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FRAMES VERSUS MINIMALLY RESTRICTED STRUCTURES

JACK C. BOUDREAUX

0 Introduction I have argued in [2] that the semantic theory of higher-
order languages should be based on what I called the class of minimally
restricted structures, c¢f. definition (4) below, rather than the more
conventionally acceptable class of frames, cf. definition (9) below. In this
paper, I will prove that these superficially similar classes of higher-order
structures are in fact semantically distinguishable from one another and
that the latter is isomorphically representable as a proper subclass of the
former.

1 Syntactic preliminaries Let ST denote the type-theoretic language
which is based on the following system of type indices: i is the primitive
index, i.e., the index assigned to individuals; and if B is a finite, but
unempty, sequence of indices, then (B) is a nonprimitive index. The
primitive, i.e., unabbreviated, lexicor of ST admits the following symbols:

4 z°% ..., with and without numeric

(1) variables of type a: u% v% x% y
subscripts
sentential connectives: ~ (negation), — (conditional)
universal quantifier: Vv

punctuation: (,)

I will say that X (read: X bar) is a B-sequence of variables iff B is a finite,
but unempty, sequence of indices; the length of B (i.e., |h(B)), is equal to
the length of X (i.e., Ih(X)); and for all j, 0 <j < th(B), X(j) is a variable
of type B(j).

(2) Well-formed formula, wff

(i) if X is a B-sequence of variables, then x®(X) is an atomic wif

(ii) if p is a wff, then ~p is a wif

(iii) if p and g are wifs, then (p — ¢g) is a wff

(iv) if p is a wff, then Vx% is a wff

(v) and nothing is an unabbreviated wif unless its being so follows
from (i) through (iv).
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At this point, all of the usual syntactic terminology can be introduced,
namely: a quantifier’s scope, free and bound occurrences of a variable in a
wif, closed wifs (i.e., statements), open wffs, and so on.

I will say that a term t% is free for x° in the wiff p iff x* has zero or
more free occurrences in p and no free occurrence of x° in p lies in the
scope of a quantifier which uses t® as its variable of generalization. If t*is
free for x° in p, then Sf:p denotes the wif obtained from p by replacing
every free occurrence of x in p with an occurrence of 14

T is a higher-ovder theory iff (i) T contains all instances of the axiom
schemas

FI (p— (g —p))

FII (p—(g—7)—({(p—q) — (p—7))

FII ((~p — ~q) — ((~p — q) — p))

FIV (vx% — §¥5p)

FV (vx%p — q) — (p — vx%)), provided x“ has no free occurrence in p

and (ii) T is closed under the infevential vules:

MP (Modus Ponens): From p and (p — ¢q), infer g
Gen(Generalization): From p, infer vx“p.

Let F denote the inferential closure of the axiom schemas FI through FV
alone. Clearly, F is the ‘smallest’ higher-order theory; and, for obvious
reasons, I will call it the core of every higher-order theory.

Finally, in order to avoid unnecessarily long wffs, I will adopt the
following customary abbreviations,

B) (pvq) for (~p—q)
(pag) for ~(p— ~q)
(pe>q) for ~((p — q) — ~ (g — p))
Ixp for ~vx~p.

2 Minimally restvicted stvuctuves Every referential, or Tarskian,
semantic theory for ST is based on a well-defined class of higher-order
structures. In [2], I gave what I think is conclusive evidence that the most
reasonable—if not the most natural—semantic basis for ST is the class of
minimally vestricted structures, i.e.,

(4) Definition Let u be any nonzero finite ordinal or any initial ordinal
(in the sense of von Neuman [4], pp. 269-273), i.e., ¢ is any ordinal in the
series

1,2, 3,4, ..., 0, Wy, Wy o v oy Wy o v vy Woy o o s
Then,
(i) SHis the standard structure based on | iff

1. S"i]l=p
2. S*[(B)] ={f: am(f) = X 5 19(7) € {t,f}},
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where §S“ abbreviates the Cartesian product S¥[B(j)], t is the

B) 0<j<lh(B)
truth value ¢‘true’’, and f is the truth-value ¢‘false’’,

(ii) M is a minimally restricted stvucturve based on S*, i.e., an MR
structuve, iff for every index a, @ + M|a] c S¥a].

