of conséant
Z"”-terms which are of the same type as ., this implies thatkg/\mp, ie.,
that fﬁcp. For the right-to-left direction assume that };/\m// but Apy ¢ K.
Since Apy is closed, Y contains at most one free variable; so there is some
Bea such that ¢ = Zg. Now, if y itself is closed, then by (A6), and
Lemmas 2, 3, 6, and 12 we find Apgy € K, and by Lemma 17 we find };’prﬁzp.
In any case, we may assume that g = gg. Now, since we have assumed that
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App ¢ K, it follows that ~ApgZge K. But, by construction, (~/\u52‘3—>

~zﬁ[%2])e K; so K @Nzﬁ[g
by Lemma 12. On the other hand, kg AugZs; 80 = B, whence ‘ﬁzﬁ[?}]
{2) ’
m

by Lemma 18. Thus, by the induction hypothesis, Eﬁ[

]by Lemmas 2 and 3. Accordingly, NZB[%B]G K
B

ﬁ]e K. But then K is
%

inconsistent in W,—a contradiction. Hence, the right-to-left direction is
proved, and we have established our assertion.

Since I'" ¢ K and every member of I'' is closed, it follows that };1"’.
Since I is essentially arbitrary on the variables, we may require that f c I,
and, when we do so require, we find that &,—'—-!;1" by Lemma 18. Hence, by
Lemma 22, }ﬁ‘—?_ T. QED

The proof of Theorem 23 has been adapted for our purposes from the
proof of the corresponding theorem for first-order logic in Mendelson [13],
pp. 65-617.

Let Z be a language and U = (0, (Dn>,4€w, H,I) be an Z-structure. If
m,),.., is a sequence of cardinals, then we say that % has cardinality
structure {My)ne. iff for each ne w, |D,| = m,. By adjusting the cardinality
of repetitions of Z-formulas in £ of the proof of Theorem 23, we can
prove:

Theorem 24 Let Z be a language, T be a set of Z-formulas, and
m = (M), be a sequence of cardinals. If m, > w + | Z| for each ne w, and
T is consistent in W,, then theve is a strict Z-structure which is a model
of T and whose carvdinality structuve is m.

Theorem 23 provides the means for proving the following two com-
pleteness theorems, the latter of which is a corollary of the former.

Theorem 25 Let £ be a language, T be a set of Z-formulas, and ¢ be
an Z-formula. T hN_é‘P if T |:=% ®.
8

Proof: In light of Lemma 21, we need only prove the right-to-left direction.

To this end, assume that T' |= ¢ but T |W74L<p. Then I'U {~¢} is consistent
Ris

in Wy. For, otherwise, I' U {~¢} g ¢; so T Iwz(wp — @) by Lemma 5,
whence T’ I-W:{<p by Lemmas 4 and 3—a contradiction. Accordingly, Theorem
23 guarentees that I' U {~¢} has a model which is a strict Z-structure.
But such an Z-structure cannot also be a model of ¢. QED

Theorem 26 Let Z be a language, T be a set of Z-formulas, and ¢ be an
Z-formula. Then T fvT_i eiff T = o.

i

As mentioned in Section 1, the preceding strong completeness theorems
yield corresponding strong completeness theorems for any theory T at
least as strong as W;’(T. If T is a theory, we say that % is a T-structure iff
A is an Zh-structure which is a model of A;. We let 8(s)1 be the class of
(strict) T-structures.
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Theorem 27 Let T be a theory, ' be a set of ZLi-formulas, and ¢ be an
ZL-formula. If T is an extension of W 27 then T b+ ¢ iff I‘Is(=) ®.
T

Proof: By Theorems 25 and 26, T'ly¢ iff T'U Ay 'Wx_T‘” iff T UAT}FT @

' o)
iff T Iﬁ 0. QED
5 Results and Applications In this section we are concerned only with
that part of our theory corresponding to the language 0, viz. with W* and its
extensions. Henceforth, when reference to a language is omitted, we
assume reference to 0, e.g., formula, structure, etc., refer to 0-formula,
0-structure, etc. Furthermore, unless otherwise indicated, theory refers
to theories whose associated languages are 0.

-5.1 A Substitution Free Axiom Set for W* In this section we will
formulate a substitution free axiom set for W*. See [8] for the general
importance of substitution free axiom sets, particularly as regards modal
contexts. We will see how the substitution free axiom set for W* becomes
simplified and expanded as we pass to extensions of W* in later sections.

We say that ¢ is a type iff te w. If a is an individual variable, we say
that the type of @ is 0. And if ne w and 7 is an n-place predicate variable,
we say that the type of m isn + 1.

Let new and ¢t = (&, . . ., {,.)) be an m-place sequence of types. If
tenm+ 1, pu is a variable, and ¢ is a formula, then we say that p has a
t, i-occurrence in ¢ iff an atomic formula of the form = (v, . . ., Vi, W,
Viy « « + V1) OCcurs in ¢ where, for each jen, the type of v; = ¢;. (We
understand 7(Vg, . . ., Vioy, thy Vi, « « -, Vpr) to be: 7(W, Vo, « .« .+, Upy) if 2 = 0;
T(Voy + « «y Vp-y, W) if 4 =m; and n(y) if n=0.) If 7 is an n-place predicate
variable and ¢ is a formula, we say that 7 has a {-occurrence in ¢ iff an
atomic formula of the form 7(y,, . . ., Uy-y) Occurs in ¢ where, for each
ie n, the type of pu; = ¢;.

If ie n+1 and p,p’ are variables, we say that ¢ is a ¢, i-indiscernibility
formula for ., 1’ iff ¢ is a formula of the form

AVo oo e AV AT(T(Voy « v vy Viety By Viy o o oy Vpe) <> TV, « v oy Vimy, B,
Viy o« « o Vn-l)) ’

where o has a ¢, i-occurrence in ¢; pn, P’ are each distinct from 7,
Voy « « o5 Vpoyy and m, Vo, . . ., YV, are pairwise distinet. I p, p’ are
variables, we say that ¢ is a gemeval indiscernibility formula for ., ' iff
there are an ne w, n-place sequence of types f{, and Ze » + 1 such that ¢ is a
t, i-indiscernibility formula for p, p’. If 7, o are m-place predicate
variables, we say that ¢ is a t-coextensivity formula for m, o iff ¢ is a
formula of the form Ay, . . . Ay (T (Ko, + « oy PBpmr) <> 0(Mo, - + «, Up-1)), Where
7, o are each distinct from po, . . ., Uy-1; Bo, - - -, Uyp-y are pairwise distinct;
and, for each ien, the type of u; =¢;. If 7, o are m-place predicate
variables, we say that ¢ is a gemeral coextensivity formula for mn, o iff
there is an m-place sequence of types ¢ such that ¢ is a {-coextensivity
formula for =, o.

