ON SUBSTITUTION FOR VARIABLE ONE-PLACE FUNCTORS

STANLEY J. KROLIKOSKI

In this paper* I develop rules of substitution for variable one-place functors (δ) as they appear in Łukasiewicz's $£$-modal system [2]. I also prove that the first of these rules preserves validity and that the second preserves invalidity. The need for the formulation of these rules and the proof of their validity- or invalidity-preserving characteristic became apparent to me upon questioning whether $£$ was sound. Smiley, in his proof that this system has a characteristic matrix, slides over the problem of the soundness of $£$, noting that
it is easy to show that every theorem is verified by (never takes an undesignated value in) M [5]
and instead concentrates on the difficult problem of proving $£$ complete. It turns out, however, that, like so many things in logic which seem easy to prove, the soundness of $£$ requires a bit of work to prove.

The difficulty may be briefly seen if we consider the inference from
(1) $\vdash C E p q C \delta p \delta q$
to
(2) $\vdash C E p q C C p p C q p$.

On an intuitive level it is clear that if (1) is valid ${ }^{1}$ in ℓ, i.e., if it is verified by Łukasiewicz's $\mathfrak{M} 9$ matrix for all assignments to δ of constant one-place functors definable in E, then (2) is also valid, as are
(3) \vdash CEpqCAKprEpsAKprEqs
(4) $\vdash C E p q C K \Delta p N p K \Delta p N q$,
and so on. Hence, it is intuitively clear that the rule, (which we have not

[^0]yet formulated) which permits deducing (2), (3), and (4) from (1), does preserve validity.

Unfortunately, this intuitive clarity is not enough in a soundness proof of $亡$, any more than our intuitive belief that the rule of detachment for assertions preserves validity would, by itself, suffice in such a proof. We need, quite simply, to prove that the rule of δ-substitution for assertions (the rule which would permit the move from (1) to (2)) preserves validity and that the corresponding rule of δ-substitution for rejections in invalidity preserving. I shall first attempt to formulate both of these rules and then shall prove their validity- or invalidity-preserving characteristic. After this, a proof that $£$ is sound will indeed be easy.

1 Oddly, Łukasiewicz never formalizes his δ-substitution rule for assertions, even though he does make heavy use of this sort of substitution and does formalize several other transformation rules. The most he ever does is to give examples of such substitution [2]. Even more oddly, no one else, e.g., Prior [4] or Meredith [3], who makes use of variable one-place functors ever actually attempts to give such a formulation-at least not as far as I have been able to determine. ${ }^{2}$ Furthermore, although several logicians use but do not formulate a rule of δ-substitution for assertions, the corresponding δ-substitution rule for rejections has not, until now, either been formulated or used. In this section I try to fill in these gaps.

The first thing which must be noted is that what are substituted for δ in \notin are wff fragments. One is provided, for example, with warrants such as $\delta / C p^{\prime}$ in justifying the inference from (2) to (1). But not all wff fragments may be substituted for $\delta: \delta / C p^{\prime \prime}$ would make no sense as a warrant in a deduction in $£$, although $\delta / C^{\prime \prime}$ or $\delta / C C p^{\prime \prime}$ would do nicely. Such wff fragments as $C p^{\prime}, C^{\prime \prime}$, and $C C p^{\prime \prime}$ I call congenial wff fragments (cwfffs, for short), and state that a wff fragment is a cwfff in $モ$ iff the result of replacing any placeholders (') in it by a wff of $£$ is itself a wff. The following recursion clauses are designed to provide a decision procedure for determining whether a wff fragment is congenial or not:
a. ${ }^{'}$ is a cwfff.
b. If θ is a cwfff, then $N \theta$ is a cwfff.
c. If θ is a cwfff, then $\Delta \theta$ is a cwfff.
d. If θ is a cwfff, then $\delta \theta$ is a cwfff.
e. If θ and ϕ are cwfffs, then $C \theta \phi$ is a cwfff.
f. If θ is a cwfff and B is a wff, then $C \theta B$ is a cwfff. ${ }^{3}$
g. If θ is a cwfff and B is a wff, then $C B \theta$ is a cwfff.

Once we have defined what a cwfff is and given procedures for determining congeniality of a wff fragment, it is an easy matter to formulate the rule of δ-substitution for assertion, the rule of which Łukasiewicz makes heavy use: (In what follows $A_{\delta B_{1}, \ldots, \delta_{B} B_{n}}$ is used to represent any wff which contains δ 's. B_{1}, \ldots, B_{n} are the (not necessarily distinct) arguments of δ in A.)

