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NORMAL DERIVABILITY AND FIRST-ORDER ARITHMETIC

P. TOSI

Jervell [3] proved a normal form for derivations in a first-order
formal system of arithmetic (say HA, Heyting's arithmetic) in the following
way: from every formal derivation in HA a possibly infinite structure is
generated (included in the relations that defines the structure is some form
of the ω-rule) and shown to be well founded. From the properties of such
infinite structures, one goes back to HA and proves a normal form. From
such a normal form many proof theoretical applications relative to HA can
be given, among them consistency.

Two remarks can be made. First, the normal form for HA is not
provable in a complete sense; hence the significance given to the normali-
zation theorem by Prawitz ([8], III,2), (the operational interpretation of the
logical constants), is weakened in the case of HA. Second, the proof
theoretical applications relative to HA do not need normal form for HA, in
the sense that they are already possible from the normal form for the
induced infinite derivations. Moreover, that something is lost in going back
to the normal form of HA can be deduced from the proof of the uniform
reflection principle for HA, which is possible by the normal form of the
infinite derivations, but not possible by Jervell 's normal form.

In the present work we will follow a different way. We will start from
the same HA (Section 1), and generate infinite derivations (also by some
form of the ω-rule); but, at this point, we do not aim to establish a normal
form for HA. Instead, we will study the infinite derivations as a sui generis
infinitary system, which we call ω-HA (Section 2). We will establish the
normal form for co-HA (Section 5) and, after that, go back to HA for
applications (Sections 6 and 7). The separate treatment of ω-HA is simply
a matter of convenience, to make clear the object to be studied: it is not,
properly speaking, a system of independent interest. Section 3 is the step
required for extending to HA the proof theoretical properties of ω-HA.
Section 4 is given because, in proving theorems, we find it preferable to
make use of an assignment of ordinals to derivations instead of simply
using bar induction. In fact, in this way we have a sharper measure for the
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principles applied in the proofs, and for the systems in which proofs are
given (see, for example Section 5.26).

The second remark above—that the applications do not need normal
form for HA—was inspired to us by considering Lopez-Escobar [6], where
the "extremely restricted ω -rules" are given for a sequent system of
first-order arithmetic. Lopez-Escobar's ω-rules have the following form:
derive VxAx from the sequence of derivations \(Λn)n} (all n), provided that
VxAx is derivable in HA from the same set of open assumptions. This
saves us from defining the form of the ω-derivations, and avoids the
complication of Section 2.2 below. However, we find it worthwhile to
characterize more sharply the ω-derivations, since better results can be
obtained—in particular the results mentioned in Kreisel-Mints-Simpson
[5], p. 100, lines 1-3. Such results are contained in the proofs of (ii) and
(iii) of Section 7.1.

The direct object of the present work will be HA, because it allows the
full generality of the proof theoretical results for first-order arithmetic.
In fact, all results valid for HA extend to PA (Peano arithmetic, classical)
by imbedding PA into the negative fragment of HA; while the converse is
not true. If we would consider only PA, all the proofs of the present work
would be extremely simplified; in fact, taking Ξ and v as defined logical
constants, in proving normalization only a very simple subset of proper
reduction figures and no permutative reduction figure at all should be
considered (leaving out all troublesome cases).

1 The formal system HA

1.1 HA is a formalization of arithmetic based on first-order intuitionistic
predicate calculus in a natural deduction framework (see Prawitz [8], 11,1).
We have symbols for individual parameters and (bound) individual vari-
ables, logical inference rules for introducing and eliminating logical
constants (v, Λ, —*, V, 3), and the intuitionistic Λ-rule. In addition we have
the Post system with the symbols and the basic rules for 0 (zero),
' (successor), = (equality), + (addition), and (multiplication). We also have
the induction rule

[Aa]

IND ^ — 4 U
VxAx

a is the proper parameter of the rule, subject to the usual restrictions; n is
the symbol for the numeral 0> * * •' where there are n occurrences of '.

1.2 A derivation is in normal form if no introduction rule or IND is
followed by the inverse elimination rule. The normal form is obtained by
applying reduction figures. As it is shown by Prawitz ([8], p. 263) all
possible reduction figures are not enough for a complete normalization of
HA. This is due to the possible presence of a parameter in the term t,
when At is obtained by VE from VxAx, which is a consequence of IND.
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2 The infinitary system co-HA

2.1 ω-rules A natural way out for the situation described in Section 1.2
is given by the following considerations. In arithmetic we are dealing with
a fixed denumerable domain ω (the natural numbers) and we have in the
language of HA a closed term as the name for each of the individuals in ω
(the numerals). It is then possible to replace all open rules of HA (i.e., VI,
IND, and 3E, containing proper parameters) by closed ones (without
parameters). Since ω is denumerable, the resulting rules have necessarily
denumerable premisses (ω-rules). With such ω-rules new reduction
figures are now needed (see Section 2.4) and they are enough for a complete
normalization; i.e., Prawitz's inversion principle hold.