We now define three new sets of formulas. We say that 6 is an
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element of (A7), (A8), or (A9) iff 6 is a generalization of any formula of the
form:

(A7) VB(@oA...A@,,), where B is an individual variable, ze w, and there
is an individual variable a such that (i) @ # B, and (ii) for each ien, ¢; is a
general indiscernibility formula for a, B8

(A8) Vol(woa. - A@uyAWoA. . .AY,.,), Wwhere o is a predicate variable,
n, me w, and there is a predicate variable 7 of the same type as o such that
(i) 7 # o, (ii) for each ie n, ¢; is a general indiscernibility formula for 7, o,
and (iii) for each ie m, ¥; is a general coextensivity formula for 7, ¢

(A9) ¢ — (y<>X), where there are an ze w, n-place sequence of types t,
ien + 1, and distinct variables p, p’ such that (i) ¢ is a £, ¢-indiscernibility

formula for p, u’, (i) ¥ = 7(vey « -« Viey, &y Viy - .« «, Vp-y) iS an atomic
formula in which p’ has a f, i-occurrence, and (iii) X = 7(vo, . . ., Vi1, K/,
Viy « o o Vn-l)-

Now let W¢y be the theory whose axiom set is the union of (Al)-(A5) and
(AT)-(A9). We will prove that WS is equivalent to W*. Since it is clear that
W{; is a subsystem of W*, it will suffice to prove that every instance of
(A8) is a theorem of WY, Note that Lemmas 4, 5, and 6 hold for W;.

Lemma 28 Let [op — (W — X)]e (A9). Then W[(p - (X<=>Y)].
Proof: Since [0 — (Y — X)]e (A9), ¢ is of the form

Avg . .. AVn-lAﬂ(ﬂ(Vo, coeey Vieny By Viy ooy Vn-1)<_">77(V07 o ooy Vieg 'J",

Vis « e o Vﬂ-l))y
where p, p', 7, Vo, . . ., V-, are pairwise distinct. By Lemma 2 and (A9),
‘W;/[qo—_) ("(Vo: o ooy Viegy p"7 Viy « « o Vn-1)<—>77(Vo, ey Vi By Vi e,

Vp-1))] -

By several applications of Lemma 6, (A4), (A5), and Lemmas 4 and 3, we
obtain kg (¢ — ¢’), where ¢’ is obtained from ¢ by interchanging p and p’.
'S

Now, [¢ — (X — ¥)]e (A9). It follows from Lemmas 2, 4, and 3 that

*

s
Lemma 29 Let ne w, t be an n-place sequence of types, ien + 1, uand .’
be variables, and Y and X be formulas. If ¢ is a t, i-indiscernibility
formula for |, ', and X results from Y by replacing a free t, i-occurrence
of U by a free occurvence of |, then 'W_ﬁ/[q) — (Y <>X)).

Proof: We prove this by induction on formulas with respect to y. If u = p’,
then there is nothing to prove in any case; so assume that p # u’. Case 1:
Y is atomic. Then the desired result follows by (A9). Case 2: ¢ is
of the form ~y’ or (' — ¢”). Then the desired result follows by
tautologous transformations, i.e., Lemmas 4 and 3, and induction hypothe-
sis. Case 3: ¥ is of the form Avy’. Then X may be written as AvX’, and as
the induction hypothesis we assume that W[cp—» (' <>X’)]. By tautolo-

gous transformations we therefore obtain lw*—f[cp — (@' — X’)], whence, by
S
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generalization, i.e., Lemma 6, I@/\v[cp—» (W' — X’)]. Applying (A4), and
Lemmas 2 and 3, we get h,WT[/\V(pﬁ (W — X)]. Since our assumption
'S

requires that v # u, p’, (¢ — Ave)e (A5). It follows by Lemma 2 and
tautologous transformations that lw—*f[w — (@ — X)]. Similarly, IW[¢ —
's s

(X — ¥)]. Hence, again by tautologous transformations, }F/_ [0 = W<>X)].
s QED

Lemma 30 Let u. and v be variables and ¢ and X be formulas. If X is
obtained from by replacing some (ov none or all) free subject position
occurvences of | in y by v, then theve arve an ne w and geneval indiscern-
ibility formulas o, . . ., @Quy for p, v such that kg [@on. . o A Qpy —
(W<>x)). o

Proof: I p = v, then the result is trivial. Otherwise, merely apply
Lemma 29 and tautologous transformations repeatedly. QED

Lemma 31 Let u, v be variables and ¢ be a formula. If pu and v are of
the same type, and |. does not occur free in predicate position in ¢, then

g (= o)

Proof: First assume that p # v and that v can be properly substituted for p
in ¢. By Lemma 30 there are an ne w and general indiscernibility formulas

Yo - + ., W, for p, v such that t@[wom oAUy — <<p<_>qo[“])]. Let

14
¥ =Y. ..AY,,. It follows by tautologous transformations that !W—* [go -

Is
(\IJ — <p[‘i])] and, therefore, that I—WTI [go — <~q)[’:] — o~ )] Accordingly,
S

by generalization, (A4), and tautologous transformations, we obtain

W[Aucp—» (/\p.~¢[u] —+/\u~\If>] , whence iw—,;/ [/\u~q)[“] — (Au(p — Au~\IJ>].

14 v

Since p does not occur free in ~¢[t], it follows that (N(p[]‘il - /\u~(p[ti]>e

(AS); so, by Lemmas 2, 4’ and 3, }w—*/[\;(p[":] — </\}J.(,[J—> /\HN‘y>]. Conse-
quently, by more tautologous transformations, {Wv [VH‘I’ - (AU‘P - ¢’[!:])]
s

But Vu¥e (A7) U (A8). Therefore FVE<A;1¢ - <p[i]) by Lemmas 2 and 3.
If o = v, or v cannot be properly substituted for u in ¢, then go[v] =¢. In
this case, let v' be a variable distinct from and of the same type as p which
does not occur in ¢. Then Ir*s‘f (/\uqo - <p[5,]> by what we have just proved.
It follows from generalization, (A4), and Lemma 3 that I@(/\u'/\uwﬁ

Av’<p[5]). But (Ap@ — Av'Apg)e (A5), and we have already shown that
IWT(/\V%p[p’,] — <p). Accordingly, by Lemmas 2, 4, and 3, ke (Apg — ¢).
sf 14 isf QED



A REALIST SEMANTICS FOR COCCHIARELLA’S T* 17

Lemma 32 Let new, t be an n-place sequence of types, m and o be
n-place predicate variables, and  and X be formulas. If ¢ is a t-
coextensivity formula for n, o, and X vesults from y by replacing a free
t-occurvence of m in Y by a free occurvence of o, then }Wzl[go — W <>X)].

Proof: Just like that of Lemma 29, except for Case 1: y is atomic. Let
Uos + « -5 Kn-y be distinct variables which do not occur in[¢ — (¥ <>X)] and
are such that for each ie n, the type of u;is ¢;. Then by Lemma 31 |'W—*[ [ —
s
(m(lhoy « + + Up-)<>0(Mo, - « ., Hp-t)]. Repeatedly applying generalization,
(A4), and Lemmas 2, 4, and 3, and (A5), we obtain |‘va*/[¢—>/\#0 C..
s

Aoy (T( oy -+ oy Hpo)) <> 0l « + oy [yo))]. But |W;§7[/\uo B AT L (TP

Pnot) <> 0(Ugy + + +y Upot)) — (W<>X)] by Lemma 31. Hence, by Lemmas 4
and 3, }Wﬁ [ — @ <>X)]. QED

By repeatedly applying Lemma 32 and then using Lemma 30, we can
now prove:

Lemma 33 Let 7 and o be predicate variables and  and X be formulas.
If mand o ave of the same type, and X is obtained from by veplacing some
(ov none or all) free occurrences of m in by free occurvences of o, then
theve ave n, me w, geneval indiscernibility formulas @q, . . ., Oy fov m, o,
and geneval coextensivity formulas g, . . ., ¢, for m, o such that
I—v‘—,‘-;—f[(po Ao v cAQuaa AQG A« « A @y — W <>X)].