Rule of δ-substitution for assertions: from $\vdash A_{\delta B_{1}}, \ldots, \delta B_{n}$ one may infer (as an assertion thesis) the result of universally substituting any cwfff for δ.

It is only after one has provided such a formulation of this rule that the sort of discussion Łukasiewicz provides in the appendix to [2], concerning the actual method of δ-substitution, is in order.

Since there are in the $£$-modal system transformation rules of sentential variable substitution for both assertions and rejections and rules of detachment for both assertions and rejections, one would expect there to be a rule of δ-substitution for rejections in addition to the rule given above. Although, as mentioned above, Łukasiewicz does not make use of such a rule, I do think that he could have used the following rule if he had so desired: (In what follows $\theta_{B_{i}}$ represents the result of substituting some cwfff θ for δ in δB_{i})

Rule of δ-substitution for rejections: from $-A_{\theta_{B_{1}}, \ldots, \theta_{B_{n}}}$ where θ is any cwfff, one may infer $\dashv A_{\delta B_{1}, \ldots, \delta B_{n}}$.

Using this rule one could, for example, infer
(5) $\dashv K C \delta p q C \delta q p$
from
(6) \dashv - $C K r p q C K r q p$
and, once I have proved that this rule preserves invalidity, one will be able to justly conclude that if (6) is invalid in $£$, then so is (5).

2 Before beginning my proof that the first of the above rules preserves validity while the second preserves invalidity, I shall make a few remarks about the notions of validity and invalidity in $£$ of wffs containing δ 's. It is clear that a wff such as
(7) $C \delta p C \delta N p \delta q$
is not determined to be either valid or invalid in $£$ merely by seeing whether, for all assignments of truth values to p and q (for all interpretations), it takes the designated value 1. For example, the assignment of 1 to p and 3 to q tells us nothing about the validity of (7), because
(8) $C \delta 1 C \delta N 1 \delta 3$
does not have a truth value. It still contains a (nonsentential) variable, viz., δ. Something needs to be assigned to δ, but certainly not a truth value. Rather, since δ is a variable one-place functor, we assign to it constant one-place functors, definable in $£$, e.g., N, V (verum), T (constant 3 functor), etc.

This is not a startling development, and Łukasiewicz himself says much the same thing ([2], pp. 126-127). What is important, though, especially for understanding the proofs which I shall give, is that we think of an interpretation of a wff in $£$ as not only assigning truth values to sentential variables contained in the wff, but also as assigning constant one-place
functors definable in $£$ to any δ^{\prime} 's in the wff. I propose, if only to keep this second sort of assignment in clear focus, to call this new type of interpretation a δ-interpretation. ${ }^{4}$ A wff will thus be valid in $£$ iff it takes the value 1 under every δ-interpretation, i.e., for every possible assignment of truth values to its sentential variables and constant one-place functors definable in $£$ to the δ 's it contains (if any). Likewise, a wff will be invalid in $£$ iff it takes a non-designated value under some δ-interpretation. It is in these terms that my claims that the above rules preserve validity or invalidity are to be understood.

Finally, since I shall be speaking of the δ-interpretations of $£$, I must list the constant one-place functors definable in $£$ which shall be assigned by these interpretations:

$f_{1}-1111$	$f_{5}-2121$	$f_{9}-3311$	$f_{13}-4321$
$f_{2}-1133$	$f_{6}-2143$	$f_{10}-3333$	$f_{14}-4343$
$f_{3}-1212$	$f_{7}-2222$	$f_{11}-3412$	$f_{15}-4422$
$f_{4}-1234$	$f_{8}-2244$	$f_{12}-3434$	$f_{16}-4444$.

Several of these functors, of course, appear in $£$ under a different symbol: e.g., f_{2} is the Δ functor, f_{8} is the Γ functor, etc. In any case, Łukasiewicz proves that $f_{1}-f_{16}$ are the only constant one-place functors definable in $£$ ([2], pp. 126-127).

I now begin my proof that the rule of δ-substitution for assertions preserves validity.

Lemma 1: For any wff B of $£, f_{j} f_{k} \equiv f_{1} B$, where f_{j}, f_{k} and f_{1} are all oneplace functors definable in $£ .{ }^{5}$

Proof: This can be proved by checking each of the 256 possibilities. In each case $f_{j} f_{k} B$ will be equivalent to some $f_{1} B$, no matter which functors f_{j} and f_{k} are. For example, $f_{8} f_{11} B \equiv f_{15} B, f_{13} f_{3} \equiv f_{14} B$, and so on.

