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ON SUBSTITUTION FOR VARIABLE

ONE-PLACE FUNCTORS

STANLEY J. KROLIKOSKI

In this paper* I develop rules of substitution for variable one-place
functors (δ) as they appear in Lukasiewicz's i-modal system [2]. I also
prove that the first of these rules preserves validity and that the second
preserves invalidity. The need for the formulation of these rules and the
proof of their validity- or invalidity-preserving characteristic became
apparent to me upon questioning whether L was sound. Smiley, in his proof
that this system has a characteristic matrix, slides over the problem of the
soundness of £ , noting that

it is easy to show that every theorem is verified by (never takes an undesignated
value in) M [5]

and instead concentrates on the difficult problem of proving h complete. It
turns out, however, that, like so many things in logic which seem easy to
prove, the soundness of £ requires a bit of work to prove.

The difficulty may be briefly seen if we consider the inference from

(1) V-CEpqCδpbq

to

(2) hCEpqCCppCqp.

On an intuitive level it is clear that if (1) is valid1 in -£, i.e., if it is verified
by Lukasiewicz's 5W9 matrix for all assignments to δ of constant one-place
functors definable in L, then (2) is also valid, as are

(3) H CEpqCAKprEpsAKprEqs
(4) h CEpqCKApNpKApNq,

and so on. Hence, it is intuitively c lear that the rule, (which we have not

*I would like to express my appreciation to Dr. Robert Wengert for his comments on an
earlier version of this paper.
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yet formulated) which permits deducing (2), (3), and (4) from (1), does
preserve validity.

Unfortunately, this intuitive clarity is not enough in a soundness proof
of £, any more than our intuitive belief that the rule of detachment for
assertions preserves validity would, by itself, suffice in such a proof. We
need, quite simply, to prove that the rule of δ-substitution for assertions
(the rule which would permit the move from (1) to (2)) preserves validity
and that the corresponding rule of δ-substitution for rejections in invalidity
preserving. I shall first attempt to formulate both of these rules and then
shall prove their validity- or invalidity-preserving characteristic. After
this, a proof that -£ is sound will indeed be easy.

1 Oddly, Lukasiewicz never formalizes his δ-substitution rule for asser-
tions, even though he does make heavy use of this sort of substitution and
does formalize several other transformation rules. The most he ever does
is to give examples of such substitution [2]. Even more oddly, no one else,
e.g., Prior [4] or Meredith [3], who makes use of variable one-place
functors ever actually attempts to give such a formulation—at least not as
far as I have been able to determine.2 Furthermore, although several
logicians use but do not formulate a rule of δ-substitution for assertions,
the corresponding δ-substitution rule for rejections has not, until now,
either been formulated or used. In this section I try to fill in these gaps.

The first thing which must be noted is that what are substituted for δ in
L are wff fragments. One is provided, for example, with warrants such as
δ/Cp' in justifying the inference from (2) to (1). But not all wff fragments
may be substituted for δ: δ/Cp" would make no sense as a warrant in a
deduction in £, although δ/C" or δ/CCp" would do nicely. Such wff frag-
ments as Cpf, C", and CCp" I call congenial wff fragments (cwfffs, for
short), and state that a wff fragment is a cwfff in -fc iff the result of
replacing any placeholders (') in it by a wff of Έ is itself a wff. The
following recursion clauses are designed to provide a decision procedure
for determining whether a wff fragment is congenial or not:

a. ' is a cwfff.
b. If 0 is a cwfff, then Nθ is a cwfff.
c. If 0 is a cwfff, then Δ0 is a cwfff.
d. If 0 is a cwfff, then δ0 is a cwfff.
e. If 0 and φ are cwfffs, then Cθφ is a cwfff.
f. If 0 is a cwfff and B is a wff, then CΘB is a cwfff.3

g. If 0 is a cwfff and B is a wff, then CBΘ is a cwfff.