If we use Lemma 33 instead of Lemma 30 in the proof of Lemma 31 we
thereby obtain a proof of:

Lemma 34 Let m and o be predicate variables and ¢ be a formula. If n

and o ave of the same type, then IW(/\NQD - QD[Z])
S

Lemma 31 (for generalized individual variables) and Lemma 34
together imply the following theorem, which in turn shows that Ws*, is,
indeed, equivalent to W*.

Theorem 35 Every instance of (A8) is a theovem of W";f-

5.2 Relations as Individuals Although in W* relations are projected
grammatically as being entities which may serve as subjects of predica-
tion, they fail to be fully projected logistically as individuals. As a formal
representative of a realist ontology, such as the intended ontology of T*,
then, W* is too weak. We will remedy this situation by considering,
instead of W*, the theory W** which is defined to be W* + (A10), where
(A10) is the set of all formulas 6 such that 6 is a generalization of some
formula of the form:

(A10) (/\a<p—> go[z]), where a is an individual variable, and p is any
variable.

Now, we already have a completeness theorem for W**, viz. Theorem
27. But as a semantical reflection of the intended realist ontology for W**,
Theorem 27 is quite unnatural because of its inclusion of, say, strict
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structures wherein the category of the individual variables is disjoint from
the categories of the predicate variables. The semantics which we now
describe, however, is faithful to this realist ontology.

We say that W is an Awistotelian structure, or, for brevity, A-
structure, iff W = (O, (Dyews H,I) is a structure and U D,y C Dy I

newW
€A = {0, (Dpdnecr H, I) is an A-structure, then we say that W is semi-strict
iff (i) & = Dy, (ii) for all n, mew, if © # m, then D,,, N D,,, = 0, and

(iii) HC |J (Dyux"Dy). We define 8,4 to be the class of A-structures, g4
nj€w
to be the class of semi-strict A-structures, and, if T is a theory, By AT to

be NTﬂ R(S)A .

Theorem 36 Let T be a set of formulas. If T is consistent in W**, then
there is a semi-strict A-structure which is a model of T.

Proof: We can directly utilize the proof of Theorem 23. Take this proof,
replace T by I'U (A10) at the outset, and, when it comes time to construct
the model, set D, equal to £ instead of C(0) N £”. That the A-structure so
defined is a model of I" follows in essentially the same way as before. QED

We can now derive the following two theorems in the usual manner.

Theorem 37 Let ¢ be a formula and T be a set of formulas. Then

Thpse if TE=—¢.

8
2($)A
Theorem 38 Let T be a set of formulas, T be a theory, and ¢ be a

formula. If T is an extension of W**, then Tl @ iff T lh“‘z(s)A:_; .

We can also provide W** with a substitution free axiom set. If n¢ w,
iem+ 1, and ., v are variables, we say that ¢ is an n, i-indiscernibility
formula for ., v iff ¢ is a ¢, i-indiscernibility formula for y, v where ¢ is
the n-place sequence each of whose sequents is 0. We say that ¢ is a
special indiscernibility formula for p, v iff there is an ne w and an ie # such
that ¢ is an », i-indiscernibility formula for u, v. (All), (A12), or (A13) is
defined as the set of all 6 such that 6 is any generalization of any formula
of the form:

(A11) VB(@oA. . .A@,), where B is an individual variable, ne w, and there
is a variable p distinct from B such that for each ien, ¢; is a special
indiscernibility formula for p, 8

(A12) VOo[@oA. . -A@uiaANGy . . . Ay (T@g, - . ., Qpoy) <> 000, - - - 2y )],
where n, me w, and 7, o0 are distinct m-place predicate variables such that
(i) for each ien, ¢; is a special indiscernibility formula for =, o, and
(ii)! @, - - ., @,, are pairwise distinct individual variables

(A13) @ — (y<>X), where there are an new, ien + 1, and distinct
variables ., u’ such that (i) ¢ is an n, ¢-indiscernibility formula for py, p’,
(i) ¢ = 7(Woy « « «y Vicyy by Viy - - -, Vpy) is an atomic formula, and (iii) X =
"(V07 « ooy Vi '-j:', Viy « « o Vn-l)-

We define W} to be the theory whose axiom set is the union of
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(A1)-(A5) and (A11)-(A13). It is a simple matter to adjust the proofs of
Lemmas 28-34 to show that W:/* is equivalent to W**,

5.3 Reducing the Indiscernibilities  Let ne w and ¢ be an n-place sequence

of types. I 7w, 0 are n-place predicate variables, ao, . . ., @,-, are distinct
individual variables, and ¢ is a f-coextensivity formula for =, o, then
tve=lAdo « o A, (M, .« . ., 0p) <> 0@, .« . ., @,0)) — @] by (AL0), gener-

alization, (A4), and (A5). Similarly, if ie #z + 1, g, v are variables, ¢ is an
n, t-indiscernibility formula for p, v, and ¢ is a ¢, i-indiscernibility
formula for p, v, then kgwm(@ — ). Thus, in W**, ¢ i-indiscernibility is
reduced to %, i-indiscernibility.

It will be convenient to go further and reduce 7, i-indiscernibility to
0, O-indiscernibility. If p, v are variables, let us say that ¢ is a simple
indiscernibility formula for |, v iff ¢ is a 0, 0-indiscernibility formula for
U, v, i.e., ¢ is of the form An(m(p)<>mw(v)), where 7 is distinct from . and
v. Now let (A14) be the set of all formulas 8 such that 6 is any generaliza-
tion of any formula of the form:

(A14) Arn(m(p) «>7(v)) — @, where An(n(p) «>7n(v)) is a simple indiscern-
ibility formula for p, v, and ¢ is a special indiscernibility formula for p, v.

One syntactical advantage of studying the theory W** + (A14) is that it
can be given a particularly simple substitution free axiom set. To this end,
let (A15), (A16), or (Al7) be defined as the set of all formulas 6 such that 6
is any generalization of some formula of the form:

(A15) VaAn(n(p)<>n(@)), where a is an individual variable, p is any
variable distinct from a, and 7 is distinct from p and a

(A16) VOo[AT(T(M) «>T(0)) AAGg . . . AQue (M@0, « « .y Gpey) <> 0oy - -+ -y Ayo))],
where ne w, 7 and o are distinct n-place predicate variables, 7 is distinct
from 7 and o, and @, . . ., @,-; are pairwise distinct individual variables

(A17) An(m(p)<>7(v)) — (p<>y), where ., v, and 7 are pairwise distinct,
Y is an atomic formula, and Y is obtained from ¢ by replacing an
occurrence of y in subject position by an occurrence of v.