Lemma 2: For any wff B of $£, N f_{j} B \equiv f_{1} B$, where f_{j} and f_{1} are both oneplace functors definable in $£$.

Proof: This follows directly from Lemma 1, since N is f_{13}.
Lemma 3: For any wff B of $£, \Delta f_{j} B \equiv f_{1} B$, where f_{j} and f_{1} are both oneplace functors definable in $£$.

Proof: This follows directly from Lemma 1, since Δ is f_{2}.
Lemma 4: For any wff B of $£, C f_{j} B f_{k} B \equiv f_{1} B$, where f_{j}, f_{k} and f_{1} are all one-place functors definable in $£$.
Proof: This may be proved by checking each of the 256 possibilities. In each case $C f_{j} B f_{k} B$ will be equivalent to some $f_{1} B$, no matter which functors f_{j} and f_{k} are. For example, $C f_{6} B f_{12} B \equiv f_{11} B, C f_{2} B F_{14} B \equiv f_{13} B$, and so on.

In the following, θ_{D} and θ_{E} are the results of substituting a cwfff θ of $モ$ for δ in δD and δE.

Lemma 5: For any δ-interpretation Σ_{i} of $£$, for any cwfff θ of $£$ and for
any two wffs D and E of $£$, there is some one-place functor f_{j} definable in \pm such that $f_{j} D$ has the same value under Σ_{i} as θ_{D}, and $f_{j} E$ has the same value under Σ_{i} as θ_{E}.

Proof: We use induction on the number of connectives in θ_{D} or in θ_{E} occurring outside of D or E.

Case α : θ_{D} and θ_{E} have no connectives occurring outside of D or E and so are D and E. It is clear that, whatever value D has under $\Sigma_{i}, f_{4} D$ will have that same value under Σ_{i}, since f_{4} does not change the value of its argument under any δ-interpretation. Likewise, no matter what value E has under $\Sigma_{i}, f_{4} E$ will have the same value under Σ_{i}. Hence the lemma holds for this case.

Case β : Assume that θ_{D} and θ_{E} have k connectives occurring outside of D or E. We must now consider the following subcases:

Subcase 1: θ_{D} is of the form $N \phi_{D}$ and θ_{E} is of the form $N \phi_{E}$. By the assumption of induction the lemma holds for both ϕ_{D} and ϕ_{E} since both contain fewer than k connectives occurring outside of D or E. Thus, there is some f_{j} definable in $£$ such that $f_{j} D$ has the same value under some Σ_{i} as ϕ_{D} and $f_{j} E$ has the same value as ϕ_{E} under this Σ_{i}. If this is the case, then clearly $N f_{j} D$ and $N \phi_{D}$ will have the same value under Σ_{i} and $N f_{j} E$ and $N \phi_{E}$ will also have the same value under Σ_{i}. But, by Lemma $2 N f_{j} D$ is equivalent to $f_{1} D$ for some f_{1} definable in E, and $N f_{j} E$ is equivalent to $f_{1} E$. Thus, $f_{1} D, N f_{j} D$ and $N \phi_{D}$ (i.e., θ_{D}) will all take the same value under Σ_{i}, and $f_{1} E, N f_{j} E$ and $N \phi_{E}$ (i.e., θ_{E}) will all take the same value under Σ_{i}. Hence the lemma holds for this subcase.

Subcase 2: θ_{D} is of the form $\Delta \phi_{D}$ and θ_{E} is of the form $\Delta \phi_{E}$. The proof here is the same as in Subcase 1, except Lemma 3 is used instead of Lemma 2.

Subcase 3: θ_{D} is of the form $\delta \phi_{D}$ and θ_{E} is of the form $\delta \phi_{E}$. Σ_{i} is a $\delta-$ interpretation which assigns some one-place functor f_{k} to δ. Thus, we are in this subcase really considering θ_{D} under the form $f_{k} \phi_{D}$ and θ_{E} under the form $f_{k} \phi_{E}$. The proof here is the same as in Subcase 1, except Lemma 1 is used instead of Lemma 3.