2.2 Constructive and equivalent infinite derivations It should not be
difficult to recognize the plausibility of the ω-rules (once the pure for-
malist position is overcome): if the natural numbers provide the intended
model for the numerals, the ω-rules should be considered as sound rules.
Objections may arise if they are not constructively given (i.e., if there is
no method for constructing each of the premisses) and, even if they are, if
they are stronger than the corresponding open rules of HA, as in the case
of the recursively restricted ω-rules (if so, one cannot extend to
derivability in HA all the results stated about derivability in the system
with ω-rules).

2.2.1 A natural way out for both the objections can be found by restructur-
ing the ω-rules so that their premisses are constructed from derivations
yet given in HA: i.e., by giving instructions on how to transform every
open rule of HA into an ω-rule. This is done in Section 2.3. We call the
infinite derivations so obtained ω*-derivations; the set of all ω*-derivations
is co*-HA.

2.2.2 Once we have the co*-derivations, we are able to normalize; i.e., any
given Π of ω*-HA can be transformed by applications of reduction figures
into a IT which is normal and equivalent to Π (i.e., it has the same
conclusion and no more open assumptions). But at this point a difficulty
arises in the characterization of our infinite derivations: the restricted
ω-rules of ω*-HA are not stable under normalization. In fact the reduction
figures preserve the derivations of formulas, but not the form of such
derivations. Since we have defined the co*-derivations only with respect to
their form, we are led to widen (starting from ω*-HA) the admissible
infinite derivations. (This is done in Section 2.5; and the steps toward such
enlarged characterization are given in 2.4.) We call the infinite derivations
so obtained ω-derivations; the set of all ω-derivations is ω-HA.

2.2.3 The unusual characterization of co-HA as a system follows by opposi-
tion to the usual one. In the latter a system is first defined using standard
(finite or infinite) rules; then a set of reduction figures is given; and, third,
the system is normalized: the reduction figures yield derivations belong-
ing to the system itself. In the former the reduction figures enter into the
definition of the system itself.



452 P. TOSI

Both the characterizations above are given by defining a structure; but,

while in the usual definition the relations defining the structure have the

shape of the standard rules, in defining ω-HA they have a different shape

(reduction figures vs rules). Reminding that a system is a structure with

specific relations, the purists may then call ω-HA a structure (its universe

being ω*-HA). We prefer to call it a system since we are allowed by the

analogy noted above (with adaptations left implicit) to extend to it the usual

terminology such as derivations, deriυability, etc., and the usual notations:

n-A[Γfej*A, ΓfeA], v-A[\&A, \%A] denote derivations in HA[ω*-HA,

ω - HA] of A from Γ and from null assumptions.

2.3 The ω* -derivations

2.3.1 We give here some notions and notations to be used in the sequel.

y^ \Aλ
1. [A] is the composition of ^ ( w i t h conclusion A) and γ> (with

y> A LJ2

open assumption(s) A in Γ).

2. Ύj(a/n) is the n-substitution of any numeral n for a inΣ/(a), Σ/con-

taining the parameter a.

3. Remark. If a is the proper parameter of an application a of 3E, VI,

IND, then the subderivationΣ/(«/n) above a is still a derivation in HA. The

same applies when an improper parameter is replaced by some numeral.

4. 2.3.3 Inductive clause in the definition of the ω* -derivations. In

2.3.2 and 2.3.3 below, in the derivation

Σ(a/n)

(eventually with open assumptions and/or conclusion in the pictorial

notation) a is the proper parameter of an application a of VII, IND, 3E, and

Ύj{a/n) is obtained from the subderivation of one of the premisses of a, by

substituting all open rules above a by ω-rules and all improper parameters

by some numeral (note also that the proper parameters of some application

below a are improper parameters of the subderivation above). In this way,

Yj{a/n) is an ω*-derivation.

2.3.2 The ω-rule for the universal quantifier Suppose the following

denumerable sequence of derivations is given in co*-HA:

((Si) w""'
then we can conclude VxAx only if one of the two following cases holds:

Case 1. For all n, I .-) = Λ . ,-,, where Aa is the premiss of an applica-9\Λn/n A{a/nY F w

tion of VI in HA.