M** is defined to be the theory whose axiom set is the union of (Al)-(A5)
and (Al5)-(A17). It is not difficult to show that M** is equivalent to
W** . (Al4). To show that W** is a subsystem of M**, just adjust the
proofs of Lemmas 28-34. Every instance of (A14) can be derived in M** by
generalizing on (A17) and then applying (A4) and (A5). Then W** + (Al4) is
shown to be a subsystem of M**. Now, (Al5) C (All), (A16) C (Al12), and
every instance of (A17) can be derived in W** + (A14) from (A14) and (A13).
Thus, M** is shown to be a subsystem of W** + (Al4). Accordingly, M**
is, indeed, equivalent to W** + (A14).

We can even go further. If u, v are variables, we will say that ¢ is an
indiscernibility formula for p, v iff ¢ is of the form An(n(p) — 7(v)) where
7 is distinct from g and v. If p, v are variables, then we will write g = v
for any indiscernibility formula for p, v. Now let (A18) be the set of all
formulas 6 such that 0 is any generalization of any formula of the form:
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(A18) p =v — An(n(u)<>7(v)), where u, v are distinct variables, and 7 is
distinet from p, v.

Then simple indiscernibility is reduced to indiscernibility in M** +
(A18), and no further reduction is possible. As might be expected,
M** + (A18) can be given an even simpler substitution free axiom set than
M**. To this end, we define (A19), (A20), or (A21) to be the set of all
formulas 0 such that 6 is any generalization of any formula of the form:

(A19) Vou = a, where a is an individual variable distinct from the
variable p.

(A20) Vol[m = oA . . . Ay (g, - . ., 0yy) <> 00, - . ., Q,-))], Wwhere
ne w, m, o are distinct n-place predicate variables, and a, . . ., @, are
pairwise distinct individual variables

(A21) p=v— (¢ — ¢), where p, v are distinct variables, ¥ is an atomic
formula, and ¢ is obtained from Y by replacing an occurrence of p in
subject position by an occurrence of v.

The theory whose axiom set is the union of (Al)-(A5) and (A19)-(A21)
is Cocchiarella’s M*, introduced in [9]."* It is a simple matter to verify
that M* is equivalent to M** + (A18).

5.4 Comprehension and Instantiation of Formulas for Generalized Predicate
Variables Cocchiarella’s formulation of standard second-order logic [8]
contains a comprehension principle, and Church’s formulation of standard
second-order logic [1] contains a principle for the substitution of formulas
for generalized predicate variables. When generalizing standard second-
order logic to the extended grammatical-logistic context of W**  therefore,
it is of great interest to investigate the addition of generalizations of such
principles to W**, One of the most interesting facts about W** is that it
affords a great variety of such generalizations, not all of which are
equivalent. This is quite in contrast to the logical context of standard
second-order logic where there is only one natural comprehension prin-
ciple or principle for the substitution of formulas for generalized predicate
variables.

We say that ¢ is a comprehension formula iff ¢ is a formula of the
form VaApo « . « Ap-i (o, « « +y Bp-t) <>¥), Where e w, and 7, Wo, « + +p Mot
are pairwise distinct. We also say that ¢ is a standard second-order
formula iff ¢ is a formula in which no predicate variable occurs in subject
position.

We begin our study of comprehension principles by noting the
axiomatic simplifications which result from adding two especially simple
comprehension principles to W**. Let (CPA) be the set of all 6 such that §
is any generalization of any comprehension formula of the form:

(CPA)) VrmAa, . .. Aa,. @@y, ..., a,,) <), where ¢ is an atomic standard
second-order formula in which 7 does not occur, and a,, . . ., @, are
individual variables.

Then W¥* + (CPA) is equivalent to M** + (CPA). That W** + (CPA) is a
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subsystem of M** + (CPA) follows from the previously mentioned fact that
W** is a subsystem of M**. To show that M** + (CPA) is a subsystem of
W** . (CPA), and, hence, that they are equivalent, it will suffice to show
that every instance of (A14) is provable in W** + (CPA) since M** is itself
equivalent to W** + (A14). To this end, let ze w, 7 be a 1-place predicate

variable, a, B, Yo, . . ., Ys-1 be pairwise distinct individual variables,
ien+ 1, and o be an (z + 1)-place predicate variable distinct from 7. Let
@ = U(YOy e e ey Yt'-ly Ay Viy o« o yn-l) and lp = 0'(7/07 ooy Vil ﬁ: Yiy « « o yn-l)-

By (A6) and the usual transformations,IIWT{/\n(w(a)en(B)) — [Aa(m(@) <>
@) — (@ <>¥)]}, whence kg AT(M@) <> 7(B)) — [~(@ <> ¥) — ~Aa(n(@) <>
©)]} by tautologous transformations. It follows from generalization, (A4),
and (A5) that ke {A1(m@) <> 7(B)) — [~(@ «<>¥) — Ar~Aa(n(@) <> ¢)]} and,
hence, by tautologous transformations, that kgm{ViAa@m@)<>¢) —
[A1(m(@) <> 7(8)) — (@ «>¥)]}. Accordingly, W[/\n(n(&) > 71(B8) —
(p<>Y)]. From this result we can easily derive every instance of (A14)
using generalization and (A4) and (A5). Thus, W** + (CPA) is equivalent to
M** 4 (CPA).

Let (CPN) be the set of all 6 such that 8 is any generalization of any
comprehension formula of the form:

(CPN) VrAaq . .. Ao, (T, . . ., ap,) <> @), where aq, . . ., @,; are indi-
vidual variables, ¢ is either an atomic standard second-order formula or
the negation of an atomic standard second-order formula, and 7 does not
occur in ¢.

Then W** + (CPN) is equivalent to M* + (CPN). Since W** + (CPN) is
obviously equivalent to M** + (CPN), and M* is equivalent to M** + (Al18),
it suffices to prove that every instance of (A18) is a theorem of M** 4+
(CPN). But this follows in essentially the same way as in the preceding
paragraph.

Consequently, if T is a set of formulas and every element of (CPN) is
provable in W** + I') then W** + T is equivalent to M* + I" with its simpler
axiom set.

Now, Cocchiarella’s formulation of standard second-order logic con-
tains only one inference rule, modus ponens, and its axioms are just the
standard second-order instances of (Al)-(A5), (A19), (A21), and (CP),
where (CP) is the set of all 6 such that 0 is any generalization of any
comprehension formula of the form:

(CP) VmAay . . . A, (nl@y, . . ., 0@,,) <> @), where ao, . . ., O, are
individual variables, ¢ is a standard second-order formula, and 7 does not
occur free (in predicate position) in ¢."

The most straightforward generalization of this formulation of standard
second-order logic to the extended grammatical context of non-standard
second-order logic is just the theory whose set of axioms is the union of
(A1)-(A5), (A19), (A22), where (A22) is the set of all 6 such that 6 is any
generalization of any formula of the form:
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(A22) Vom =0, where o is a predicate variable distinct from and of the
same type as 7,

(A21), and (CP*), where (CP*) is the set of all # such that 6 is any
generalization of any comprehension formula of the form:

(CP*) VrmAag . . .Aa,.,(m@y, - . ., d,.,) <> @), where a, . . ., @,., are indi-
vidual variables, and 7 does not occur free in g;

we call this theory T%*. This is the theory that Cocchiarella initially
introduced in [3].*°

By all rights T}* should be equivalent to M* + (CP*), which we will
call T**, and the only difference between these two theories is that whereas
T4* contains (A22) in its axiom set, T** contains the ‘‘slightly’’ stronger
set of axioms (A20), which, after [3], we will also call (A4’). As a matter
of fact, T%* also has included in its axiom set, subsumed under (CP*), all
formulas of the form VoAa,...Aa, (0@, . . ., @,,) <> 1@, . . ., q,1)),
where ne w, @, . . ., @,-, are distinct individual variables, and o is distinct
from 7; and from this, generalization, (A4), and (A5) we can prove in T}*
every formula of the same form but with 7 and o interchanged in the
biconditional. Cocchiarella shows in [3] that every instance of (A10) is
provable in TX*, that every instance of (A6) in which p does not have a free
occurrence in predicate position in ¢ is provable in T%*, and that every
instance of (A6) in which pu does not have a free occurrence in subject
position in ¢ is provable in T%*. Clearly, then, T** is equivalent to
T%* + (A4’) which, in turn, is equivalent to T}* + (U.L.}), where (U.L}) is
the set of instances of (A6) in which p is a predicate variable.