Subcase 4: θ_{D} is of the form $C \phi_{D} B$ and θ_{E} is of the form $C \phi_{E} B . B$ is the same wff in both $C \phi_{D} B$ and $C \phi_{E} B$, and so will take the same value under Σ_{i} in either wff. Whatever value B takes under Σ_{i}, call it v_{m}, there is an f_{n} ($n=1,7,10,16$) which gives the value v_{m} under every δ-interpretation, no matter what its argument is. Thus, for some constant functor $f_{n}, f_{n} D$ and $f_{n} E$ will take the same value under Σ_{i} as B. For example, if B takes the value 3 under Σ_{i}, then $f_{10} D$ and $f_{10} E$ also take this value under Σ_{i}. This being so, it is clear that $C \phi_{D} f_{n} D$ takes the same value under Σ_{i} as $C \phi_{D} B$, for some constant functor f_{n} definable in $£$. Likewise, it is clear that $C \phi_{E} f_{n} E$ takes the same value under Σ_{i} as $C \phi_{E} B$. Both ϕ_{D} and ϕ_{E} fall under the assumption of induction, and so there is an f_{j} such that $f_{j} D$ has the
same value under Σ_{i} as ϕ_{D} and $f_{j} E$ has the same value under Σ_{i} as ϕ_{E}. If this is so, then obviously $C f_{j} D f_{n} D$ takes the same value under Σ_{i} as $C \phi_{D} f_{n} D$ (and the same value as $C \phi_{D} B$), and $C f_{j} E f_{n} E$ takes the same value under Σ_{i} as $C \phi_{E} f_{n} E$ (and the same value as $C \phi_{E} B$). But by Lemma $4, C f_{j} D f_{n} D$ is equivalent to some $f_{1} D$ and $C f_{j} E f_{n} E$ is equivalent to $f_{1} E$. Thus, $f_{1} D$, $C f_{j} D f_{n} D, C \phi_{D} f_{n} D$ and $C \phi_{D} B$ (i.e., θ_{D}) will all take the same value under Σ_{i}. Likewise, $f_{1} E, C f_{j} E f_{n} E, C \phi_{E} f_{n} E$ and $C \phi_{E} B$ (i.e., θ_{E}) will all take the same value under Σ_{i}. Hence, the lemma is proved for this subcase.

Subcase 5: θ_{D} is of the form $C B \phi_{D}$ and θ_{E} is of the form $C B \phi_{E}$. The proof of this subcase is analogous to that given in Subcase 4.

Subcase 6: θ_{D} is of the form $C \psi_{D} \phi_{D}$ and ϕ_{E} is of the form $C \psi_{E} \phi_{E}$. The proof of this subcase is analogous to that given in Subcase 4, except there is no need to introduce the constant functor f_{n}.

In the following $B_{A_{D}}$ represents any wff B of $£$ which contains an embedded wff A (which itself contains an embedded wff D).

Lemma 6: For any wff $B_{A_{D}}$ of $£$ containing an embedded wff A_{D}, for any δ-interpretation Σ_{i} of $£$ and for any one-place functor f_{j} definable in $£$, if A_{D} is replaced in $B_{A_{D}}$ by $f_{j} D$, then, if A_{D} and $f_{j} D$ have the same value under $\Sigma_{i}, B_{A_{D}}$ and $B_{f_{j} D}$ will also take the same value under Σ_{i}.
Proof: We use induction on the number of connectives in $B_{A_{D}}$ or $B_{f_{j} D}$ not occurring in A_{D} or $f_{j} D$.

Case $\alpha: B_{A_{D}}$ and $B_{f_{j} D}$ have no connectives occurring outside of A_{D} of $f_{j} D$. In this case, $B_{A_{D}}$ must be A_{D} and $B_{f_{j} D}$ must be $f_{j} D$. It is obvious that the lemma holds in this case.

Case β : Assume that $B_{A_{D}}$ and $B_{f_{j} D}$ have k connectives occurring outside of A_{D} or $f_{j} D$. We must consider the following subcases:

Subcase 1: $B_{A_{D}}$ is of the form $N E_{A_{D}}$ and $B_{f_{j} D}$ is of the form $N E_{f_{j} D} . E_{A_{D}}$ and $E_{f_{j} D}$ both contain less than k connectives occurring outside of A_{D} or $f_{j} D$, and, thus, both fall under the assumption of induction. Therefore, if A_{D} and $f_{j} D$ both take the same value under Σ_{i}, then $E_{A_{D}}$ and $E_{f_{j} D}$ will also take the same value under Σ_{i}. But if $E_{A_{D}}$ and $E_{f_{j} D}$ take the same value under Σ_{i}, then clearly $N E_{A_{D}}$ (i.e., $B_{A_{D}}$) and $N E_{f_{j} D}$ (i.e., $B_{f_{j} D}$) will also take the same value under Σ_{i}. Hence, the lemma holds for this subcase.