Henceforth, let ‘‘the MR class’ denote the class of all MR* structures, for
every ordinal p satisfying the antecedent of definition (4).

Suppose that M is a member of the MR class, then ¢ is an assignment
to M iff ¢ is a type-preserving map from the variables of ST into the fyped
universes of M; that is, for every variable x% ¢(x%) e M[a]. If ¢ and  are
assignments to 9, then ¢ is an X -variant of ¢ iff for every variable y?,
except possibly for the variables in the sequence X, ¥(¥%) = ¢(y?).

Let ¢ be an assignment to 9, then the satisfaction relation ‘‘F?’ is
defined by induction on the length of wffs:

) G) (M, QFxyb. .. 29 i o(x(@(y?), ..., ¢(z9)) =t
(i) (M, 9)F ~p iff not (M, @) Fp
(iii) (M, @) F (p — q) iff either not (M, @) Ep or (M, @) kFq
(iv) (M, @) = vx% iff for every x?-variant ¢ of ¢, (M, ¢)Ep.

It is a straightforward exercise to confirm that if ¢ and y are any assign-
ments to M which agree on the free variables of p—i.e., for every variable
x° if x% is a free variable of p, ¢ = Y(x%)—then (M, @) =p iff (M, V) E p;
¢f. Mendelson [5], p. 52. Hence, if p is a closed wff, then for all assign-
ments ¢ and ¥ to M, (M, @) =p iff (M, Y) =p.

M verifies the wif p, henceforth, Mk p, iff for every assignment ¢ to
M, (M, o) Ep. M falsifies the wif p, henceforth, MEp, iff for every
assignment ¢ to M, not (M, ¢) Ep. Obviously, if p is a closed wif, then p is
either verified or falsified by every MR structure.

If M and R are MR structures which verify the same wifs, i.e.,

6) Th(M) = {p: MEep}={p: NEp}=Th(N),

where ““Th (9)?’ is to be read ‘‘the theory of M’’, then M and N will be said
to be elementarily equivalent.

The wif p is strongly valid iff for every MR structure M, Ml=p. The
wif p is strongly invalid iff for every structure M, MEp. If p is a closed
wff and is neither strongly valid nor strongly invalid, then p is strongly
factual. The MR class of structures induces a three fold partition in the set
of closed wifs, i.e.,

Strongly Valid Strongly Factual Strongly Invalid

I claimed above that the MR class is the most ‘reasonable’ semantic
basis for ST. One strong piece of evidence that I can put forward in support
of this claim is the following theorem, which I proved in [2],

(7) The Characterization Theorem for Strong Validity The wff p is
strongly valid iff p is devivable in F.
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Proof: Cf.[2], Theorem (14). QED

That is, if ¢ is a wif which is derivable in F, then ¢ is verified by every MR
structure. But if ¢ is not derivable in F, then there is at least one MR
structure which does not verify g. Since F is the ‘smallest’ higher-order
theory, point (7) implies that, as long as one is investigating classical
higher-order theories, the MR class cannot be significantly ‘widened’.'

3 Frames The reader has probably already noticed that many—in fact,
almost all—MR structures have a rather unusual property, namely:

(8) if M is a nonstandavd MR structure, then there is at least one index
(B) such that

vr(remi®) — X ;e an o)

that is, the product X M is a proper subset of the domain of the functions
Fem((B)]. ®

The reader should be able to convince himself that this property
—though ‘‘odd’’—is essentially harmless. But even so, he may believe that
it would be preferable to revise definition (4.ii) along the following more
conventionally acceptable lines:?