Once we have defined what a cwfff is and given procedures for deter-
mining congeniality of a wff fragment, it is an easy matter to formulate the
rule of δ-substitution for assertion, the rule of which Lukasiewicz makes
heavy use: (In what follows A$BlJ...7slBn is used to represent any wff which
contains δ's. Bl9 . . , ,B«are the (not necessarily distinct) arguments of δ
in A.)
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Rule of δ-substitution for assertions: from h A^Bl,...,bBn

 o n e m a y infer (as
an assertion thesis) the result of universally substituting any cwfff for δ.

It is only after one has provided such a formulation of this rule that the
sort of discussion Lukasiewicz provides in the appendix to [2], concerning
the actual method of δ-substitution, is in order.

Since there are in the L-modal system transformation rules of
sentential variable substitution for both assertions and rejections and rules
of detachment for both assertions and rejections, one would expect there to
be a rule of δ-substitution for rejections in addition to the rule given above.
Although, as mentioned above, Lukasiewicz does not make use of such a
rule, I do think that he could have used the following rule if he had so
desired: (In what follows ΘB. represents the result of substituting some
cwfff θ for δ in bBia)

Rule of δ-substitution for rejections: from ^ιΛθ t...tβB where θ is any
cwfff, one may infer -*AδBlt...,δBn.

Using this rule one could, for example, infer

(5) -ϊKCδpqCδqp

from

(6) -ΛKCKrpqCKrqp

and, once I have proved that this rule preserves invalidity, one will be able
to justly conclude that if (6) is invalid in £, then so is (5).

2 Before beginning my proof that the first of the above rules preserves
validity while the second preserves invalidity, I shall make a few remarks
about the notions of validity and invalidity in L of wffs containing δ's. It is
clear that a wff such as

(7) CδpCδNpδq

is not determined to be either valid or invalid in L merely by seeing
whether, for all assignments of truth values to p and q (for all interpreta-
tions), it takes the designated value 1. For example, the assignment of 1 to
p and 3 to q tells us nothing about the validity of (7), because

(8) CδlCδiVlδ3

does not have a truth value. It still contains a (nonsentential) variable,
viz., δ. Something needs to be assigned to δ, but certainly not a truth value.
Rather, since δ is a variable one-place functor, we assign to it constant
one-place functors, definable in L, e.g., N, V (verum), T (constant 3
functor), etc.

This is not a startling development, and Lukasiewicz himself says
much the same thing ([2], pp. 126-127). What is important, though, espe-
cially for understanding the proofs which I shall give, is that we think of an
interpretation of a wff in L as not only assigning truth values to sentential
variables contained in the wff, but also as assigning constant one-place
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functors definable in L to any δ's in the wff. I propose, if only to keep this
second sort of assignment in clear focus, to call this new type of inter-
pretation a δ-interpretation.4 A wff will thus be valid in L iff it takes the
value 1 under every δ-interpretation, i.e., for every possible assignment of
truth values to its sentential variables and constant one-place functors
definable in L to the δ's it contains (if any). Likewise, a wff will be invalid
in L iff it takes a non-designated value under some δ-interpretation. It is
in these terms that my claims that the above rules preserve validity or
invalidity are to be understood.

Finally, since I shall be speaking of the δ-interpretations of L, I must
list the constant one-place functors definable in L which shall be assigned
by these interpretations:

h- mi
h - 1 1 3 3

Λ - 1212
/ 4 - 1234

fs ~ 2121
fe ~ 2143
fΊ - 2222
U ~ 2244

Λ " 3311
/io - 3333
/n " 3412
/i2 - 3434

/is " 4321
/1 4 - 4343
/i5 - 4422
fie " 4444.

Several of these functors, of course, appear in L under a different symbol:
e g > fz is t n e Δ functor, / 8 is the Γ functor, etc. In any case, Lukasiewicz
proves that / i - / i 6 are the only constant one-place functors definable in L
([2], pp. 126-127).

I now begin my proof that the rule of δ-substitution for assertions
preserves validity.

