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ON SUBSTITUTION FOR VARIABLE
ONE-PLACE FUNCTORS

STANLEY J. KROLIKOSKI

In this paper* I develop rules of substitution for variable one-place
functors (5) as they appear in Lukasiewicz’s £-modal system [2]. I also
prove that the first of these rules preserves validity and that the second
preserves invalidity. The need for the formulation of these rules and the
proof of their validity- or invalidity-preserving characteristic became
apparent to me upon questioning whether £ was sound. Smiley, in his proof
that this system has a characteristic matrix, slides over the problem of the
soundness of £, noting that

it is easy to show that every theorem is verified by (never takes an undesignated
value in) M [5]

and instead concentrates on the difficult problem of proving £ complete. It
turns out, however, that, like so many things in logic which seem easy to
prove, the soundness of £ requires a bit of work to prove.

The difficulty may be briefly seen if we consider the inference from

(1) +~CEpqCopbq
to
(2) +CEpgCCppCqp.

On an intuitive level it is clear that if (1) is valid® in £, i.e., if it is verified
by Lukasiewicz’s M9 matrix for all assignments to 6 of constant one-place
functors definable in £, then (2) is also valid, as are

(3) +CEpqCAKprEpsAKprEqs
(4) +CEpqCKApPNpKAPNg,

and so on. Hence, it is intuitively clear that the rule, (which we have not

*I would like to express my appreciation to Dr. Robert Wengert for his comments on an
earlier version of this paper.
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yet formulated) which permits deducing (2), (3), and (4) from (1), does
preserve validity.

Unfortunately, this intuitive clarity is not enough in a soundness proof
of £, any more than our infuitive belief that the rule of detachment for
assertions preserves validity would, by itself, suffice in such a proof, We
need, quite simply, to prove that the rule of 5-substitution for assertions
(the rule which would permit the move from (1) to (2)) preserves validity
and that the corresponding rule of 5-substitution for rejections in invalidity
preserving, I shall first attempt to formulate both of these rules and then
shall prove their validity- or invalidity-preserving characteristic. After
this, a proof that £ is sound will indeed be easy.

1 Oddly, Lukasiewicz never formalizes his 5-substitution rule for asser-
tions, even though he does make heavy use of this sort of substitution and
does formalize several other transformation rules., The most he ever does
is to give examples of such substitution [2]. Even more oddly, no one else,
e.g., Prior [4] or Meredith [3], who makes use of variable one-place
functors ever actually attempts to give such a formulation—at least not as
far as I have been able to determine.”? Furthermore, although several
logicians use but do not formulate a rule of 5-substitution for assertions,
the corresponding &-substitution rule for rejections has not, until now,
either been formulated or used. In this section I try to fill in these gaps.

The first thing which must be noted is that what are substituted for 6 in
£ are wif fragments. One is provided, for example, with warrants such as
6/Cp' in justifying the inference from (2) to (1). But not all wif fragments
may be substituted for 8: 6/Cp" would make no sense as a warrant in a
deduction in £, although 6/C" or 8/CCp" would do nicely. Such wff frag-
ments as Cp', C", and CCp" I call congenial wff fragments (cwiffs, for
short), and state that a wff fragment is a cwfff in £ iff the result of
replacing any placeholders (') in it by a wff of £ is itself a wff, The
following recursion clauses are designed to provide a decision procedure
for determining whether a wif fragment is congenial or not:

a, ' is a cwfff.

b. If 6 is a cwfff, then N6 is a cwfff,

c. If 0 is a cwfff, then A6 is a cwiff.

d. If 6 is a cwfff, then 60 is a cwfff.

e. If 6 and ¢ are cwfffs, then CO¢ is a cwfff.

f. If 6 is a cwfff and B is a wff, then C6B is a cwfff.®
g. If 0 is a cwifff and B is a wff, then CB0 is a cwfff.