In spite of all this, T}* is not equivalent to T**; and we now prove this.
Let Dy = w, and, for each ne w, let D,,, = P("D,). Let O = {{i):ie wandi is
odd} and E = {(i): ic w and i is even}. Letf: |J D, — w such that: (1) for all

neEw
iew, f@) = 4, (2) f(O) = 0, and (3) f[D,~{0}] c w~{0}. Let 7* and o* be
distinct 1-place predicate variables. Finally, let c: U Vin + 1) > w such
that (1) c(0*) = 0, and (2) c(7*) = 1. new
If a is an individual variable, we will say that the category of a is Dy; if
ne w and 7 is an n-place predicate variable, we will say that the category of
7 is D,,,. We will say that % is an assignment iff %: U V) — U D, such

neEw ne€wW
that for every variable p, W(y) is a member of the category of pu. If U is an
assignment, 7 is a predicate variable, and p is any variable, we will define
Fylm, ) to be f(U(W) + c(@). I ¢ is a formula, we define ¢ to be true with
regard to any assignment %, in symbols };‘I——l @, by induction on formulas ¢ as
follows:

1. if ¢ = 7(oy, - + ., Up-y) is atomic, then ﬁ(p iff (Fo(m, o)y - - -,
F-u('"; Poet)) € A (T)

2. if o= ~y, thenlﬁq)iffb%tp

Lif o= (W —X), then};wiffbﬁxp or}ﬁx

4. if ¢ = Apy, then |5 ¢ iff for each d in the category of p, F==

«(2)

w

V.

u
d
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If ¢ is a formula, we will say that ¢ is valid, in symbols k¢, iff ¢ is true
with regard to every assignment.

It is an easy exercise to verify that every axiom of T}* is valid. From
this it follows that every theorem of T%* is valid. But it is not the case that
every instance of (A4’) is valid; in particular, i Vo*[AT(T(1*) <> 7(0*)) A
Aa(r*(@) <> 0*(@))], where 7 is distinct from 7* and o* and @ is an
individual variable. To prove this, let W be any assignment with the
property that W(r*) = O and assume that 'ﬁ Vo*[AT(T(1%) <> 7(0%)) A
Aa(m* (@) «<>0*(@))]. Then there is a Pc D, such that (i) for every Qe D,,

(Fﬂ (0*)(7)(1,11*)) [ | (j:) (;)(‘r) iff (Fﬂ(?)(é)(-r,o*)) € 6u<c;> (;) (1), and (ii) for
P /\Q
every d e D, <F~u o¥\ (a\(T*, @)) € 2[(0;) (;)(ﬂ*) iff (Fﬂ a:)(z)(c*, a)) e

p)\d
91(?)(3)(0*). On the one hand, (i) implies that for every Qe D,, (0 + ¢(7))¢

Q iff (f(P) + ¢(7))e @. Choosing @ to be {'c(7)'} shows that f(P) must be 0.
But f was constructed so that only O is assigned the value 0. Hence,
(i) implies that P = 0. On the other hand, (ii) implies that for all de D,,
{d+ 1)e O iff (d+0)e P. This requires that P = E. Thus, (i) and (ii) are
contradictory; so Iﬁ, Vo*[AT(T(1*) <> T(0%)) A Aa(n* (@) <> o*(@))], whence
¥ VO¥X[AT(T(1*) <> 7(0%)) A Aa(m* (@) «<>0*(@))]. Accordingly, T** is a proper
extension of T}*.

(CP*) is clearly the most natural generalization of (CP) when one is
thinking along the lines of definitional extensions of, say, W**, but there is
another way of looking at the restriction on free occurrences of the
existentially quantified predicate variable in the formula being compre-
hended in instances of (CP), and that is seeing it as applying only to free
occurrences in predicate position. We let (CP**) be the set of all 6 such
that 6 is any generalization of any comprehension formula of the form:

(CP**) VaAdy . .. Ao, (@, . . ., 0,.,) <> @), where a,, . . ., 0, are indi-
vidual variables, and 7 does not occur free in ¢ in predicate position.

Then T*** is defined to be M* + (CP**). Since (CP*) c (CP**), it is clear
that T*** is an extension of T**. We will show later that T*** is actually a
proper extension of T**.

We now turn to the substitution of formulas for generalized predicate

variables. Let me w, 7 be an n-place predicate variable, a,, . .., @, be
distinct individual variables, and ¥ and ¢ be formulas. We say that y can
be properly substituted for m with rvegard to aq, . . ., 0,., in @ iff

1. 7 does not occur free in predicate position in ¢ within a subformula of ¢
of the form ApuX where p is a variable distinct from a, . . ., @,., which
occurs free in y; and

2. for all variables o, . . ., tp-1, if 7(Wo, . . -, Uy-1) Occurs in ¢ in such a
way that the (predicate position) occurrence of 7 is a free occurrence, then,
for each ien, there is no subformula of y of the form Ap;X in which a; has
a free occurrence.
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If Y can be properly substituted for 7 with regard to aq, . . ., @,-, in ¢, then
we let éﬂ(ao’ ';p"a”'l)qu be the result of replacing each subformula
(o, « + -, by-1) Of @ in which 7 occurs free in predicate position in ¢ by
w[a"’ T a”"l]; else we letén(%’ T a”'1)<p be ¢ itself.

Moy « + +y lp-y, 14

Let (U.l.¥*) be the set of all 8 such that 6 is any generalization of any
formula of the form:

(U.I.;*) /\ﬂq) __,Siﬂ(ao, . ;}-, an_1)¢

variable, a,, . .., a,; are distinct individual variables, ¢ and ¢ are
formulas, and 7 does not occur free in subject position in ¢.

, where ne w, 7 is an m-place predicate

Cocchiarella has noted [3] that M* + (U.l.*¥*) is equivalent to T**. So the
correspondence between comprehension and substitution of formulas for
generalized predicate variables can be quite close in the context of
nonstandard second-order logic, much as it is for standard second-order
logic.

The restriction in (U.l.¥*) that 7 not occur free in subject position is
really quite natural since in general we cannot, of course, substitute a for-
mula for a predicate variable in subject position, and in any other principle
of substitution for a generalized predicate variable we would expect to have
to replace every free occurrence of the generalized variable by a free
occurrence of that to which it is being instantiated in the generalized
formula. It is an interesting fact that we need not make this restriction
when we generalize the standard second-order principle of substitution of a
formula for a generalized predicate variable to the context of W**. We let
(U.l.¥) be the set of all 6 such that 9 is any generalization of any formula of
the form:

(U.1.¥) /\71<P"Siﬂ(ao’ v %)
variable, ao, . . ., @,-, are distinct individual variables, and y and ¢ are
formulas.