Lemma 1: For any wff B of L, f fk = f^B, where / ; , fkand f1 are all one-
place functors definable in L.5

Proof: This can be proved by checking each of the 256 possibilities. In
each case fjfkB will be equivalent to some fχBf no matter which functors
fj and fk are. For example, fQfuB = fisB, /1 3/3 = f^B, and so on.

Lemma 2: For any wff B of L, NfjB = f\B, where fj and fλ are both one-
place functors definable in L.

Proof: This follows directly from Lemma 1, since TV is /13.

Lemma 3: For any wff B of L, A/?JB Ξ fλB, where fj and /i are both one-
place functors definable in L.

Proof: This follows directly from Lemma 1, since Δ is /2.

Lemma 4: For any wff B of L, CfjBfkB = fxB, where fj, fk and Λ are all
one-place functors definable in L.

Proof. This may be proved by checking each of the 256 possibilities. In
each case CfjBf^B will be equivalent to some fλB, no matter which functors
fj and fk are. For example, Cf6Bf12B= fnB, Cf2BF1AB= f13B, and so on.

In the following, ΘD and ΘE are the results of substituting a cwfff θ of £
for δ in 6D and δE.

Lemma 5: For any δ-interpretation Σt of L,for any cwfff θ of L and for
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any two wffs D and E of L, there is some one-place functor / ; definable in
L such that fjD has the same value under Σ, as ΘD, and fjE has the same
value under Σ, as ΘE .

Proof: We use induction on the number of connectives in ΘD or in ΘE occur-
ring outside of D or E.

Case a: ΘD and ΘE have no connectives occurring outside of D or E and so
are D and E. It is clear that, whatever value D has under Σ, , /4Dwill have
that same value under Σiy since /4 does not change the value of its argu-
ment under any δ-interpretation. Likewise, no matter what value E has
under Σ, , f±E will have the same value under Σt . Hence the lemma holds
for this case.

Case β: Assume that ΘD and ΘE have k connectives occurring outside of D
or E. We must now consider the following subcases:

Subcase 1: ΘD is of the form NφD and ΘE is of the form NφE. By the
assumption of induction the lemma holds for both φD and φE since both
contain fewer than k connectives occurring outside of D or E, Thus, there
is some fj definable in L such that fjD has the same value under some Σ*
as φD and fjE has the same value as φE under this Σ, . If this is the case,
then clearly NfjD and NφD will have the same value under Σ, and NfjE and
NφE will also have the same value under Σ, . But, by Lemma 2 NfjD is
equivalent to fxD for some f1 definable in L, and NfjE is equivalent to fλEt

Thus, fγD> NfjD and Nφo (i.e., ΘD) will all take the same value under Σ, ,
and fiE, NfjE and NφE (i.e., ΘE) will all take the same value under Σ, .
Hence the lemma holds for this subcase.

Subcase 2: ΘD is of the form ΔφD and ΘE is of the form Δ</>£. The proof
here is the same as in Subcase 1, except Lemma 3 is used instead of
Lemma 2.

Subcase 3: ΘD is of the form 6φD and ΘE is of the form δφE. Σf is a δ-
interpretation which assigns some one-place functor fk to δ. Thus, we are
in this subcase really considering ΘD under the form fkφD and ΘE under the
form fkφE. The proof here is the same as in Subcase 1, except Lemma 1 is
used instead of Lemma 3.

Subcase 4: ΘD is of the form CφDB and ΘE is of the form CφEB. B is the
same wff in both CφDB and CφEB, and so will take the same value under Σf