Once we have defined what a cwfff is and given procedures for deter-
mining congeniality of a wff fragment, it is an easy matter to formulate the
rule of §-substitution for assertion, the rule of which Lukasiewicz makes
heavy use: (In what follows Agg,,..., 58, is used to represent any wif which
contains 6’s. By, ..., Brare the (not necessarily distinct) arguments of §
in A.)
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Rule of §-substitution for assertions: from F Asp ,...,58, One may infer (as
an assertion thesis) the result of universally substituting any cwfff for 5.

It is only after one has provided such a formulation of this rule that the
sort of discussion FLukasiewicz provides in the appendix to [2], concerning
the actual method of §-substitution, is in order.

Since there are in the #£-modal system transformation rules of
sentential variable substitution for both assertions and rejections and rules
of detachment for both assertions and rejections, one would expect there to
be a rule of d-substitution for rejections in addition to the rule given above.
Although, as mentioned above, fL.ukasiewicz does not make use of such a
rule, I do think that he could have used the following rule if he had so
desired: (In what follows fp, represents the result of substituting some
cwiff 6 for & in 6B;.)

Rule of 6-substitution for rejections: from -A, o where 6 is any
yreeee

. By
cwiff, one may infer —Asg,,...,68,.

Using this rule one could, for example, infer
(5) "KCspqCdqp

from

(6) —KCKvpqCKvqp

and, once I have proved that this rule preserves invalidity, one will be able
to justly conclude that if (6) is invalid in #, then so is (5).

2 Before beginning my proof that the first of the above rules preserves
validity while the second preserves invalidity, I shall make a few remarks
about the notions of validity and invalidity in £ of wffs containing &’s. It is
clear that a wff such as

(7) CopCONpoq

is not determined to be either valid or invalid in £ merely by seeing
whether, for all assignments of truth values to p and g (for all interpreta-
tions), it takes the designated value 1. For example, the assignment of 1 to
p and 3 to g tells us nothing about the validity of (7), because

(8) CB61C5N153

does not have a truth value. It still contains a (nonsentential) variable,
viz., 6. Something needs to be assigned to §, but certainly not a truth value.
Rather, since 6 is a variable one-place functor, we assign to it constant
one-place functors, definable in £, e.g., N, V (verum), 7 (constant 3
functor), etc.

This is not a startling development, and f.ukasiewicz himself says
much the same thing (2], pp. 126-127). What is important, though, espe-
cially for understanding the proofs which I shall give, is that we think of an
interpretation of a wff in £ as not only assigning truth values to sentential
variables contained in the wiff, but also as assigning constant one-place
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functors definable in £ to any &’s in the wff. I propose, if only to keep this
second sort of assignment in clear focus, to call this new type of inter-
pretation a 6-'1nterpre’c::1tion.4 A wif will thus be valid in £ iff it takes the
value 1 under every S6-interpretation, i.e., for every possible assignment of
truth values to its sentential variables and constant one-place functors
definable in £ to the &’s it contains (if any). Likewise, a wff will be invalid
in £ iff it takes a non-designated value under some d-interpretation. It is
in these terms that my claims that the above rules preserve validity or
invalidity are to be understood.

Finally, since I shall be speaking of the d-interpretations of £, I must
list the constant one-place functors definable in £ which shall be assigned
by these interpretations:

fi-1111 £ -2121  f, - 3311 £, - 4321
fo- 1133 f5-2143 £, - 3333 £, - 4343
fs-1212 £, -2222 £y, - 3412 f5 - 4422
fa-1234  fy-2244  f, - 3434 fi, - 4444

Several of these functors, of course, appear in £ under a different symbol:
e.g., f; is the A functor, f; is the I' functor, etc. In any case, Lukasiewicz
proves that f,- f,¢ are the only constant one-place functors definable in £
([2], pp. 126-127).

I now begin my proof that the rule of 8-substitution for assertions
preserves validity.