@|, where new, 7 is an m-place predicate

We will define T* to be M* + (U.l.¥). T* was the first nonstandard second-
order logistic system to be created, introduced by Cocchiarella in [10] to
analyze Russell’s paradox of predication. In [10] Cocchiarella shows that
T* is not only consistent, but is even a conservative extension of standard
second-order logic.

It is of interest to delineate in just what way T* is related to T**.
Since (U.L¥*) C (U.L.¥), T* is at least an extension of T**. Cocchiarella
has shown [3] that T* is equivalent to the theory which results from T** by
adding a particularly simple form of (U.l.¥) to its axiom set, viz. (U.L.¥),
where (U.l.¥) is the set of all 6 such that 6 is any generalization of any
formula of the form:
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<7, . . ., Qe . .
(U.I.¥) Ancp—-»S o > 1)<p , where new, 7 is an m-place predicate
0@, . . ., Uy-1)
variable, and @, . . ., a,-, are distinct individual variables.

Actually, it is shown in [3] that T* is even equivalent to T** + (U.L.).

We now give an even simpler formulation of T* relative to T**. Let
(I**) be the set of all 0 such that 6 is any generalization of any formula of
the form:

(I**) Vp[Aay . . . A, (nlay, . . ., @,)<>pla,, . .., @,,)) A0 =p], where
new, d, .- . ., @, are distinct individual variables, and 7, o, and p are
distinct.

Then T* is equivalent to T** + (I**). We first show that every instance of
(I**) is provable in T*. To this end, let new,do, . . ., @, be distinct
individual variables, and 7, o, and p be distinct n-place predicate variables.
For convenience, set Ad, . . .Aa, (M, . . ., @) <>plg, - - -, 8.)) = @,
and let ¥ be the result of replacing p in ¢ with 7. By (U.l.¥) we have
= [Ap~(¢ a0 =p) = ~({ Ao =p)]. From this it follows that k=[Ap~(p a0 =
p) — ~ 0o =pl. Then, by generalization, (A4), and (A5), we have gz [Ap~(¢ A
0=p) — Ap~0 =p]. Hence, g [Ap~(pr0o=p) = ~0=0)]; so gz Vplparo=
p). Accordingly, by generalization, every instance of (I**) is provable in
T*, whence we have shown that T** + (I**) is a subsystem of T*. It is an
easy exercise, using (I**) and appropriate forms of Lemmas 30 and 33, to
show that every instance of (U.l.¥) is provable in T** + (I**). Hence, T* is
a subsystem of T** 4+ (I**). We have, therefore, proved that T* is, indeed,
equivalent to T** + (I**), and this is a substitution free formulation of T*
as well.

Cocchiarella also notes in [3] that T*** is a subsystem of T*. The
proof of this is quite simple. Let n, 7, @o, . . ., @,.,, and @ be as in (CP**),
Then

FalAT~Ao . . A (M@, v vy @) <> @) = ~Alg . Ay (@ <> )]

From this (CP**) follows quite readily by tautologous transformations and
generalization. It is of immediate interest to know whether T*** is actually
equivalent to T* since they arise from T** in analogous ways. It turns out
that T* is proper extension of T***,

To prove this, we will construct a semi-strict A-structure which is a
model of the axioms of T*** but not of T*. To this end, let T, F, T,
do, d;, . . . be any sequence of pairwise distinct objects. Let 0 = D, =
{T,F, T',do, .. .}. Let A={T}and B=1F, T’, dy, . . .}. For each ne w, let
S, = P({A, B}). Let (D,i)new form a disjoint partition of D, such that
D, = {T, F, T'} and, for each ne w, if n # 0, then the cardinality of D,,, is
equal to the cardinality of S,. Then, for each n + 0, let f, be a bijection
from D,,, onto S,. Now let H, = {(T, {)), (T’, {())}, and, for each ne¢ w, if
n# 0, let H, = {@, {bo, . . ., b,_)): ae D,,, and there is a {C, . . ., C,.1) ¢ fn(a)
such that boe Co, . . ., and b,_,€ C,,-l}. Finally, let H = U H,, and let I be
such that % = (0, (D)., H, ) is a structure. new
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Now, it is clear that % is a semi-strict A-structure. A little reflection
shows that the equivalence classes of the elements of D, under indis-
cernibility are just A and B and that since, for each ne w, all and only
‘“‘representations’’ of subsets of the set of n-place sequences of Aand B
are included amongst the extensions of the elements of D,,,, U is a model of
T**. Furthermore, since (I**) holds in U for each » # 0, it is clear that
(CP**) does, too. But (I**) does not hold for » = 0; so % is not a model of
T*. It only remains to show that (CP**) holds in for » = 0. To this end, let
7 be a 0-place predicate variable and ¢ be any formula in which 7 does not
occur free in predicate position. We need to show that there is a PeD,

such that F=== 7 iff === ¢, i.e., PH() iff /== ¢. If F==¢, then P= F
15" R ST
satisfies the condition. Otherwise, P = T’ satisfies the condition since F
and T’ are in the same equivalence class under indiscernibility. Thus, YU is
a model of T*** and we have proved that T* is a proper extension of T***,
For the purpose of constructing structures which are models of T***,
it would generally be useful to have a simpler characterization of T***
relative to T**, since, after all, it is fairly easy to construct structures
which are models of T**. It is not difficult to show that T*** is equivalent
to T** + (A23), where (A23) is the set of all 8 such that 6 is any generaliza-
tion of any formula of the form:

(A23) VrmAay . . . Aa, (mg, . . ., @, ) «>0(m, g, . ..,0a,,)), Where ne w,
ay, . . ., @, are pairwise distinct individual variables, and 7 and o are
distinct,

and this characterization serves our purpose to some extent.

In [9] Cocchiarella has explored an entirely different approach to
extending (CP). If ¢ is a formula, we say that ¢ is stratified iff there is a
function f whose domain is the set of variables which occur in ¢, whose
range is included in w, and which is such that for every atomic formula
(o, - - -5 kn-y) Which occurs in ¢, f(r) = max(f(Wo), - . ., f(Up-1)) + 1. We let
ST* = M* + (SCP*), where (SCP*) is the set of all 6 such that 6 is any
generalization of any comprehension formula of the form:

(SCP*) VaAdo - .« « Ao (o, + -+ -, Ppo) <> @), Where ¢ is a stratified
formula in which 7 does not occur free.

We will only take time to remark that although indiscernibility cannot
satisfy full substitutivity in T** (see, e.g., [10]), it does satisfy full
substitutivity in ST* (see [9]). Thus, if ST* is consistent, both T** and ST*
are proper extensions of M* + (CP).

5.5 The Fregean Semantics We now describe the Fregean semantics
which Cocchiarella introduced in [3]. Our main results are two: (1) we will
produce the minimal theory characterized by the Fregean semantics, and
(2) we will show that T* + (Ext*) is equivalent to T*** + (Ext*), where
(Ext*) is defined below.