If it is Γ\z*A(a/n), then it is T\^μVxAx (note that Γ is the same for all n,

since a do not occur in Γ).
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/Σ \ Σ
Case 2a. For ^ = 0, ( °) = where Λ0 is the zero-premiss of IND;

fΣ\
Case 2b. For n >0, ( l\ is obtained by n compositions in the following

\J±ΐl/
way n

Ύ^ Ύ^ y^

(Σλ [A(a/Q)\ (Σλ [A(a/Ί)] (Σλ [A(a/n^J)]
VAIΛ Σ(α/0) ' \A2/2 Σ(a/l)> ' ->\An/n Σ(a/n_- 1)

A(fl'/1) A(«72) A{a'/n)

where Aar is the induction-premiss of IND.

If it is Γo{^μA0 and Γ\ U {An}\^An + 1, then Γo U Γ1^J*VΛ:^4X (correspond-

ing to the discharge of Aa in IND).

For both cases we represent the rule compactly as:

\(An)n}
α)VI with proviso.

VxAx

2.3.3 The ω-rule for the existential quantifier In ω*-HA, \ί and

ί/LAn]\) _ -XAχ

\\ Ύjn I /, then we can conclude B not depending on An (all n), if

IV B /„)
/[An]\ [A (a/n)}
I Σ/H I = ~Σj(a/n) where B is minor premiss of 3E in HA.

V B/m B

If Γo \^p,3xAx and Γ, U {Aή}^B, then Γo U T^B. We represent the rule

compactly as

\([An\)\

ωdt with proviso.
B

2.4 Re due tion figure s

2.4.1 We assume from Prawitz the notions oί maximal formula, maximal

segment, and reduction figure (including immediate simplifications). Re-

duction figures for infinite derivations are given as in Prawitz [8], pp. 251-

254; except that now (instead of V-reduction, 3-reduction, 3E -reduction

and the immediate simplification for 3) the following ω-reduction figures

are given, corresponding to the ω-rules (Hi >-L Π2: Π2 is the result of the

application of a reduction figure to ΠJ

w . \fxAx , I ̂ k) - f . , ,
ωVred -= rΛ—ψ) , for a fixed k.

Ak \ Ak/k
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Ak \\ B },,) [Ak]

ω3ιred ^ ^ - h l ^ , for fixed fe.

Ifc KDJ ^L ((Lx) I
co3!Ered * Yγ .

-. . . ^xAx \\B/n) . / Σ Λ ( Λω3ιsιmpl ^ >γ I — I (any z) .

2.4.2 Definitions

Definition >- is the transitive relation generated by all >-L.

Definition Π is in >--relation with Π' if there is a sequence of deriva-
tions ΠL, Π2, . . ., Πw such that Π, >Ί Πf + 1 and Π = Un and Π' = Π^

2.5 T/2̂  infinitary system co-HA

2.5.1 T/zβ infinitary system ω*-HA ω*-HA is the system whose language
is as in HA, except that individual parameters do not occur. Individual
terms are all closed. The logical inference rules are as in HA, except that
VI is replaced by ωVI, and 3E by ω3E. The basic inference rules are as in
HA (but all terms are closed). The induction rule does not appear; it is
included in ωVI (see Section 3.2.3).

2.5.2 The infinitary system co-HA The infinitary system co-HA consists of
all derivations in ω*-HA, plus all derivations in >--relation with Πe co*-HA.

3 Equivalence between HA and co-HA In this section we will see together
what could be seen as immediate consequences of 2.3, 2.4, and 2.5.

ω*-HA is generated in such a way that an co*-derivation is given if and
only if a finite equivalent derivation of a sentence is given in HA. This is
what is shown in 3.1-3.3.

co-HA is generated in such a way that an co-derivation is given if and
only if an equivalent co*-derivation is given. This fact follows by investiga-
tion of the reduction figures.

3.1 Theorem If Γ^j*A, then Tv-A.

Proof: By induction on the length of T\^A. The basis and the steps for
the rules which are in both systems are immediate. To show the theorem
for conclusions of ω\f\ and co3E, in these cases the proof is made possible
by their restrictions. Let us consider coVΓ. let Γ[^*VΛ;A#; to show
Γ \-VxAx.

(i) Case 1 of Section 2.3.2 applies: Γl^An is uniformly given for all
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n. By the restriction, T\-Aa (both the Γ's are the same by the way T\^*An

is given, using the induction hypothesis on the closed formulas not

containing a). Apply, in HA, VI.