(9) Definition Let ¢ be an ordinal which satisfies the antecedent of
definition (4). Then ® is a member of the class of frames based on y,
henceforth, ‘“the FM* class?”’, iff

() @li]=p
6) ¢ +2(B) c {1 dm(1) = X Dara(r) c {111},

Superficially, the FM” class seems to be simply a minor variant of the MR¥
class, which, unlike the latter, does not possess the ‘odd’ property
mentioned in (8). However, a closer examination of both classes will show
that they differ from one another in very important ways. In order to
investigate this topic more thoroughly, I need to introduce some additional
metalogical terminology.

(10) Definition If M is a higher-order structure, i.e., either an MR

structure or a frame, then “le” will abbreviate “U{Ym[a]: a is an
ind
index’. Let M and M be higher-order structures. Then:

(i) 6 is an into homomovphism from M to N iff

1. 0: Um—»Um

into ind
2. 0is a type-preserving map, i.e., if fc M[a], then 6(f)e N|a);
3. for all feM[(B)] and all (g, . . ., ge X M,

(B)

f(gor - - 182 = 0(f)(6(g0), - . ., 0(g,)).

(ii) 6 is an omnto homorphism from M to M iff 6: U SJt;» Um and 6
satisfies (i.2) and (i.3). ind
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(iii) 6 is an isomorphism from M to N iff 6: U m-= .Ulm and 6
satisfies (i.2)-and (i.3).

(iv) M is into homomorphic (resp., onto homomorphism, isomorphic)
to M iff there is an into homorphism (resp., onto homomorphism,
isomorphism) 6 from M to N.

Since the MR class cannot be significantly ‘widened’, one suspects that
every frame will be identical to some MR structure up to isomorphism.
The following theorem shows that this suspicion is correct.

(11) Theorem Let D be a frame in the FM* class. Then there is an MR*
structure WM such that ® is isomorphic to M.

Proof: It will be sufficient to establish the existence of a map 6 such that

@ o U2t Us" and 6 satisfies (10.i.2) and (10.i.3).

ind into ind
If such a map does exist, then the 'MR“ structure required by the theorem is
_the structure ®Y defined as follows:

(ii) for every index a, ®%[a] = {f: 3g(geD[a] ~0(g) =)}

The map 6 can be defined by induction on the orvder of the type indices, i.e.,
the order of the index i is 0, and for every nonprimitive index (B), the
order of (B) is one greater than the highest-order index in {B(j):
0 <j<Ih(B)}

Case 0. If the order of index a is 0, then a is the primitive index. In this
case, define 6° as the identity function on p. 6° trivially satisfies the
conditions in point (i).

Inductive Hypothesis: Assume that a map 6% satisfying point () has been

defined for all indices of order k < n; moreover, assume that 6" = "k ‘9"
0 <ki<in

Case n + 1. Let (B) be any index of order n + 1. Then the following
relation can be defined

(iii) for all f, ge S*[(B)], f = g(mod 8”) iff for all (ho, . . ., kp)e ()B() 9,
FO"(ho)y vy 07"(hm)) = g(07(Ro), . . ., 6"(R))
S¥((B)] is the set of all functions from X s into {t f}; hence, if A is any

subset of X@ A has a 0"- charactemstzc function in S“[(B)], that is, a

function f * such that
(iv) for all (Ao, . . ., hm)e ()B() D,
t, if (B, ..., kme A
* (6" e %)) =< ’ ’
FX07(ha), - vy 6"(hm) {f’ e,
Moreover, if f* is a g”-characteristic function for A g% D and f* =
B

g*(mod 0”), then g* is a 0"-characteristic function for A. In the other
direction, if f* is any element of SY[(B)], then there is one and only one
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AC X ® such that f* is the #"-characteristic function for A. Now suppose
(B)

that de ®[(B)], then there is one and only one A% C X 9 such that
(B)
() for all ko, . . ., hmde ()B() 9,

t, if {hg, . . ., hmde A?

