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GENERALIZED EQUIVALENCE AND THE
FOUNDATIONS OF QUASIGROUPS

T. A. McKEE

1 Introduction We define the generalized equivalence of a finite set
J = {#!, . . ., En} of statements, denoted [J] or [El9 . . ., En], to be the
conjunction for all i ^ n of the implications A(J - {#,•}) —> E{, where ΛJ"
denotes the conjunction of the elements of set S. Thus [ £ j is El9 [El9 E2]
is (E, — E2) & (E2 — Eγ), and [£L, £ 2, £3] is (Eι & E2 — £3) & (E2 & £ 3 ->
Ex) & (£χ & E3 -» E2). The elements of a set of statements are generalized
equivalent exactly when their generalized equivalence is true; that is,
whenever each statement is implied by the conjunction of all the others.
(In practice it is sometimes useful to note that the elements of J are
generalized equivalent exactly when the conjunction of each proper subset
J' of J implies the generalized equivalence of the elements of W - */'.)
For example, in a finite dimensional vector space, the statements asserting
independence of a subset, spanning the space, and having cardinality equal
to the dimension are generalized equivalent.

The importance of generalized equivalence in quasigroups is suggested
by the definition of a quasigroup as a set with a binary operation (denoted
by juxtaposition) such that, in the equality ab = c, each of the three
elements is uniquely determined by the other two; see [l] or [3]. This is
just the definition of closure under a binary operation together with what
could be called its two converses. As a simple example of a quasigroup,
consider the set of points of the Euclidean plane with the binary operation
on two points giving the midpoint of the segment joining them.

Quasigroups are typically studied under "constraints" such as a(bc) =
(ab)c. (In fact, being an associative quasigroup is equivalent to being a
group.) Frequently the constraint is stated in terms of implications
between equalities, and very often such implications can be automatically
('strengthened'' to equivalences. For instance, the constraint

ab = cd —> a(bx) = c(dx)

can be shown equivalent to
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ab = cd<^>a{bx) = c(dx)

And the more complex constraint

ab = a'b' & ac = a'c' & bd = b'd' -> cd = c'd'

is equivalent to the generalized equivalence of the four equalities ab = a'b',
ac = a'c', bd = b'd', and cd = c'd'. That this is so can be shown by a
quasigroup argument or as an instance of our Corollary in Section 3.
(These and all other constraints which we mention are discussed in [3].)

This tendency of implications to be interchangeable with (generalized)
equivalences is rather unexpected. Our intent is to view this phenomenon
in terms of the relationship between quantifiers and generalized equiva-
lence. (This relationship will also be used in a different way in the
subsequent article [2] concerning the profusion of generalized equivalences
in configuration theorems of projective geometry.)

2 Productive and configurational sets of equations An equality is a pair
of expressions, separated by =, each built from a binary operation (and
parentheses); for instance, a{b(cd)) = a. An atomic equality is an equality
involving only one operation; for instance, ab = c. It is often useful to
"parse" an equality into a set of atomic equalities by the introduction of
new variables (see Section 6 of [3]). For example, ab = cd can be parsed
into {ab = uy cd = u} and (xa)(xb) = (yc)(yd) into {xa = p, xb = q, pq = v,
yc = s, yd = t, st = v}. We next introduce the notion of "productive" which
captures the essence of sets of atomic equalities obtained in this way.

We shall call a set J of two or more atomic equalities a productive set
(with producing variables a, b, c, . . . and produced variables u, v, w, . . .)
whenever it satisfies all the following:

PI A variable does not occur more than once within a single element of */,
nor do the same two variables occur in two different elements.

P2 Each produced variable occurring in J occurs exactly twice.

P3 Every two elements of J are linked by a sequence of elements of J
with each pair of consecutive terms of the sequence sharing a common
produced variable.

P4 The cardinality of J is one more than the number of produced
variables occurring in J.

It is convienent to consider a graph with the atomic equalities serving
as vertices and with two vertices joined by an edge precisely when they
share a common produced variable. Then a productive set corresponds to
a tree graph, with the produced variables serving as edges. The following
are examples of productive sets: Jγ - {ab - u, cd - v, uv = w, ac = x,
bd = y, xy = w} and J2 = {«# = x, ac = yy xy = z, aw = zt be = w}.