(ii) Case 2 of Section 2.3.2 applies: there are in HA both To\-Λ0 and

ΓJL U {Aa}'v-Aaf. Apply IND: Γ0U Γ ^ V x ^ .

3.2 Theorem Let A be a closed formula. If TV-A, then T\^A.

Proof: By induction on the length of Tv-A. The not immediate steps are

for conclusions of 3E, V!l, and IND:

3.2.1 3E Suppose Γo v-3xAx and Γ\ U {Aa]v-B.

By Remark 3 of 2.3.1 Γo v-3xAx and Γ\ U {A(a/n)}v-B (all n).

By induction hyp. Γo \^3xAx and Tί U \A(a/n)}\^B (all n).

Apply ω3E (the restrictions are clearly satisfied): Γo U Tι\^B.

3.2.2 VI Suppose TV-Aa {a proper parameter).

By Remark 3 of 2.3.1 Tv-A(a/n)_ (all n)

By induction hyp. T\^*A(a/ή) (all n)

By coVI T\^\fxAx.

3.2.3 IND Suppose Γ O H A 0 and Γ\ U {Aa)v-Aaf.

By Remark 3 of 2.3.1 Γo I- AO and Tι U {A(a/n)}v-An + 1 (all n).

By induction hyp. Γo \^*A0 and Γ\ U \A(a/ή)}\^μAn + 1 (all n).

Build up, following the instruction of Case 2, Section 2.3.2, the denumerable

sequence of derivations {Σ/n}. Apply ωVI.

3.3 Theorem ThA if and only if T\^A {A closed).

3.4 Cons true tiυ ity of ω-HA "It must be remembered that an infinite

derivation . . . is in certain respects an incomplete representation of an

argument. In order to be conclusive, each application of VI in such a

derivation should be supplemented by an argument showing that for each n,

Un is a derivation of An. It is by leaving out this supplementary argument

in the representation of the proofs that the derivations get such a simple

structure" (Prawitz [8], p. 267).

As to the "supplementary argument" in 2.3, for Case 1 and 2.3.3 no

problem arise, since all the premisses are uniformly derived from a

constructively given derivation; for Case 2, each premiss is derived from

two constructively given derivations. For the Case 2.4, reduction figures

preserve constructibility: in the not trivial cases, composition of given

derivations is applied, just as in Case 2.

4 Assignment of ordinals to ω-derivations In this section we first

present a system of ordinal numbers which can be assigned to every

ω-derivation to measure its length and to make possible proofs by induc-

tion on the length of the well-founded derivations. After this, the

normalization theorem for ω-HA is proved.

4.1 Ordinals For our purposes it is not necessary, but the full power of

set theoretical ordinals, but simply a constructive segment of them and very
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few simple properties and functions. We use Gentzen's ordinals and the

function # (natural sum) (see Gentzen [l], p. 277), and show that they are

enough for our pruposes.

4.1.1 Recursive definition of ordinals, equality and order relation between

them The system So consist of the number 0. We define 0 = 0 and not

0 < 0. Suppose that the ordinals of the system Sm (0 ^ m < co) are already

defined, as well as = and the <-relation. The system Sw+L consists of 0 and

all the ordinals represented as

ω + ω + . . . + ω

where 1 ^ n < co and the a^s are ordinals of the system Sm and αt ^ ai+ι.

(Each system includes, then, all preceding ones.) Let β and y belong

to SOT+1: β = y if their representations coincide, β < y [β > y ] if the first

noncoinciding exponent α̂  in the representation of β is smaller [larger]

than the corresponding exponent in the representation of y.

With the usual set theoretical ordinals and functions on them we have

the following correspondence (we shall make use notationally of this

correspondence in the following):

51 consist of 0, ω°, ω° + ω°, . . .

that is

0, 1, 2, . . . (all the natural numbers)

The limit number of the system is ω.

5 2 consist of

0 0 o ω 0 ω 0 ω 0 ω 0 ω θ + ω °

0, co , co + ω , . . ., ω , ω + coo, . . ., ω + ω , . . ., co , . . .

that is

0, 1, 2, . . ., co, co+ 1, . . ., co 2, . . ., co2, . . .

The limit number is cow.

5 3 contains all numbers below coω (i.e., u r 0 ^ ) ; etc.

The limit number of all S; is the number ε0, the first ε-number.

Immediate properties of our ordinals are

(i) if β = y + . . ., then β > y

(ii) if a <β then ωa < ωβ

(iii) if a belongs to a S;, then coα belongs to S ί + 1, hence coα < ε 0 .

