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CONSTRUCTIVELY NONPARTIAL RECURSIVE FUNCTIONS

BRUCE M. HOROWITZ

Rose and Ullian [3] called a total function f(x) constructively nonrecur-
sive iff for some recursive function g(x), f(g®)) # @.(g(®)) for all ne N,
where ¢,(x) is the partial recursive function with index n. We define a
partial function f(x) to be constructively nonpartial recursive iff for some
recursive g(x), f(gm)) # ¢,.(g®)), where ~ is equality for partial functions.
We say that f(x) is constructively nonpartial recursive via g(x). Note that
for total functions, the two concepts coincide.

An example of a constructively nonpartial recursive function which is a
total function is:

Fx) = (%) + 1 if @.(x) is defined
1o otherwise

Indeed, letting g(x) = x, we have

@an) + 1 3 @un) = @,(gh)) if @,m) is defined

flgm)) = fn) = (0 # @un) = 0,(gh)) otherwise

As an example of a constructively nonpartial recursive function which
is not total, we have:

h(x) = {;ndefmed if ¢.(x) is defined

otherwise

h(x) is constructively nonpartial recursive via g(x) = x.

The theory of constructively nonpartial recursive functions is inti-
mately connected with the theory of productive sets. As an analogue to the
fact that any 1-1 recursive function is the productive function for some set,
we have the following:

Theorem 1 For every 1-1 recursive function g(x), theve is a function
f(x) which is constructively nonpartial vecursive via g(x).

Proof: Suppose g(x) is a 1-1 recursive function. Let g™ '(x) = (uy)(g(y) = x);
g7 '(x) is partial recursive. Define
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(x) +1 if @ _;, ,(x) is defined
g7 1(x) (x)
flo) = { othegrwise
Then
D1 (gny) (€M) + 1 = @u(g ) + if @u(g()) is defined
flgm) = { otherwise

Thus, f(x) is constructively nonpartial recursive via g(x).

Rose and Ullian showed that the characteristic function of a productive
set is constructively nonrecursive. We show a more general form of this
theorem for partial functions. Let Df be the domain of f(x).

Theorem 2 If Df is productive, then f(x) is constructively nonpartial
recursive.

Proof: Suppose Df = A is productive. Then A is completely productive via
some recursive function Z(x). Let the recursively enumerable sets be
defined so that w,= D ¢,. Now by definition of Z(x), if h(n)e A then h{n)¢ w,,.
Thus, qo,,(h(n)) is undefined. But 2(n)e A implies f(k(n)) is defined. Alterna-
tively, hn)e A implies %Z(n)e w,, and so @,(h(n)) is defined. But h(n)e A
implies f (2(r)) is undefined. Thus, f(k#)) # @u(k(n)) for all ne N.

Let EA(x) be the partial characteristic function for 4, i.e.,

AY 7 | undefined  if ¥/ A
Corollary 2a The partial characteristic function of a productive set is

constructively nonpartial recursive.
Proof: If A is productive, then D_C_A is productive.

Q)
Corollary 2b There are 2 ° constructively nonpartial recursive func-
tions.

R
Proof: There are 2 ° productive sets.

At this point it would be instructive to inquire whether the usual
arithmetical operations on functions preserve constructive nonpartial
recursiveness. We have:

Theorem 3 The following do not necessarily preserve constructive
nonpartial vecursive functions:

a. addition
b. multiplication
c. functional composition.

Proof: Let A be such that A, 4 are productive. Then C, (x), C;(x) are total
constructively nonpartial recursive functions.

a. C4(x) + C;(x) = 1, a recursive function.
b. C4(x)-Cz(x) =0, a recursive function.
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We thus see that even the added criterion of totality does not preserve
constructive nonpartial recursiveness.

c. Suppose again, that A4, A are productive, and further, that Oe A. Now

ifxe A —= 0 ifxd A

—= 0
Cal®) = {undeﬁned if xd A and  Ci() = | ndefined  if xe A

C4 (x), Cz(x) are constructively nonpartial recursive. Consider 5 (Cx(x)).
If xe A, then Cj(x) is undefined, hence CA (C7(x)) is undefined. If x¢A then
Eg(x) = 0. Since Oe¢ A CA (CA(x)) is undefined. Thus, CA CA (x)) is the
completely undefined function, and is not constructively nonpartial recur-
sive.

Note that if we also require 1 ¢ A then the total functions C, and Cjx
may be used to show C, (C;(x)) = 1, a total recursive function.

While the first example of this paper shows the converse of Theorem 2
to be false, we do have the following:

Theorem 4 (@) If f(x) is comstructively nonpartial vecursive via g(x),
such that o (g(x)) is defined implies f(g(x)) is undefined, then Df is
productive; (b) If, in addition, f(x) is an onto function, then Df is creative.

Proof: (a) Assume that f(x) is constructively nonpartial recursive via g(x).
Also assume that ¢,(g(x)) is defined implies f(g(x)) is undefined. Let
w, C Df. Then D¢,(x) C Df. If gl) e Df then f(g@)) is defined; hence
¢.(gm)) is undefined, and so, gn)¢ D@,(x) = w,. Df is productive via g(x).

(b) For any constructively nonpartial recursive function f(x), it must
be that f(g(x)) is undefined implies ¢,(g(x)) is defined. Thus, we have
f(g(x)) is undefined iff ¢,(g(x)) is defined. Since g(x) is onto N, f(x) is
undefined iff f(g(g~'(x))) is undefined iff Pt y (g (g™ (x))) is defined iff
@, 1(x)(x) is defined. The ontoness of g(x )guaranteesg '(x) is recursive.
Thus Df is recursively enumerable, and thus creative.

In [2], we showed, directly, that if a set is completely productive via an
onto recursive function, then its complement is creative. We now use
results of this paper to obtain an interesting proof of this.

Theorem 5 If A is completely productive via an onto vecursive function,
then A is creative.

Proof: Suppose A is completely productlve via f(x), an onto recursive
function. Consider C,(x). We know that DC, = A. A = {x[C, (x) is unde-
fined}. Since A is productive, by Corollary 2a, CA (x) is constructively
nonpartial recursive. In fact, examination of the proof of Theorem 2 shows
that C,(x) is constructively nonpartial recursive via f(x), the complete
productivity function for A. It is also seen that if ¢,(f()) is defined, then
f) ¢ w,; hence by the complete productivity of f(x), flr)¢ A. Therefore,
C4(f(n)) is undefined. Application of Theorem 4 allows us to conclude A is
recursively enumerable. Hence A is creative.
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We also showed in [2] that the complement of a creative set is
completely productive via a recursive permutation. Thus, we have:

Theorem 6 If A is creative, then Ci(x) is constructively nompartial
recursive via a vecursive permutation.

Proof: A is completely productive via a recursive permutation %(x). By
the proof of Theorem 2, Cj;(x) is constructively nonpartial recursive
via h(x).
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