Lemma 1: For any wff B of £, fjf,e = fiB, where f;, fiand f, ave all one-
place functors definable in £.°

Proof: This can be proved by checking each of the 256 possibilities. In
each case f;f,B will be equivalent to some f,B, no matter which functors
fjand f, are. For example, f5/1,\B = fi1sB, fisfs = f1aB, and so on.

Lemma 2: For any wff B of £, Nf; B = f,B, where f; and f, arve both one-
place functors definable in £.

Proof:. This follows directly from Lemma 1, since Nis fj,.

Lemma 3: For any wff B of £, Af;B = fiB, wheve f; and f, ave both one-
place functors definable in E.

Proof: This follows directly from Lemma 1, since A is f,.

Lemma 4: Fov any wff B of £, Cf;Bf,B = f\ B, wheve f;, f, and fiave all
one-place functors definable in L.

Proof: This may be proved by checking each of the 256 possibilities. In
each case Cf;BfB will be equivalent to some f,B, no matter which functors
f; and f, are. For example, CfsBf,»B= f11B, Cf;BF\4B= f1;B, and so on.

In the following, 6p and 6g are the results of substituting a cwfff 6 of £
for 6 in 6D and OE.

Lemma 5: For any O0-intevpretation %; of £, for any cwfff 0 of £ and for
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any two wffs D and E of L, there is some one-place functor f; definable in
L. such that f;D has the same value undev T;as 0p, and f;E has the same
value undev Z; as 0g .

Proof: We use induction on the number of connectives in 6p or in g occur-
ring outside of D or E.

Case a: Op and 6g have no connectives occurring outside of D or E and so
are D and E. It is clear that, whatever value D has under Z;, f;D will have
that same value under Z;, since f, does not change the value of its argu-
ment under any O-interpretation. Likewise, no matter what value E has
under X;, f4E will have the same value under ;. Hence the lemma holds
for this case.

Case 3: Assume that 0p and 6 have %k connectives occurring outside of D
or E, We must now consider the following subcases:

Subcase 1: 0p is of the form N¢p, and 6 is of the form N¢g. By the
assumption of induction the lemma holds for both ¢, and ¢ since both
contain fewer than & connectives occurring outside of D or E. Thus, there
is some f; definable in £ such that f;D has the same value under some Z;
as ¢p and f;E has the same value as ¢g under this Z;. If this is the case,
then clearly Nf;D and N¢p will have the same value under Z; and Nf; E and
N¢g will also have the same value under Z;. But, by Lemma 2 Nf;D is
equivalent to f,D for some f; definable in £, and Nf;E is equivalent to f,E.
Thus, f,D, Nf;D and N¢p (i.e., 6p) will all take the same value under %,
and f,E, Nf;E and N¢g (i.e., 0g) will all take the same value under I;.
Hence the lemma holds for this subcase.

Subcase 2: 6p is of the form A¢, and 6; is of the form A¢g. The proof
here is the same as in Subcase 1, except Lemma 3 is used instead of
Lemma 2.

Subcase 3: 6p is of the form 0¢p, and 6 is of the form 8¢, Z; is a 6-
interpretation which assigns some one-place functor f; to 6. Thus, we are
in this subcase really considering 6p under the form f,¢p and 6 under the
form fp¢g. The proof here is the same as in Subcase 1, except Lemma 1 is
used instead of Lemma 3.