Let VΦ and Ξ3Φ be, respectively, the universal and existential closures
of Φ, with the quantification ranging over all the variables which have not
been interpreted as fixed elements of a quasigroup. For instance, if α, b,
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and c have been interpreted (that is, assigned values) as elements of a
quasigroup JL, then V[n/2], where J2 is as above, is

VxVyVzVw [ab = x, ac = y, xy = z, aw = z, be = w] ,

where the quantifiers range over the elements of SL. Note that if equality E
is parsed into the set J of atomic equalities as explained above, then J is
productive with the new variables as produced variables; also£, with its
original variables interpreted as elements of JL, will be equivalent to each
of V|y] and 3hJ.

Lemma Suppose J is a productive set (of atomic equalities) whose
producing variables have been interpreted in a quasigroup Jj. Then

LI For each maximal proper subset J* of J, the produced variables of J
can be assigned uniquely in JL so as to satisfy Λ'a/*.

L2 !L satisfies V[J] if and only if JL satisfies 3Λ*Λ

To prove LI, suppose J is productive with its producing variables
interpreted in JL. Since each atomic equality contains three different
variables, the number of different occurrences of (possibly repeated)
producing variables in J1 is three times the cardinality of J, minus twice
the number of produced variables, and so by P4 equals two greater than the
cardinality of J. Since by P3 none of the equalities can involve three
producing variables, at least two equalities in J must each involve exactly
two producing variables. Then any maximal proper subset */* of J will
contain some equality E which involves exactly two producing and so
exactly one produced variable. Since JL is a quasigroup, this variable can
be assigned a unique value in JL so as to satisfy E. If J* contains more
than one equality, then J - {E} will be a smaller productive set, with E's
produced variable now viewed as a producing variable. Continuing in this
fashion will eventually assign unique values to all the produced variables of
J so as to satisfy ΛJ*.

To prove the "only if" direction of L2, assume V[*/] and let */* be any
maximal proper subset of J. By LI we know there is an assignment of */'s
produced variables which will satisfy ΛJ* and so, by the assumption V[J]9

it will satisfy NJ, thereby showing 3Λ'W.
Conversely, assume elements qu q2, . . . from SL satisfy all of J and

that elements rl9 r2, . . . satisfy all of a maximal proper subset J* of J.
By the uniqueness of LI, each q{ = rf and so ru r2, . . . satisfy all of J,
thereby showing V[*/'].

(In connection with L2, it is interesting to note that an atomic equality
can itself be viewed as a generalized equivalence. In the notation of [3],
ab = c is equivalent to each of (We G) [J] and (3ίe G)ΛJ, where J =
{a = π1(ί), δ = τr2(f), c = τr3(ί)}.)

Theorem Suppose Jι, . . ., J%are disjoint productive sets such that each
produced variable occurring in Jγ U . . . U Jk occurs exactly twice. Then
for each quasigroup JL, the following are equivalent:
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Tl For each !L-interpretation of the producing variables of Jlf . . ., J%,

[vW v[Λl].
T2 For each JL-interpretation of the producing variables of JY) . . ., */&,

V[-/iU . . .U Jkl

To prove that Tl implies T2, assume Tl and that the producing
variables are interpreted in !L and that (for i < k) elements qjl9 qι2, . . .
satisfy all but (possibly) one equality of Jv U . . . U Jk^\ for conciseness,
say they satisfy all of Jx U . . . U Jk^ U */£ where »/? is a maximal proper
subset of Jk So for i <k we have Ξ3Λs/(ί and so by L2 we have V[ */„•] for
ί <&, and so by Tl we have V [*/&]. Since ^ , qk{2, - . . satisfy Λβ/J, V[*/fc]
shows they also satisfy A\Jk, thereby showing T2.

Conversely, assume T2, that the producing variables are interpreted in
JL, V[Λ/, ] for i < k, and that tf^, #&2, . . . satisfy f\J\ where J% is a
maximal proper subset of *4 Applying L2 for each i < k gives qiu qi2, . . .
satisfying each \J\i for i < k. So all the elements qiu qi2, . . (i ^ k)
satisfy a maximal proper subset of Jι U . . . U J% and so, by T2, all of it.
In particular, qku ^ 2 , . . . satisfy Λ|Ŵ , thereby showing V[*/J and so Tl.