in either wff. Whatever value B takes under Σ, , call it vm, there is an fn

{n = 1, 7, 10, 16) which gives the value υm under every δ-interpretation, no
matter what its argument is. Thus, for some constant functor fn, fnD and
fnE will take the same value under Σt as B. For example, if B takes the
value 3 under Σ, , then f10D and f1QE also take this value under Σ, . This
being so, it is clear that CφDfnD takes the same value under Σf- as CφDB,
for some constant functor fn definable in L. Likewise, it is clear that
CφEfnE takes the same value under Σ, as CφEB. Both φD and φE fall under
the assumption of induction, and so there is an f such that fjD has the
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same value under Σ* as φp and fjE has the same value under Σ, as </>£. If
this is so, then obviously CfjDfnD takes the same value under Σ; as CφDfnD
(and the same value as CφDB), and CfjEfnE takes the same value under Σ,
as CφEfnE (and the same value as CφEB). But by Lemma 4, CfjΌfnD is
equivalent to some fxD and CfjEfnE is equivalent to fλE. Thus, fλD,
CfjDfnD, CφDfnD and CφDB (i.e., ΘD) will all take the same value under Σ, .
Likewise, fλE, CfjEfnE, CφEfnE and CφEB (i.e., ΘE) will all take the same
value under Σ, . Hence, the lemma is proved for this subcase.

Subcase 5: ΘD is of the form CBφD and ΘE is of the form CBφE. The proof
of this subcase is analogous to that given in Subcase 4.

Subcase 6: ΘD is of the form CψDφD and φE is of the form CψEφE. The proof
of this subcase is analogous to that given in Subcase 4, except there is no
need to introduce the constant functor /„ .

In the following BAj) represents any wff B of L which contains an
embedded wff A (which itself contains an embedded wff D).

Lemma 6: For any wff BΛD of L containing an embedded wff AD, for any
δ -interpretation Σ* of L and for any one-place functor fj definable in L, if
AD is replaced in BAp by fjD, then, if AD and fjD have the same value under
Σ;> BAD

 and BfD will also take the same value under Σ, .

Proof. We use induction on the number of connectives in BAγ) or B^D not
occurring in AD or fjD.

Case a: BA and Bf.D have no connectives occurring outside of AD of fjD.
In this case, BAD must be AD and Bf.D must be /;Zλ It is obvious that the
lemma holds in this case.

Case β: Assume that BA[) and Bf.D have k connectives occurring outside of
AD or fjD. We must consider the following subcases:

Subcase 1: BAf) is of the form NEAf) and BJ.D is of the form NEf.D . EAj) and
Ef.o both contain less than k connectives occurring outside of AD or fjD,
and, thus, both fall under the assumption of induction. Therefore, if AD and
fjD both take the same value under Σ, , then EAp and Ef.o will also take the
same value under Σ, . But if EAj) and EJ.Ό take the same value under Σ f ,
then clearly NEAj) (i.e., BAj)) and NE/.D (i.e., Bf.D) will also take the same
value under Σj. Hence, the lemma holds for this subcase.

Subcase 2: BAγ) is of the form ΔEA£> and BJ.D is of the form ΔEγ.D . The
proof here is analogous to that given in Subcase 1.

Subcase 3: BAγ) is of the form δEΛ f ) and Bf.D is of the form δEf.D. Since Σ*
is a δ-interpretation which assigns some one place functor to δ, we are in
this subcase really'considering BAp under the form fkEA and BJ.D under
the form f^Ef.j). The proof of this subcase is analogous to that given in
Subcase 1.

Subcase 4: BA[) is of the form CEApG and Bf.D is of the form CEf.DG. EAj)
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and Ef.o both fall under the assumption of induction, and so if AD and fjD
take the same value under Σ, , then EAD and Ef.D will also take the same
value under Σ, . G will take the same value under Σ f in both CEAj)G and
CE/.DG. Thus, if AD and //£> take the same value under Σ, , then the
antecedents of CEA G and CE/.DG will take the same value under Σ t , as
will their consequents. If this is so, then clearly CEA[>G (i.e., BAΌ) and
CEf.pG (i.e., B/.D) will themselves take the same value under Σ, , and,
hence, the lemma is proved for this subcase.

Subcase 5: BAD is of the form CGEAj) and£/.D is of the form CGEj.D. The
proof of this subcase is analogous to that given in Subcase 4.

Subcase 6: BAj) is of the form CEADGA[) and Bf.D is of the form CEf.DGj.Ό .
The proof of this subcase is analogous to that given in Subcase 4, except
that EA , Ef.Dy GA and GsD all fall under the assumption of induction.