We will say that % is a Fregean structuve, F-structure for brevity, iff
A is a 4-place sequence (O, (D)., f, I) such that (i) £ # 0, (ii) for each
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new, 0% D, C 2(0), (iii) f is a function whose domain is &' U U D,, whose
neEw

range is included in 0, and which is such that for all de &, f(d) = d,"" and
(iv) I is a function whose domain is the set of variables and which is such
that for each individual variable a, I{@)e O, and, for each ne w and n-place
predicate variable 7, I(n)e D,. Let U = (0, (Dpew, f, I) be an F-structure.
If o is an individual variable, we say that the category of a in U is 0; if
ne w and 7 is an n-place predicate variable, we say that the category of n in
A is D,. If ¢ is a formula, we define ¢ to be #rue in any F-structure
U = (O, Dyeer f> I), in symbols ki ¢, by induction on formulas ¢ as
follows:

. if @ =7(po, . + ., Bpoy) is atomic, then g ¢ iff (FT(o)), -+ -, FT(1y))) € I(m)

if @ = ~y, then }ﬁcpifﬂﬁlxj/

if ¢ = (y — X), then ks o iff by ¥ or X

if ¢ = Auy, then }ﬁ @ iff for all x in the category of . in U, }? Y,
A X

]

where, of course, %[ﬁ] is taken to be <.0’, D nes I I(§>> The notions of

W DN -

model, validity, etc., are understood as usual. We let Rg be the class of
F-structures, and if T is a theory, we define Rp; to be the class of
F -structures which are models of the axioms of T.

The main obstacle to giving a model-set-theoretic semantics for T*
and its brethren is interpreting formulas such as 7n(r). In the usual kind of
semantics, 7 would denote a set and predication would be interpreted as set
membership. Thus, 7(7) would always be construed as false. But it is
easily seen that there is, in the ontology of T**, for example, a property
which holds of everything—and, therefore, of itself. Our realist semantics
gets around this problem by not necessarily mirroring predication as
set-membership. The Fregean semantics gets around this problem by
regarding subject position occurrences of predicate variables as denoting
not the relations that they denote when in predicate position but, rather,
associated individuals. In this way the Fregean semantics can continue to
mirror predication as set-membership.

It is clear that every axiom of W** is valid in the Fregean semantics.
We define (Ext**) to be the set of all 8 such that 6 is any generalization of
any formula of the form:

(Ext**) Aao ... A, (1@, . .., @) <>0@o, . . ., a,,)) — ¢, where ne w,
Qg, . . ., @y, are pairwise distinct individual variables, and ¢ is a special
indiscernibility formula for =, o.

It is also clear that every instance of (Ext**) is valid in the Fregean
semantics. We define WF* to be W** + (Ext**). It turns out that WF* is
characterized by the full Fregean semantics.

Theorem 39 Let T be a set of formulas. If T is consistent in WF*, then
theve is an F-structure which is a model of T.

Proof: Assume that T is consistent in WF*. Then I' U (Ext**) is consistent
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in W**. Accordingly, by Theorem 36 there is a semi-strict A-structure
(&, {Ddsewsy H, I) which is a model of I'U (Ext**). Let K be the set of all
functions J such that the domain of J is the set of variables, and, for each
variable g, J(p) is a member of the category of p in (0, (D,),ew, H, I). For
each Je K, let W (J) be (0, (D,)yew, H, J).

We next define a set of equivalence relations. For each ne w and
ien+1 let R, ; be the set of all ordered pairs (a, b) such that a, be D, and
for all dy, . . ., d,-,e D, and Pe D,,,, PH{d,, . . .,d;_, a, d;, . .., d, ) iff
PH{dy, . . ., d;., b, d;, ..., d,). It is clear that R,; is an equivalence
relation for each ne w and ¢e # + 1; for each such » and ¢ and ae Dy, let [a],;
be the equivalence class of a under R,;. Let F be the function whose
domain is D, and which is such that for all ae Dy, F(a) = {|a], ), :, where
n, i ranges over all ne w andéen + 1. Set & = F[Dy]. Let G be the function
whose domain is U D,,, and which is.such that for each ne¢ w and Pe D,,,,

neEW
G(P) = {Fla,), . . ., F@,.)): PH{ay, . . ., a,.)}. G is well-defined because
(O, Dyuews H, I) is semi-strict. For each ne w, set E, = G[D,,,]. Let f be

the function whose domain is & U U E, and which is such that (i) for each
neEwW

xe &, flx) = x, and (ii) for each ne w and Xe¢ E,, if X = G(P), then f(X) =
F(P). f is well-defined because A(I) is a model of (Ext**) and because if
new, P, Qe D,.., and G(P) = G(Q), then for all d,, . . ., d,-,€ Do, PH{d,, . . .,
d,.) iff QH{d,, . . ., d,), for, assume that PH{d,, . . ., d,_). Then
(Fdo), . . ., Fld,-.))e G(P). But G(P) = G(Q) by assumption; so (F(d,), . . .,
F(d,-.,))e G(@). Hence there are {eq, ..., e,-.) € Do such that QH {eq, . . .,€,1)
and (Fleg), ..., Fle,.)) = FWdy), ... Fd,.). But if F@@)=F®), then for
each ne w and éen + 1, R, ; (@, b). It follows from this fact that QH {d,, . . .,
d,.;). The converse direction follows similarly. Accordingly, f is, indeed,
well-defined.

For each Je K, let J' be the function whose domain is the set of
variables and which is such that: (i) for each individual variable a,
J'{@) = F(J(@)), and (ii) for each ne w and nm-place predicate variable 7,
J'(m)=G(J(n)). For each Je K, let B(J’) be the F-structure (&, (E ey > I

We now prove by induction on formulas with regard to ¢ that for all
JeK, }:ﬁiq) iff IE(T)@ Case 1: ¢ = n(lo, . + -, My-y). Assume that 'TJ) 7 (o,

v oy Huo). Then J(m) HT (o), « + oy I (Buet)); 80 (F (T (o)), oy F(T(pnet))) €
G(J(m)). Now, if v is any individual variable, then f(J'(v)) = fF(F(J(v))) =
F(J(v)); and if v is any predicate variable, then f(J' (V) =f(G(J (v)))=F (J (v)).
In either case, f(J'(v)) = F(J(v)). Accordingly, (f(J'(uo)), - - «, F(J' (Un-1))) €

G(J(m)) = J'(7); so 'f]’) T(loy + - -, bp-1). The converse direction follows
similarly, noting, as we did when proving that f is well-defined, that if
(F(do), . . ., F(d,-1)Ye G(P), then PH{d,, . . ., d,.;). Case 2: ¢ is of the form

~y or ({ — X). Then the desired result trivially follows from the induction
hypothesis. Case 3: ¢ is of the form Apy. Then the result again follows
trivially from the induction hypothesis keeping in mind that the induction
hypothesis applies to all Je K and that {J’: Je¢ K} contains all functions L
such that 8(L) is an F-structure.
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It follows, in particular, that for all formulas ¢, :‘lll(l) @ iff ‘:T‘(l') .
Hence, B(I’) is a model of T. ‘ QED

From Theorem 39 we can derive the following two theorems in the
usual manner.