We shall call a set J of atomic equalities a configurational set
whenever it satisfies all the following:

Cl A variable does not occur more than once within a single element of J;
nor do the same two variables occur in two different elements

C2 Each variable occurring in J occurs exactly twice

C3 Every two elements of J are linked by a sequence of elements of J
with each pair of consecutive terms of the sequence sharing a common
variable.

A configurational set may be viewed as a graph with the equalities
serving as vertices and with two vertices joined by an edge precisely when
they share a common variable. The definition of configurational ensures
that the graph will be connected and trivalent. The edges of any spanning
tree can be taken as produced variables, and the set can then be viewed as
productive. The set Jh given above is an example of a configurational set,
while */2 is not.

We shall call a set of (not necessarily atomic) equalities a. configura-
tional set if the union of the sets into which its elements are parsed is a
configurational set of atomic equalities. Thus, for instance, {ab - cd,
(xa)(xb) = (yc)(yd)} is a configurational set.

3 Applications to quasigroups We are now in the position to discuss the
phenomenon mentioned in the introduction.

Corollary Suppose {Eu . . ., Ek+ί} is a configurational set of equalities.
Then V(£Ί & . . . & £ * - • Ek+ι) is equivalent to V[£i, . . ., Ek+ι\.

To prove the Corollary, note that we need only show that the implica-
tion implies the generalized equivalence. We first consider the special
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case in which each E{ is an atomic equality. Put J = {El9 . . ., £&+1} and
use any spanning tree of J's associated graph so as to view J as produc-
tive. Assume the producing variables are arbitrarily assigned values in a
quasigroup JL satisfying V(Λ*/* —> Ek+ι), where J* = {El9 . . ., Ek}. Then
this assumption and Lemma LI show that JL satisfies 3ΛW and so V[sS]
by L2.

To prove the general case, let J{ be the productive set obtained by
parsing Ef . Then J = Jγ U . . . U Jk+L is a configurational set of atomic
equalities. Suppose a quasigroup !L satisfies V(EX & . . . & Ek —> Ek+i) so
that, for any ^-assignment of the variables, if all the elements of
J x U . . . U Jk and of a maximal proper subset of J^+i n°lcl in !L9 then so
will all of J. Then by the previously proved special case, V[*/]. So the
Theorem implies that [Vfa/J, . . ., V[*/&+1]] for each ^-interpretation, and
so V[El9 . . ., Ek+ι\.

The special (atomic) case of the Corollary compares with Stein's
observation (a) on page 249 of [3]. His observation (b) then matches the
equicardinality of the spanning trees in the graph associated with the
configurational set.

As another application of the Theorem, consider the constraint
V[(«6)c = ad, (eb)c - ed], which is the third constraint in (18.1) of [3]. As
in the proof of the Corollary, this can be rewritten

V[ab = x, xc = u, ad = u, eb = y, yc = v, ed = v] .

Since this configurational set of six atomic equalities can be partitioned
into the two productive sets Jγ - {ab = x, xc = u, ad = u] and J2 - {eb = y9

yc = υ, ed = v} with the produced variables x, u and y, υ, respectively, the
Theorem shows the original constraint equivalent to V[VΛΓ,M[Λ/I], V3;,̂ [fi/2]]
This corresponds to the (13) conjugate constraint of the original constraint
in [3]. Similarly, the set can be partitioned into three productive sets,
resulting in the constraint

V[Vb[ab = x, eb = y], Vc[xc = u, yc = v], Vd[ad = u, ed = v]] ,

corresponding to the (23) conjugate of the original in [3].
It should be kept in mind that a constraint may be written in very

different ways as universally-quantified generalized equivalences of atomic
equalities. For instance the constraint

V(ab = cd-> (xa)(xb) = (yc)(yd))

can be written as

V[αδ =u, cd = u, xa = p, xb = q, pq = r, yc = s, yd = t, st = r] >

But by Corollary 7.6 of [3] it may also be written as

V[αδ =u, ac = υ, uυ = w, xy = w, db = x, dc = y] .

Because of the role of generalized equivalence in quasigroup theory,
other possible uses in the context of [3] are suggested. For instance, a
constraint is commonly called invariant if it is equivalent to each of its
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conjugates. What about the notion of the generalized equivalence of the six
conjugates of the constraint—that is, "generalized invariance"? Or what
can be said of the quasigroups which satisfy the constraint

[ab = c, ba = c, cb = a, ac = b, be = a, ca = b]

that is, of "generalized totally symmetric" quasigroups?
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