Subcase 4: 0p is of the form C¢pB and 0g is of the form C¢gB. B is the
same wiff in both C¢pB and CdgB, and so will take the same value under %;
in either wff. Whatever value B takes under ¥;, call it v,, there is an f,
(n=1, 7, 10, 16) which gives the value v, under every S-interpretation, no
matter what its argument is. Thus, for some constant functor f,, f,D and
f.E will take the same value under T; as B. For example, if B takes the
value 3 under Z;, then fi,D and f,,FE also take this value under X;. This
being so, it is clear that C¢pf,D takes the same value under Z; as C¢pB,
for some constant functor f, definable in #. Likewise, it is clear that
Cog f,E takes the same value under T; as C¢gB. Both ¢p and ¢g fall under
the assumption of induction, and so there is an f; such that f;D has the
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same value under Z; as ¢p and f;E has the same value under X; as ¢g. If
this is so, then obviously Cf;Df,D takes the same value under Z; as C¢pf,D
(and the same value as C¢pB), and Cf;Ef,E takes the same value under Z;
as C¢gf,E (and the same value as C¢pB). But by Lemma 4, CfiDf,D is
equivalent to some f,D and Cf;Ef,E is equivalent to f,E. Thus, f,D,
Cf;Df,D, CépfnD and CopB (i.e., 6p) will all take the same value under %;.
Likewise, f,E, CfjEfsE, Corf,E and C¢gB (i.e., 0g) will all take the same
value under Z;. Hence, the lemma is proved for this subcase.

Subcase 5: 6p is of the form CB¢p and 6g is of the form CB¢g. The proof
of this subcase is analogous to that given in Subcase 4.

Subcase 6. 0p is of the form Cyp¢p and ¢g is of the form Cyrdg. The proof
of this subcase is analogous to that given in Subcase 4, except there is no
need to introduce the constant functor f,.

In the following By, represents any wiff B of £ which contains an
embedded wff A (which itself contains an embedded wff D).

Lemma 6: For any wff By, of £ containing an embedded wff Ap, for any
d-interpretation T; of £ and for any ome-place functor f; definable in £, if
Ap is replaced in Bap, by f;D, then, if Ap and f;D have the same value under
Z;, By, and B/jz) will also take the same value undev Z;.

Proof: We use induction on the number of connectives in B4, or B, not
o i
occurring in Ap or f;D.

Case a: BAD and B;p have no connectives occurring outside of Ap of f;D.
In this case, B4, must be A, and B,jD must be f;D. It is obvious that the
lemma holds in this case.

Case B: Assume that BAD and By,p have k connectives occurring outside of
Ap or f;D. We must consider the following subcases:

Subcase 1. Ba, is of the form NEAD and B/].D is of the form NE p. EAD and
Efl,p both contain less than % connectives occurring outside of Ap or f;D,
and, thus, both fall under the assumption of induction. Therefore, if A, and
fiD both take the same value under Z;, then EAD and E;.p will also take the
same value under ;. But if EAD and Ej,p take the same value under Z;
then clearly NEy4, (i.e., BAD) and NE;;p (i.e., B/jp) will also take the same
value under Z;. Hence, the lemma holds for this subcase.

Subcase 2: BAD is of the form AEAD and B/].D is of the form AE/I.D. The
proof here is analogous to that given in Subcase 1.

Subcase 3: By, is of the form GEAD and B/].D is of the form GE/I,D. Since Z;
is a O-interpretation which assigns some one place functor to 5, we are in
this subcase really ‘considering BAD under the form kaAD and Bfi p under
the form ka/],D. The proof of this subcase is analogous to that given in
Subcase 1.

Subcase 4: BAD is of the form CEADG and BfiD is of the form CE/iD G. EAD
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and Efp both fall under the assumption of induction, and so if A, and f;D
take the same value under Z;, then EAD and E,,.D will also take the same
value under 2;. G will take the same value under Z; in both CEADG and
CE/’.DG. Thus, if Ap and f;D take the same value under Z;, then the
antecedents of CE4,G and CE;pG will take the same value under Z;, as
will their consequents. If this is so, then clearly CEADG (i.e., BAD) and
CE/DG (i.e., B/’D) will themselves take the same value under Z;, and,
hence the lemma is proved for this subcase.

Subcase 5: BA is of the form CGEAD and B, p is of the form CGEf p. The
proof of this subcase is analogous to that glven in Subcase 4.

Subcase 6: By, is of the form CEADGAD and Bf p is of the form CE/ DG,D .
The proof of th1s subcase is analogous to that given in Subcase 4, except
that E, , Ef,D, Gya,, and G/‘D all fall under the assumption of induction.