Subcase 2: $B_{A_{D}}$ is of the form $\Delta E_{A_{D}}$ and $B_{f_{j} D}$ is of the form $\Delta E_{f_{j} D}$. The proof here is analogous to that given in Subcase 1.

Subcase 3: $B_{A_{D}}$ is of the form $\delta E_{A_{D}}$ and $B_{f_{j} D}$ is of the form $\delta E_{f_{j} D}$. Since Σ_{i} is a δ-interpretation which assigns some one place functor to δ, we are in this subcase really considering $B_{A_{D}}$ under the form $f_{k} E_{A_{D}}$ and $B_{f_{j} D}$ under the form $f_{k} E_{f_{j} D}$. The proof of this subcase is analogous to that given in Subcase 1.

Subcase 4: $B_{A_{D}}$ is of the form $C E_{A_{D}} G$ and $B_{f_{j} D}$ is of the form $C E_{f_{j} D} G . E_{A_{D}}$
and $E_{f_{j} D}$ both fall under the assumption of induction, and so if A_{D} and $f_{j} D$ take the same value under Σ_{i}, then $E_{A_{D}}$ and $E_{f_{j} D}$ will also take the same value under $\Sigma_{i} . G$ will take the same value under Σ_{i} in both $C E_{A_{D}} G$ and $C E_{f_{j} D} G$. Thus, if A_{D} and $f_{j} D$ take the same value under Σ_{i}, then the antecedents of $C E_{A_{D}} G$ and $C E_{f_{j} D} G$ will take the same value under Σ_{i}, as will their consequents. If this is so, then clearly $C E_{A_{D}} G$ (i.e., $B_{A_{D}}$) and $C E_{f_{j} D} G$ (i.e., $B_{f_{j} D}$) will themselves take the same value under Σ_{i}, and, hence, the lemma is proved for this subcase.

Subcase 5: $B_{A_{D}}$ is of the form $C G E_{A_{D}}$ and $B_{f_{j} D}$ is of the form $C G E_{f_{j} D}$. The proof of this subcase is analogous to that given in Subcase 4.

Subcase 6: $B_{A_{D}}$ is of the form $C E_{A_{D}} G_{A_{D}}$ and $B_{f_{j} D}$ is of the form $C E_{f_{j} D} G_{f_{j} D}$. The proof of this subcase is analogous to that given in Subcase 4, except that $E_{A_{D}}, E_{f_{j} D}, G_{A_{D}}$ and $G_{f_{j} D}$ all fall under the assumption of induction.

In the following $A_{\theta_{B_{1}}}, \ldots, \theta_{B_{n}}$ represents the result of substituting some cwfff θ of $£$ for δ in $A_{\delta B_{1}, \ldots, \delta B_{n}}$.
Lemma 7: For any wff of $£$ containing δ 's $A_{\delta B_{1}, \ldots, \delta B_{n}}$ and for any cwfff θ of $£$, if $A_{\theta_{B_{1}}, \ldots, \theta_{B_{n}}}$ takes an undesignated value under a given δ-interpretation Σ_{i}, then, for some one-place functor f_{j} definable in $モ, A_{f_{j} B_{1}, \ldots, f_{j} B_{n}}$ also takes that value under Σ_{i}.

Proof: Assume the opposite, i.e., that for some $\Sigma_{i} A_{\theta_{B_{1}}, \ldots, \theta_{B_{n}}}$ takes an undesignated value, but there is no f_{j} such that $A_{f j B_{1}, \ldots, f_{j} B_{n}}$ takes that value under Σ_{i}. By Lemma 5 we know that there is an f_{1} such that $f_{1} B_{1}$ takes the same value under Σ_{i} as $\theta_{B_{1}}, f_{1} B_{2}$ takes the same value under Σ_{i} as $\theta_{B_{2}}$, and so on. If this is so, then, since each $\theta_{B_{k}}$ is an embedded wff in $A_{\theta_{B_{1}}, \ldots, \theta_{B_{n}}}$, by Lemma 6 we know that the result of replacing each $\theta_{B_{k}}$ in $A_{\theta_{B_{1}}, \ldots, \theta_{B_{n}}}$ by $f_{1} B_{k}$, i.e., $A_{f_{1} B_{1}, \ldots, f_{1} B_{n}}$, must take the same (undesignated) value under Σ_{i} as $A_{\theta_{B_{1}}, \ldots, \theta_{B_{n}}}$ But this contradicts our original assumption, hence the lemma is proved.