4.1.2 Natural sum (#) of two nonzero ordinals Let a = coΎl+ . . . + co7wand

β = coδl + . . . + ωδm and ζL ^ ζ2 > . . . ^ ζm+n be all the y{ and δ t ordered

by ^ . Then

a # β = ω ζ l + . . . + ωίm+n.

The following properties of # are easily proved:
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(i) a # β = β # a

(ii) α # β >a

(iii) 2/ al9 a2 < α, then ω L # ω 2 <ωa

(iv) if a, <a then a, # β < a # β

(v) # is strictly increasing in both arguments.

4.1.3 Assignment of ordinals to ω-derivations ω-derivations are, in the

presence of ω-rules, represented in the form of infinitely generated trees;

i.e., some nodes of the trees have denumerably many nodes immediately

above. As we shall show, trees are well founded; i.e., each thread is

finite. At each node there corresponds a formula in the derivation.

4.1.3.1 We assign ordinals to the nodes of the tree in the following way:

(i) to a top formula A we assign an ordinal a > 0.

Notation: ord(A) = a.

(ii) Let Ai be the premisses of A. If ordOA,-) = ai9 then ord(A) ^

sup(α, ) = a, where a is strictly greater than every α̂  .

) = orό(A) = a.

AI

ITJ\ ί\Λ\\ ί^\
4.1.3.2 Remark. Letα = ord( ι), β = ordl y^ I. Then ordI [A] ^ a # β.

\ Λ ' \*-J2/ \ ŷ  /

This is an immediate consequence of 4.1.3.1 and the properties of #:

\A\ ^
in fact, if β, was an ordinal of \-^\ it becomes β{ # a in [A].

4.1.4 Gentzen's ordinals are enough In order to show that to every (not

normal) ω-derivation a Gentzen's ordinal can be assigned, we first con-

sider ω*-HA. Here we argue again by induction on the length of deriva-

tions. Top formulas have ordinals a < ε0. Suppose that the premisses A{

(i depending on the number of the premisses) of some rule have ordinals

ai < ε0. To show that the conclusion A has ordinal a < ε0.

As to the finite rules, ω3E and ωVI corresponding to VI in HA, there is no

problem, since for every a{ there is an a such that αt <a < ε0 (take, for

example, mαχ(αj) + 1 = a, where mαx(αz ) is the larger ordinal in the set

{α, }; in the case of the infinite rules above, maxta^) exist: all a{ are in fact

the same. As to ωVI corresponding to IND in HA, there is no such mαx(αf ).

Considering this last case we show in 4.1.4.3 that to every given derivation

in ω*-HA an ordinal a < ε0 can be assigned. If we then consider ω-HA, we

examine each reduction figure. The result follows either trivially or, when

ΐiyι Π' by composition, in the following way: ord(Π') = a = ax # a2 (see

4.1.3.2), where ofL and a2 are ordinals of subderivations of Π. If au a2 < ε0,

then a < ε0. Gentzen's ordinals are also enough for further increases of

ordinals in Section 5.2 by 4.1.1 (iii).
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4.1.4.1 Depth of a derivation in HA

Definition depth(Π) = n(Q ^ n) if n is the highest number of occurrences
of IND in every thread of Π.

4.1.4.2 Lemma (corollary of 3.2.3) Let Π be a derivation in HA such
that depth(Π) = k. Then there is an equivalent ω*-derivation Π' such that
ord(Π') < ω * + co.

Proof: By induction on k. Basis: k = 0. Then ord(Π;) = ord (Π) < ω .

Step: /e = m + 1. Let •£ and λj^(a) be the derivations of the two premisses
Aaf

of an occurrence of IND in Π such that at least one of them is of depth = m.
Apply 2.3.1.3; by induction hypothesis there are in ω*-HA

£ , [An]

-̂  and, for each n, Έ/[(n)
A.0 —

An + 1

such that their ordinals are, respectively, a0 < ωm + ω and aι < ωm + ω.
Hence the sequence \L/n\oί 3.2.3 has the following ordinals:

a& <ωm + ω,a[ < (ωm + ω) 2, . . ., aU < (ωm + ω) i, . . . .

Then sup^co^-f ω) n) - ωmΛY (all n) is the ordinal of the conclusion of {Σ/w}.
From this point below, till the premisses of the next IND below (if any,
otherwise till the conclusion of the derivation) the ordinals are finitely
increased; hence their ordinals are <ωm+1 + ω. This concludes the proof.