d(hm MRS k”’) = {f’ if <h0, ey hm>¢Ad°

Therefore, we can define the function 6”*' for the index (B) as any function
which maps every de®[(B)] onto a 6"-characteristic function for A% At
this point, it is a straightforward exercise to prove that #”"', so defined,
satisfies all of the conditions in (i). Since (B) was selected arbitrarily, """
is defined for all indices of order n + 1; hence, our inductive procedure is
concluded. QED

If two structures are identical up to isomorphism, then they are
identical in all important respects; e.g., since all isomorphic structures
are elementarily equivalent, it is impossible to distinguish one from the
other from a purely semantic point of view. Hence, this theorem conclu-
sively establishes that the addition of frames to the MR class can serve no
useful purpose; i.e., since every frame is isomorphic to an MR structure,
the FM class is isomovphically vepresentable as a subclass of the MR
class.

Generally speaking, the converse of Theorem (11) is the case only if
the MR structure in question satisfies a rather strong set-theoretical
condition; specifically,

(12) Theorem Let® be a frame and M be an MR structure. Then M is
isomovphic to D iff M satisfies the Extensionality Condition:

vrvg (1.gemUB) = (va(ne X M ) =) =g)).

Proof: From the left to the right, assume that the MR structure is
isomorphic to the frame ®. Then, by definition (10), there is a map 6 such
that

i) o U m-L U'Q and 6 satisfies (10.i.2) and (10.i.3).

ind onto jnd
Suppose that f, ge M[(B)] and that
@) vo(ne X m— i) - £(r).

If we assume that f # g, then, necessarily, 6(f) # 6(g). But this implies that

there is at least one ordered tuple (g, . . ., in)e X ® such that
(B)

(iii) 6(f)(ho, -« o hm) # 0(8)(Roy - - -5 o),

otherwise, given the definition of frames, 0(f) = 9(g), which contradicts (i).
But, by our original assumption, M is isomorphic to D; hence,
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(V) F(67 (o), - - s 67 (hw)) # (07 (o), « . -, 67 (hn)),

which contradicts (ii). Therefore, for every f, ge M[(B)], if (i) is the case,
then f = g. Since the converse of this result is trivially true, we can
conclude that if the MR structure M is isomorphic to the frame ®, then M
satisfies the Extensionality Condition. In the other direction, assume that
M satisfies the Extensionality Condition, and, to simplify the proof, assume
that M[i] = 1, for some ordinal satisfying the antecedent of definition (4).
Then what must now be proven is that there exists a frame ® such that M
is isomorphic to ®. We will construct the frame ® by induction on the
order of the type indices.

Case 0. If a is an index of order 0, then a is the primitive index. Since we
have assumed that M[i] = ., in this case, we can let M|[i] = D[i]. Further-
more, let §° be the identity function on w, which trivially satisfies the
condition of definition (10).

Inductive Hypothesis: Assume that ®[a] has been constructed for all
indices a whose order is less than or equal to n; moreover, assume that §”
is the map such that

(v) 6" M[altD[a] and for all feW[a] and (ko, . - -, kw)e X B,
f(h07 L) hm) = Qn(f)(en(ho)y < e ey en(hm)-
Case n + 1. Let a = (by, . . ., b,) be any index of order n + 1. Then,

according to the Inductive Hypothesis,
: n, ] 1=t .
(vi) 0" M{b;] L D[by],
for every j, 0 <j < m. Define the function ¥ as follows,

(vii) for every (o, . . ., hm)e x m,

\I(«hO: e ey hm)) = <9n(h0)> LR Gn(hm»-
Since 0" satisfies (vi), ¥ is a one-ome onto function from X M to X .
a a
Thus, for every element f*e¢M|[a] there is one and only one element of

AD
{t,f]'a , say £°(f*), such that
(viii) for all ne X M, f* () = €%/ %) @)