Lemma 8: For any wff of $£$ containing δ 's $A_{\delta B_{1}, \ldots, \delta B_{n}}$ and for any cwfff θ of $£$, if, for some $\Sigma_{i}, A_{\theta_{B_{1}}}, \ldots, \theta_{B_{n}}$ is invalid, then, for some f_{j} definable in $£$, $A_{f_{j} B_{1}, \ldots, f_{j} B_{n}}$ is also invalid.
Proof: This follows directly from Lemma 7 and the definition of invalidity.
MT 1: The rule of δ-substitution for assertions preserves validity.
Proof: Assume the contrary, i.e., that $A_{\delta B_{1}, \ldots, \delta B_{n}}$ is valid in $£$, i.e., takes the value 1 under all δ-interpretations, but that $A_{\theta_{B_{1}}, \ldots, \theta_{B_{n}}}$ is invalid for some cwfff θ of $£$. By Lemma 8 we then know that for some f_{j} definable in E, $A_{f_{j} B_{1}, \ldots, f_{j} B_{b}}$ is also invalid. But if this is the case, then there is a $\delta-$ interpretation under which $A_{\delta B_{1}, \ldots,{ }_{S B_{n}}}$ is invalid, viz., the δ-interpretation which assigns f_{j} to δ. But this contradicts our original assumption, hence the rule of δ-substitution for assertions preserves validity.
MT 2: The rule of δ-substitution for rejections preserves invalidity.

Proof: If $A_{\theta_{B_{1}}, \ldots, \theta_{B_{n}}}$ takes an undesignated value under some δ-interpretation Σ_{i}, then we know by Lemma 7 that there is an f_{j} definable in $£$ such that $A_{f_{j} B_{1}, \ldots, f_{j} B_{n}}$ takes the same (undesignated) value under Σ_{i}. If this is so, then $A_{\delta B_{1}, \ldots, \delta B_{n}}$ is invalid since it takes an undesignated value under at least one δ-interpretation, viz., the one which assigns f_{j} to δ. Hence, the rule of δ-substitution for rejections preserves invalidity.

Now that we have proved MT 1 and MT 2, it is a simple matter to prove that $£$ is sound, i.e., to prove that every assertion thesis of $£$ is valid and that every rejection thesis of $£$ is invalid. Once that has been done, one can then use Smiley's proof that $£$ is complete and further prove that the $\mathfrak{M} 9$ matrix is characteristic of ℓ.

NOTES

1. I think a case could be made for the position that one does not show that an assertion thesis is valid or invalid, but rather only what follows the ' \vdash ' sign-the "component wff" of the assertion thesis. (The same point could, of course, be made with regard to rejection theses.) I am not prepared, however, to press the point here and shall continue to speak of an assertion (or rejection) thesis as itself being valid or invalid.
2. Leśniewski [1], I am told, formulated a rule of substitution for variables of all logical types, and thus, indirectly, the rule of δ-substitution. The need for the explicit formulation of the rule of substitution in this simpler case remains.
3. Contrary to standard practice, I have consistently used capital Roman letters (rather than Greek) as meta-variables for wffs. I have done this since Greek letters, both capital and small, are used for several other purposes throughout this paper: i.e., as modal functors, metavariables for cwfffs, and so on.
4. A δ-interpretation will, of course, only assign truth values to a wff which does not contain δ 's.
5. It is assumed here and throughout the rest of the paper that, with regard to f_{j}, f_{k} and f_{1}, $1 \leqslant j \leqslant 16,1 \leqslant k \leqslant 16$, and $1 \leqslant 1 \leqslant 16$.

REFERENCES

[1] Leśniewski, S., "Grundzüge eines neuen Systems der Grundlagen der Mathematik," Fundamenta Mathematicae, vol. XIV (1929), pp. 1-81.
[2] Łukasiewicz, J., "A system of modal logic," The Journal of Computing Systems, vol. 1 (1953), pp. 111-149.
[3] Meredith, C. A., "On an extended system of the propositional calculus," Proceedings of the Royal Irish Academy, vol. 54, A2 (1951).
[4] Prior, A. N., Formal Logic, Oxford, 1955.
[5] Smiley, T., "On Łukasiewicz's Ł-modal system," Notre Dame Journal of Formal Logic, vol. II (1961), pp. 149-153.

University of Illinois
Urbana, Illinois

[^0]: *I would like to express my appreciation to Dr. Robert Wengert for his comments on an earlier version of this paper.