4.1.4.3 Theorem For every Π of HA there is an equivalent Π' of co*-HA
such that ord (Π0 <ωω.

Proof: Immediate from 4.1.4.2, being depth(Π) < ω in every Π of HA.

5 Normalization theorem for ω-HA

5.1 A normalization theorem for ω-HA is the constructive proof that, by
repeated applications of the reduction figures for ω-HA, for any co-
derivation Π one can find an equivalent Π' to which no reduction figure can
be applied.

5.2 Normalization theorem

5.2.1 Let Π )-L Π' be a proper reduction figure; Πo the derivation of the
maximal formula M; Π; the derivations of the co-premisses F{ of M (if
any); a0 = ord(Π0), oti = ord(Π^ ). The (sub)derivation Πw of Fn which occurs
in Π' is said to be the active subderivation of >γ.

Lemma Under the conventions above, z/ord(Π) = a, then ord(Π') ^ ao# an>
where an is the ordinal of the active subderivation Un (an - 0 if there is no
such Π j .

Proof: Immediate by the inspection of the various reduction figures,
applying 4.1.3.2.
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5.2.2 Definitions and notations

5.2.2.1 Definition The degree d of a derivation Π in ω-HA is the highest

degree of a maximal segment in Π.

Notation: deg(Π) = d. If it is , then deg(A) = deg(Π). (Note that d(A) is the

A.

logical degree of a formula, while deg(A) is the degree of a derivation with

conclusion A).

5.2.2.2 Remark on the existence of deg(Π) From the way ω-HA is

generated one can see that the degrees of the formulas in HA are left

unchanged in the equivalent ω-derivations: hence, as in HA, also in ω-HA

there is a maximum degree for the formulas (and, a fortiori, for all

maximal systems) in every given derivation. This is not guaranteed with

unrestricted ω-rules in fact it may be possible, for example, that in an

ω-rule the derivation of An contains a maximal formula of degree n (all n).

In this case there would be no maximum for deg(Π), but only the supremum

(which is ω).

5.2.2.3 Definition The maximal length m of a derivation]! in ω-HA is

the highest length of a maximal segment in Π.

Notation: mli h(Π) = m.

5.2.2.4 Remark on the existence of mlth(Π). From the way ω-HA is

generated one can see that the length of the segments in HA is left

unchanged in the equivalent ω-derivation, except, eventually, for 2.3.2,

Case 2b and in applications of >j_: when composition of derivation is applied

new segments may arise; but in the first case the length of the segments is

only finitely increased, since An is different from An + 1 and, then, they

cannot belong to the same segment. In the second case we may also assume

without loss of generality, that assumptions and conclusion of the active

subderivation are different

Notation: Γ\ojA[d, a]: there is a derivation Π of A from Γ such that

deg(Π) = d and ord(Π) = a.

Γ\ZJA[0, a\: the derivation is in normal form.

5.2.3 Reduction lemma Let Π be T\^jA; deg(Π) ^ 1; mlth(Π) = m. Then

there is a d1 < d such that

if TfcAid, a], then T\^A[d'9 ω
α]

Proof: By induction on a. Basis: A is a top formula: d = 0 and the

theorem is vacuously proved. Step: suppose the theorem for all a <a. To

show for a: Starting from A we go up through the branches of Π. Every

subderivation Π1 of F we meet, fits to the following cases:

Case 1. F is not the consequence of a maximal segment.

Case 2. F is consequence of a maximal segment σ such that Ith(σ) = 1 (i.e.:

σ is a maximal formula).
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Case 3. F is consequence of a maximal segment σ such that 1 < Ith(σ).

For each of these three cases we apply induction hypothesis and show that
there is a derivation Π[ of F (where σ does not appear), which is equivalent
to ΐlL and satisfies the lemma. Then we substitute ΠJ for Π^ the final result
is Π'; if all subderivations of Π' satisfy the lemma, then so does Π':
i.e., Γ\ωA[d',ωa].

In Cases 1 and 2 we do not consider subcases where immediate
simplifications can be applied: it is intended that such simplifications are
applied always when possible, and it is immediate to show the lemma.

For Case 1 the lemma is proved immediately: Γ^ = ΠJ.
For Case 2 the lemma is proved by applying a suitable proper

reduction figure, according to the form of σ.
For Case 3 the strategy is the following. Let B be the formula in σ:

all the segments with length >1 branch upward, hence the downmost
occurrence of B in σ is the root of a tree (of segments) r. Our aim is to
eliminate r. We cannot do this directly; we then: (i) apply a permutative
reduction figure to eliminate the root of τ and get other trees of segments,
such that all their segments have length less than 1 with respect to the
length of all the segments in τ; (ii) repeat such operation a sufficient
number of times for each of the roots of the new reduced trees of
segments. We get finally a situation in which all the segments have length 1
and we do as in Case 2. From these points below, till a derivation of F
which is equivalent to ΠL, we show how ordinals can be assigned. As to the
proof of Case 3 we give step (i) of the above strategy; i.e., suppose mf ^ m
to be the length of the longest segment in r: we take m' as induction value
(we suppose the lemma to hold for mf - 1) and show how to lower mr.