Moreover, assume that f* and g* are set-theoretically distinct elements of
M[a]. Since M satisfies the Extensionality Condition, there is at least one

ne X W such that f*(n) + g*(n); hence, £¥F*)(W M) + £*(g*) @), which
implies that £%f*) # t%g*). We can now conclude that ¢ is a one-one

D
function from M[a] into {t,f} * . Consequently, the corresponding typed
universe of ® may be defined as follows,

ix) ®la)={(f): fem[al},
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i.e., ®[a] is the image of M|a] under the function £° At this point, it is a
straightforward exercise to prove that ®[a] and t? have the following
properties

) 1 & mlal 2 D(al,

nto
and

2. for every fe M[a] and for all (o, ..., )€ X m,
Flhoy -y hm) = EXF)(0"(Ro), . . ., 8"(hn)).

Since a was an arbitrarily selected index of order » + 1, this function—and,
hence, the corresponding typed universe of ®—may be legitimately assumed
to be defined for every index of order n + 1. Let 6”"" be defined as the set
theoretical union of §” with |J {¢®: b is an index of order » + 1}, which com-
pletes the inductive construction of ®. Having thus defined ®, it is an easy
exercise to confirm that

(xi) 9 is a frame in the sense of definition (9)
and

&ii) 6= U 6”is an isomorphism from M to ®. QED

osn<w

Since the Extensionality Condition is rather strong, it should hardly
be surprising that there are very many MR structures which do not
satisfy it; e.g., let M be the MR structure defined as follows

(13)  *m[i] = {22: 0 <o <w}
’am[a] = S|a], for every nonprimitive index a.

Suppose that fe [ (i)], then there are infinitely many—in fact, continuum
many—elements of 2| (i)], say g, such that for all ac *M[i], f(a) = g(a) but
f #g, i.e., the functions f and g assign the same values to the even ordinals
but different values to the odd ordinals which are not elements of *M[i].
Thus, M does not satisfy the Extensionality Condition, which means that
there can be no frame ® such that *W is isomovphic to D.

The combined effect of both of the preceding theorems is to establish
that the FM class—in its entirety—is isomorphically representable as a
proper subclass of the MR class, that is, as the class of all MR studies
which satisfy the Extensionality Condition; henceforth, ¢the class of
extensional MR structures’. 1 will now prove that the class of extensional
MR structures is not essentially identical to the MR class. First, let us
define the following schema:

The Generalized Extensionality Schema: Let p be any atomic wff such that:
(i) #% has at least one occurrence in p, (ii) every variable which has at least
one occurrence in p has at most one occurrence in p, (iii) there is at least
one variable of type b in p such that the order of b is greater than the order
of a, (iv) “v*’’ is a block of quantifiers using all the variables of p other
than »% and (v) the variables x“ and y* are foreign to p. Then
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— e —_— a a
GEx Vx“Vy“<VX(x“(X)<—>y“(X)) - V*(S:aj)(—)St;ap)>
is the Generalized Extensionality Schema.?

(14) Theorem Let M be an extensional MR structure. Then M verifies
every instance of GEx.

Proof: Assume that M is an extensional MR structure and that ¢ is any
assignment to M such that

i) M, @) FVX(x4(X) <> y4X)).
Then for all X-variants of ¢, say y,

i) (M, y) kX)) <=>y“X));
hence,

(iii) for every ne X M, o(x)n) = o(y°) ().

But according to the Extensionality Condition, (iii) implies

(iv) o(x%) = @(y“).

Now assume that

(v) not (M, ¢) v.*(S:Zp<—> S:Zp) ,
then for at least one v*-variant of ¢, say y*,
(vi) not (@, y*) #(Siaape S;Zp) :
which contradicts (iv). QED

(15) Theorem No instance of GEx is strongly valid, i.e., if q is an
instance of GEx, then theve is an MR structure which falsifies q.