In the following Aθβ y..,fβB represents the result of substituting some
cwfff θ of L for δ in AδBh^iδBn.

n

Lemma 7: For any wff of L containing δ's ^SB1,...,6BW and for any cwfff θ

of L, if Aθβ ,...,0β takes an undesignated value under a given δ-interpreta-

tion Σ, , then, for some one-place functor fj definable in L, Af.Blimmmff.Bnalso

takes that value under Σ t .

Proof: Assume the opposite, i.e., that for some Σ, Aθβ 5...,0β takes an

undesignated value, but there is no / ; such that •4/ B1,..., /7 BW takes that value

under Σ t . By Lemma 5 we know that there is an fγ such that fίBι takes the

same value under Σ t as 0B l, fxB2 takes the same value under Σ t as θβ2, and

so on. If this is so, then, since each θBk is an embedded wff in AQβ ,...,0β ,

by Lemma 6 we know that the result of replacing each θBk in Aθβ ,...,0β by

fiBk, i.e., •^L/Iβ1,...,/1BW> must take the same (undesignated) value under Σ^

as Aθβ ,...,0β . But this contradicts our original assumption, hence the

lemma is proved.

Lemma 8: For any wff of L containing δ's AδBi,...,δBn and for any cwfff θ

of L, if, for some Σ;, Aθβ y...yβB is invalid, then, for some fj definable in L,

^•/•Bi,..., f Bnis
 a^so invalid.

Proof: This follows directly from Lemma 7 and the definition of invalidity.

MT 1: The rule of δ-substitution for assertions preserves validity.

Proof: Assume the contrary, i.e., that AbBlfm,,isBn is valid in L, i.e., takes
the value 1 under all δ-interpretations, but that Aθβ ,...,0β is invalid for
some cwfff θ of L. By Lemma 8 we then know that for some / ; definable in
£, A/.B l >...j.β^is also invalid. But if this is the case, then there is a δ-
interpretation under which AbBlf...^Bn is invalid, viz., the δ-interpretation
which assigns fj to δ. But this contradicts our original assumption, hence
the rule of δ-substitution for assertions preserves validity.

MT 2: The rule of δ-substitution for rejections preserves invalidity.
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Proof: If ΛθB],...,θBn takes an undesignated value under some δ-interpreta-
tion Σ, , then we know by Lemma 7 that there is an // definable in L such
that Af.Bly...yf.Bn takes the same (undesignated) value under Σ, . If this is so,
then AδBl).#.)fβw is invalid since it takes an undesignated value under at least
one δ-interpretation, viz., the one which assigns / ; to δ. Hence, the rule of
δ-substitution for rejections preserves invalidity.

Now that we have proved MT 1 and MT 2, it is a simple matter to
prove that L is sound, i.e., to prove that every assertion thesis of L is
valid and that every rejection thesis of L is invalid. Once that has been
done, one can then use Smiley's proof that L is complete and further prove
that the9W;9 matrix is characteristic of L.

NOTES

1. I think a case could be made for the position that one does not show that an assertion thesis
is valid or invalid, but rather only what follows the '!-' sign—the "component wff" of the
assertion thesis. (The same point could, of course, be made with regard to rejection theses.)
I am not prepared, however, to press the point here and shall continue to speak of an
assertion (or rejection) thesis as itself being valid or invalid.

2. Lesniewski [1], I am told, formulated a rule of substitution for variables of all logical types,
and thus, indirectly, the rule of δ-substitution. The need for the explicit formulation of the
rule of substitution in this simpler case remains.

3. Contrary to standard practice, I have consistently used capital Roman letters (rather than
Greek) as meta-variables for wffs. I have done this since Greek letters, both capital and small,
are used for several other purposes throughout this paper: i.e., as modal functors, meta-
variables for cwfffs, and so on.

4. A δ-interpretation will, of course, only assign truth values to a wff which does not contain δ's.

5. It is assumed here and throughout the rest of the paper that, with regard to //,/& and / l 5

1 < / < 16, 1 </c< 16, and 1 < 1 < 16.
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