Let then F{ be the premisses of F. We use the following ordinals:
ord(F ) = ai} orό(F) = a.

Case 1 F is not the consequence of a maximal segment. We have

Σ,
F
—— (i depending on the number of the premisses)

/Σ \
Degree: by induction hypothesis being degl *) < d, it is deg(F) < d.

\*if
Ordinal: by induction hypothesis being ordίi^ ) = ωa\ it is ord(F) = ωα, which
is greater than ωa{ (cf. 4.1.1 (ii)).

Case 2 F is consequence of a maximal formula M.

Subcase 2.1. M = F1ΛF2. Apply Λ-red.

LJ1 LJ2

F\ F^
F^F2 Σi
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/Σ \
Degree: immediate, since, by induction hypothesis, degί ' I < d.

/ Σ Λ a- * f '
Ordinal: by induction hypothesis it is ordί * 1 < ω ι <ωa.

\ ** i I

Subcase 2.2. M = VxAx. Apply ωV-red. The proof is completely analogous

to Subcase 2.1.

Subcase 2.3. M = i 1 v i 2 Apply v-red.

Σi [At] [A2] Σ;

Ai ΣL Σ2 [A,]
A v Λ / £- >, Σ; a -1,2)

ίΣλ ίΛ'\
Degree: by induction hypothesis degί *) <d and degl Σ/( I < d. In Π[, A(

can arise as a new maximal-formula (or part of a new maximal segment),

but ό(Ai) <ό(AιvA2) < d. Hence deg(Π ) < d.

/ΣΛ l[Ai]\
Ordinal: set a0 - ordl ι I, a^ - ordl Σ , I. By induction hypothesis and 5.2.1,

\Ai I \ /
ord(π;)^ωα°#ωα ί<ωα. X F !

Subcase 2.4. M = Aι -* A2 and Subcase 2.5: M = 3xΛx, are completely

analogous to Subcase 2.3, applying the suitable proper reduction figure.

Case 3 F is consequence in ΠL of a maximal segment σ such that

1 < Ith(σ) = mf < m. We suppose the theorem proved for mf - z(l ^ i ^ m')

an show how to get a Π[' equivalent to n l 5 in which Ith(σ) = m' - 1.

Subcase 3.1 The last occurrence of B in σ is a consequence of vE. Apply

v E - red .

[A] [A2] [A,] [A2]

A,vA2 B B Σ o B {Un} B {Hn\

JB { Π j A,vA2 F F

F *ι F

(n depending on the number of the minor premisses of F)

Degree: By induction hypothesis όegiAi^v A2) < d. In the derivation to the

right Ith(σ) = mr - 1; by the supposition on m' - i there are derivations of

the uppermost occurrences of F where B is eliminated by a proper

reduction. By this facts and induction hypothesis there is a Π[ such that

deg(Πί) <d.

Ordinal: let the ordinals in ΠL be the following

ft) βj β2

a
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Combining induction hypothesis and 5.2.1, we assign to Π[ the following

ordinals

\ \ I v I /
\ \ I \ I /
1 1 / \ I /
\M \ I /

c/° ωH ωγ# (mf - 1) ωH ωγ# (mf - 1)
ωα

where (i) ωP # ω7 are the ordinals of the uppermost occurrences of F after

the elimination of B by proper reduction figures, where

(ii) β - mαχ(βf), and β/ are the ordinals (in ΠJ of the uppermost occurrences

of B in τ (such max exists being {β̂  } finite)

(iii) y = max(y ), where yt are the ordinals (in ΠJ of the active subderiva-

tions of the proper reductions which eliminate B;

Being β < β{ < a (i = 1, 2); y < a and mf = ω° # . . . # ω° and 0 <ce, it is

ωH ω7# (m' - 1) <ωαby 4.1.2 (iii).

Subcase 3.2 The last occurrence of B in σ is consequence of ω3E. The

proof is analogous to Subcase 3.1, applying ω3E-red.

This case concludes the proof.

5.2.4 Definition We define the following sequence of ordinals |ω"}

ω0 = a, ω, = ω °, . . ., ωn+ι = ωn , . . .