In the following AGB .08,
cwiff 0 of £ for & in Asp .. 5B,

represents the result of substituting some

Lemma 7: For any wff of £ containing 6’s Asp ... 58, and for any cwfff 0
of £, if A"Blw-’an takes an undesignated value under a given d-intevpreta-
tion Z,, then, for some one-place functor f; definable in £, A//Bb,,,,,iBﬂalso
takes that value undev Z;.

Proof: Assume the opposite, i.e., that for some Z; AgBl’_._’an takes an
undesignated value, but there is no f; such that A/th___,ijn takes that value
under %;. By Lemma 5 we know that there is an f, such that f,B, takes the
same value under Z; as 0y, f,B, takes the same value under Z; as 0g,, and
so on. If this is so, then, since each 6y, is an embedded wif in AgBl,...,OBn?
by Lemma 6 we know that the »esult of replacing each 6p, in AoBlf""an by
fiBy, i.e., Afp,, .. 1B, must take the same (undesignated) value under Z;
as AGBI,,,,,GB". But this contradicts our original assumption, hence the

lemma is proved.

Lemma 8: For any wff of £ containing 0’s Ass,,..., 58, and fov any cwfff 6
of £, if, for some Z;, AgBly._‘,an is tnvalid, then, for some f; definable in £,
A/,.Bl,,,,, fiBn is also invalid.

Proof: This follows directly from Lemma 7 and the definition of invalidity.
MT 1: The vule of d-substitution for assertions presevves validity.

Proof. Assume the contrary, i.e., that Asp,, .. sp, is valid in £, i.e., takes
the value 1 under all §-interpretations, but that AGB,’---:OB,, is invalid for
some cwfff 6 of £. By Lemma 8 we then know that for some f; definable in
£, Aijh‘"y[ij is also invalid. But if this is the case, then there is a 8-
interpretation under which Agp,,... 58, is invalid, viz., the 6-interpretation
which assigns f; to 8. But this contradicts our original assumption, hence

the rule of §-substitution for assertions preserves validity.

MT 2: The vule of 5-substitution for rejections preserves invalidity.
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Proof: If Agg,,...,05, takes an undesignated value under some d-interpreta-
tion Z;, then we know by Lemma 7 that there is an f; definable in £ such
that A,jBI,.._, /By takes the same (undesignated) value under Z;. If this is so,
then Ajsp, ... &g, s invalid since it takes an undesignated value under at least
one d-interpretation, viz., the one which assigns f; to 6. Hence, the rule of
0-substitution for rejections preserves invalidity.

Now that we have proved MT 1 and MT 2, it is a simple matter to
prove that £ is sound, i.e., to prove that every assertion thesis of £ is
valid and that every rejection thesis of £ is invalid. Once that has been
done, one can then use Smiley’s proof that £ is complete and further prove
that the M9 matrix is characteristic of £.

NOTES

1. 1 think a case could be made for the position that one does not show that an assertion thesis
is valid or invalid, but rather only what follows the ‘ sign—the “component wff” of the
assertion thesis. (The same point could, of course, be made with regard to rejection theses.)
I am not prepared, however, to press the point here and shall continue to speak of an
assertion (or rejection) thesis as itself being valid or invalid.

2. Lesniewski [1], I am told, formulated a rule of substitution for variables of all logical types,
and thus, indirectly, the rule of 8-substitution. The need for the explicit formulation of the
rule of substitution in this simpler case remains.

3. Contrary to standard practice, I have consistently used capital Roman letters (rather than
Greek) as meta-variables for wffs. I have done this since Greek letters, both capital and small,
are used for several other purposes throughout this paper: i.e., as modal functors, meta-
variables for cwfffs, and so on.

4. A §-interpretation will, of course, only assign truth values to a wff which does not contain §’s.

5. It is assumed here and throughout the rest of the paper that, with regard to f;, fy and f,
1<j<16,1<k<16,and 1 <1< 16.
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