Proof: Let g be an instance of GEx which has the following properties: the
initial quantifiers of ¢ use variables of type a = (o, . . ., b,), and the
highest-order variable in the block of quantifiers v* is a variable of the
type (AaB), where A and B are possibly empty sequences of indices.
(N.B.: The antecedent conditions of GEx guarantee that a variable of this
kind does exist; specifically, it is the variable occupying the ¢‘‘relation’’
place in the atomic wiff represented by the schematic letter ¢p’’ in GEx.
Having thus selected the types a and (AaB), the instance of GEx is uniquely
determined up to the relettering of bound variables.) We can now define an
MR structure R in two stages.

Stage I. Let bj, 0 <j<n, be the highest-order index in a, or if there is
more than one such index, the one with the smallest subscript. Then:

(i)  if ¢ is an index whose order is less than or equal to the order of
b; and ¢ is not identical to b;, then “R([c] = S¥[¢];

(ii) if c is identical to b;, then“%[c] # S“[c];
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(iii) “%[a] = S“[a]; and
(iv) “9N[(AaB)] = S”[(AaB)].

Stage II. Assume that ¢ is an index whose order is greater than the order
of b; and that ¢ is not identical to a or to (AaB). Then“M([c] is defined by
induction on the order of ¢. That is, suppose that ¢ = (d,, . . ., dy,) and that
“R[de], 0 < k < m, has already been defined. Then define the following
equivalence relation on S“[¢],

) for all f, ge S“[c], f = g(mod“M) iff for all ne X “R fin) = gn).
c
Then define “%R[c] as follows,

(vi) “R[c] is a set of vepresentatives of the equivalence relation
“=(mod“M)’’ in the field of S“[c], c¢f. Kuratowski and Mostowski [4], p. 69.*

It must now be shown that “JR does falsify the selected instances of GEx.
By point (i), “R[b;] € S“[b;]. Hence, there is at least one f* in S“[b;] which
is not an element of “S[b;]. Since “M[a] = S“[a], there are functions A¥,
1’ e“NR|a], such that

(vii) for all {go, - - -, &j - - .,g,,>e)a(°"tn,

B (Goy v v oy &js v o s 8n) F R (Goy + + o iy + - -, &) i g = f5.
Thus, if ¢ is an assignment to “® such that ¢(x°) = A# and ¢(y%) = 1°, then
(viii) (M, @) VX (x“(X) <> y“(X)).

On the other hand, since “R[(AaB)] = S“[(AaB)], there is a function
d*e“R[(AaB)] such that for every ne(AXB) ©R, d*(n) =t iff the lh(A)th
a

component of n is identical to f*. I the assignment ¢ maps the variable
occupying the ‘‘relation’’ place in the atomic wff represented by the
schematic letter ¢‘p’’ in GEx onto d *, then, trivially,

() not @, ¢) =(Step<>Step) ,

which in turn implies

(x) not (M, @) Ev* Siap <—>SZaP> .

Therefore, all selected instances of GEx, i.e., all alphabetic variants of ¢,
are falsified by “R. (N.B. The construction of “JR entitles us to draw an
even stronger conclusion, namely:

(xi) the instances of (GEx are strongly independent of one another in
the MR class, i.e., if ¢ 1s any instance of GEx, then there is an MR
structure, e.g., “R, which falsifies g—and all alphabetic variants of g—and
which verifies every other instance of GEx.

The proof of point (xi) is a relatively straightforward exercise, the details
of which I will omit.) QED
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Suppose that @ = {g,: 0 < n <w} is an enumeration of closed wffs such
that: (i) for every n, 0 < n <w, ¢, is an instance of GEx, and (ii) for every
n and m, 0 s n, m <w, q, is an alphabetic variant of ¢, iff » = m. We can
use this enumeration to construct the following tree:

F

T

9o ~qo
91 ~{q ‘i ~q,

Thus, according to (15.xi), if P'is any branch of this tree, then there is an
MR structure, say ’Si, which models the higher-order theory F UP, i.e.,
FUP C Th(91). On the other hand, only the left-most branch of the tree
has a model in the FM class or, equivalently, the class of extensional MR
structures. Hence,

(16) if the semantic theory of ST is based on the FM class, then infinitely
many—in fact, continuum many—consistent higher-order theories have no
models in the semantic theory.’