Theorem 40 Let T be a set of formulas and ¢ be a formula. Then
Tt iff I—;;(ﬂ-
Theorem 41 Let T be a theory, T be a set of formulas, and © be a

formula. If T is an extension of WF*, then T\ ¢ iff T h—;-—lF:Tga.

It is of immediate interest to examine the theories which result from
supplementing extensions of W** with (Ext**). The first thing to notice is
that M* + (Ext**) is equivalent to M* + (Ext*), where (Ext*) is the set of all
6 such that 6 is any generalization of any instance of (Ext**) of the form:

(Bxt*) Adg . ..Ad, (@@, - . ., Qpy) €<>0@o, . . ., Q) — 7 = 0.

Furthermore, it is clear that M* + (Ext*) + (I**) is equivalent to M* +
(Ext*) + (I*), where (I*) is the set of all 6 such that 6 is any generalization
of any formula of the form:

(I*) 17 =0, where 7 and o are any two distinct predicate variables of the
same type.

Since T* is equivalent to T** + (I**), it follows that T* + (Ext*) is equivalent
to T** 4+ (Ext*) + (I*), as Cocchiarella has proved in [3]. From this it is
easy to see that T* + (Ext*) is a proper extension of T** 4+ (Ext*). This
result also appears in [3].

Interestingly enough, it turns out that T*** + (Ext*) is equivalent to
T* + (Ext*). To see this, let A = (&, (D, )ew, f» I) be any F-structure which
is a model of T*** + (Ext*). Let n be any element of w. Let R be the set of
all ordered pairs (a, b) such that a, be O and for all Pe D,, if ae P, then
be P. Rfa,b) means simply that a and b are indiscernible. (CP**)
guarantees that Oe D,. Now let P be any element of &,. By (CP**) there is
a Qe D, such that for all a, . . ., @,..€ O, (o, - . ., @,.) e @ iff R(F(Q), f(0))
and (@, - . ., @,-)e P. If @ =0, then R(f(Q), f(0)) by (Ext*); and if @ #0,
then there are 4o, . . ., @,, € & such that {a,, . . ., @, ) ¢ @, whence
R(f(Q), f(0)) and {a,, . - ., a,.,)e P. In either case, R(f(Q), f(0)). Hence, for
all ag, . . ., Gy € O, {Go, - . ., Ap)e @ iff {ay, . . ., a,_)€ P. Therefore
R(f(Q), f(P)) by (Ext*); so R(f(P), f(0)). Since this holds for arbitrary
Pe D,, it follows that the elements of D, are indiscernible from each other.
Since n is arbitrary and % is an arbitrary element of 8p 1 *++y gy, it follows
from Theorem 41 that every instance of (I*) is provable in T*** 4+ (Ext*).
Therefore, T*** 4+ (Ext*) is equivalent to T* + (Ext*). This result also
shows that T*** is not equivalent to T**.

As ST* is closely related to the theory of simple types, lacking only
its grammatical ‘‘peculiarities’’, monadic ST* + (Ext*) is intimately
related to Jensen’s NFU, i.e., New Foundations with urelements (see [11]).
Likewise, if we add to monadic ST* + (Ext*) the assumption that every
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individual is a property, we obtain a system intimately related to Quine’s
NF, i.e., New Foundations [15]. Cocchiarella has discussed these theories
at length in [9].

6 Remarks It should be noted that the semantics which we have
developed here can be applied to a great variety of systems not mentioned.
For example, first-order predicate logic without identity, standard second-
order logic, monadic W*. Another byproduct of this paper is a substitution
free axiom set for first-order predicate logic without identity, which can be
easily abstracted from the substitution free axiom set which we have given
for W*.

The various theories discussed in this paper may be summarized as
follows, where a connecting line segment indicates proper extension:

W
W'**
WIF*
M**
M** + (Ext**)
M *
‘\~‘\‘\55\555\5\““--_§§_§£f*-+(Ext*)
M* + (CP)
L‘N-""55‘5\555\“‘--~__§§§§{*-k(Ext*)4—(CP)
T
T**
ST
Tx* + (Ext*)
ST* + (Ext*)
T***
T*

T**x 4 (Ext*)



N o v

10.
11.

12.

16.
17.
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NOTES

. See [10] for this analysis of Russell’s paradox.

. Unless otherwise stated or unless in set-theoretic contexts, ‘relation’ refers to relations,

properties, and propositions.

. For technical results and philosophical discussion concerning T* and the logistic systems

which have grown up around it, see Meyer [14] and Cocchiarella [2]-[10]. The conceptual
order of dependence of these papers is probably best analyzed as: [8], [10], [14], [3],
[51, 121, [91, 141, [61, [7].

For further discussion of these oddities see [10], [14], [3], [51, [9], [7].
See [2]-[10].
For the significance of substitution free axiom sets see [8].

The preceding four paragraphs are not a wholly faithful summary of Cocchiarella [3]. They
are only meant to pick out those results of [3] which are relevant to motivating this paper.
For example, we have somewhat altered the terminology of [3].

. My thanks to Professor Cocchiarella for pointing this out to me. See [2] for a thorough dis-

cussion of this distinction.

w is understood to be the first limit ordinal, and it is understood to be the set of natural
numbers in the usual way so that foralln,m e w,n <m iffn e m.

By the convention of Note 9, 0 is the empty set.

If F is a function and A is a subset of the domain of F, we define F[A] to be the set of all
F(x) such that x € A; and 2(F) is understood to be the range of F.

We take o ~1 = o for « a limit ordinal, else we take it to be the number of which it is the
successor.

If A and B are sets, 4B is defined to be the set of all functions whose domains are 4 and
whose ranges are included in B. Thus, " .0’is the set of all n-place sequences whose sequents
are in 0.

. Actually, in Cocchiarella’s M* (A1)-(A3) are replaced by the set of generalizations of tau-

tologies.

. Actually, Cocchiarella’s (CP) requires that a, . .., ®, -y be included among the free variables

of ¢, but our (CP) is readily derivable from Cocchiarella’s, as he himself has noted in, e.g.,
[3], by appending to ¢ any tautologous formula whose free variables are just o, . . . , 0 ;.

The remark of Note 15 applies here, too.

In what follows it will be necessary to distinguish the empty subsets of the ".0". One way to
do this formally is to regard f not as a function on &' U U D,, but as a sequence of func-
new

tions {fyMnew such that for each n € w, the domain of fy,,, is D, and the range of f,,, is
included in £ and such that f, is the identity function on £. Then instead of applying the
usual f we apply the appropriate f,,. The reason we need to distinguish the various empty
subsets of the "0 is that only 0 may occur common to the "0, and it is clear from the
following that we do not wish to identify any n-place relations with any m-place relations
where n # m. If, however, we do not distinguish the various null relations, we will have to
add to (Ext**) and (Ext*) wherever they occur the set of axioms (Z*), where (Z*) is the
set of all  such that § is any generalization of any formula of the form:
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(Z*¥)  [~Vog ... Voym(ag, ..., 0 ) A~VBo. . . VBn_10(Bos ..., Bu-D1>0,

where n, m € w, ag,...,0,_; and B, ..., Bn-, are groups of pairwise distinct individual
variables, 7, ¢ are distinct, and ¢ is a special indiscernibility formula for =, o.

NOTE: (Added in proof, December 18, 1979). Lemma 28 on page 15 should be deleted.
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