It seems to me that this is a conclusive argument in favor of basing the
semantic theory of ST on the MR class.

NOTES

1. Type-theoretic calculi were originally created to provide logically secure foundations for
classical mathematics. Since F is woefully inadequate as a foundational system, it is obvious
that Strong Validity is much too strong, i.e., it rejects too many wffs. Fortunately, the remedy
for this apparent defect is quite simple, specifically, in order to “weaken” Strong Validity, one
need only impose some additional conditions, say &, on the MR class, thereby reducing the
member of available MR structures. Then one can re-define Validity as follows: a wff p is
®-ly valid iff p is verified by all MR structures which satisfy condition ®. Thus, e.g., if we
restrict the available MR structures to the class of standard structures, we can obtain the
notion “standardly valid”. Just as Strong Validity is too strong, so Standard Validity is too
weak, i.e., it accepts so many wffs that it is demonstrably impossible to solve the Character-
ization Problem for Standard Validity with respect to any axiomatizable extension of F.
Taken together, these two notions of validity provide us with a useful criterion for determin-
ing whether or not a given notion of Validity is ‘reasonable’, i.e., ® Validity is ‘reasonable”’ iff
every strongly valid wff is ®-ly valid, and every ®-ly valid wff is standardly valid. Thus,

Strong Validity - ® Validity — Standard Validity.

The notion “General Validity,” as defined in [2], is a clear example of a ‘reasonable’ notion of
Validity; see also note 5 below.
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[1]

[2]

[31]

[4]
[5]

This family of higher-order structures was implicitly defined in Henkin’s original paper, ¢f. [3],
p. 86, from whence it passed into the literature.

This schema includes the usual axiom schema of Extensionality
Ex Vx4V (VX (x4(X) <= y°(X)) ~ VzOzO(x) = z@(3%)))

as a special case. Some authors, e.g., Beth [1], p. 226, express Ex as a bicondition. However,
as I have already observed in [2]. this obscures logically important differences between Ex and
its converse.

The existence of such a set of representatives depends upon the Axiom of Choice; cf. [4],
p. 69.

. This point can be rephrased in several ways, but perhaps one of the most interesting is the

following: every frame is elementarily equivalent to an MR structure, but there are MR struc-
tures which are elementarily equivalent to no frames, e.g., all MR structures which falsify any
instance of GEx. Thus, if we redefine the notion ‘“‘valid” in the following way: a wff p is
extensionally valid iff p is verified by every member of the FM class, or equivalently, p is veri-
fied by every member of the class of extensional MR structures, then Extensional Validity is
‘reasonable’ in the sense of note 1. It turns out that Extensional Validity is a surprisingly
strong notion of validity; in fact, it is strong enough to reject every instance of the converse
of GEx, i.e.,

u? u? - - -
v ve(§p o §p) = VD < v
as the reader can easily confirm for himself.

REFERENCES

Beth, E. W., The Foundations of Mathematics: A Study in the Philosophy of Science, 2nd
ed., North-Holland, Amsterdam, 1965.

Boudreaux, J. C., “Defining general structures,” Notre Dame Journal of Formal Logic, vol.
XX (1979), pp. 465-488.

Henkin, L., “Completeness in the theory of types,” The Journal of Symbolic Logic, vol. 15
(1950), pp. 81-91.

Kuratowski, K. and A. Mostowski, Set Theory, North-Holland, Amsterdam, 1968.

Mendelson, E., Introduction to Mathematical Logic, van Nostrand, Princeton, 1964.

The Catholic University of Amevica
Washington, District of Columbia