If a < ε0, then it is immediate, applying 4.1.1 (iii), that the limit number of
Γ en .

{cojis ε0.

5.2.5 Normalization Theorem If T\^A[d, a], then ΓhoΛ[0, ω^J.

Proof: Apply at most d times 5.2.3. In particular, given an ω*-derivation

Π, then there is an equivalent Π' e co-HA which is normal.

5.2.6 Transfinite Induction By Theorem 4.1.4.3, for every ω-deriva-

tion Π, a = ord(Π) < ωω < ε o Consider now Definition 5.2.4: transfinite

induction up to ε0 is sufficient as a principle of proof for 5.2.5. It is

necessary since there is not a finite upper bound for d in co-HA; i.e., any

given Π has degree d < ω, but there is no d such that every Π has degree

^d. However, for any given derivation Π of A, the existence of the

corresponding normal Π' can be proved without full ε0-induction, but using

induction up to a definite a < εo; hence the proof is possible in HA itself by

Gentzen [2]. By this remark, the applications in 6.1 and 6.2 below do not

need ε0-induction, and are given in HA.

ε0-induction is needed for 6.13 and for establishing that something is

not provable in a normal derivation (as required for proving the con-

sistency of HA).

6 Applications of the normalization and equivalence theorems

6.1 We give some definitions and theorems to be used in the sequel.

Proofs are not given because they can be taken from the corresponding
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statements for first-order intuitionistic predicate calculus (see Prawitz

L?L L8j), with the only modifications due to the presence of the basic rules.

For a clear presentation see also Torelstra [9], IV,2 (where a path has a

different definition, but the same properties).

6.1.1 Definition A path in a normal ω -derivation Π is a sequence

AL, . . ., An of formulas such that:

(i) Aγ is a top formula not discharged by co3E, vE

(ii) if Ai is not major premiss of ω3E, vE, then Ai+1 is a formula

immediately below A{\ Ai is not minor premiss of —̂ l if z < n

(iii) if A{ is major premiss of ω3E, vE, then Ai+ι is one of the assump-

tions discharged by this rule

(iv) An is the conclusion of Π or the minor premiss of —»l.

Remark: In a normal Π every formula of Π belongs to a path.

6.1.2 Lemma (on the form of a path in a normal Π) In a normal deriva-

tion, a path can be divided into segments σl9 . . ., σn; the segments can be

divided into the following three parts ((1) and (3) possibly empty):

(1) an elimination part (E-part) σL, . . ., σm_L, where each segment

σ, (1 ̂  i <m - 1) is major premiss of an E-rule, and σi+ι is subformula

of σf ;

(2) a minimum part σm, . . ., om+k.ι, in which each segment except the

last one is premiss of A or a basic rule;

(3) an introduction part (l-part) σm+k, , orn, where each segment is

the conclusion of an l-rule, and σ{ is a subformula of σi+ι.

6.1.3 Theorem (subformula property for ω-HA) Let U be a normal

derivation in HA of A from Γ. Then every formula in Π is either a sub-

formula of A or a subformula of some F in Γ or an atomic formula

belonging to the minimal part of a path of Π.

6.2 Properties of ω-HA As a consequence of the form of normal

ω-derivations, we can derive for co-HA the same properties which follow

for the first-order predicate calculus from its normal form, and the

properties which follow for HA from JervelΓs normal form (see Troelstra

[9], IV,2): in particular the consistency, the disjunction property, the

explicit definability property (for derivations from null assumptions and

for Harrop sentences), and other proof theoretical closure conditions.

6.3 Properties of HA By making use of (3) we can now extend to HA the

same properties stated in 6.2 for ω-HA. As an example we show the

following theorem.

6.3.1 Theorem (explicit definability property for HA) If Π is a proof

(i.e., a derivation from null assumptions) of 3xAx in HA, then there is a

proof Π' of An for a suitable n.
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Proof: Let Π be a derivation in HA. By the equivalence theorem, an

equivalent ω-proof Uι can be constructed, and for Uι the property holds by

6.2. Apply again the equivalence theorem and get the desired Π'.

7 The uniform reflection principle for HA Throughout this section we

suppose the syntax of HA and ω-HA arithmetized in HA by a standard Gδdel

numbering; i.e., all syntactical properties and object are identified with

arithmetical predicates and natural numbers. In particular, in the case of

ω-HA, ordinals are represented by a "natural" well ordering of order type

ε0 and the provability predicate includes information about derivability in

HA, so that the restrictions to the ω-rules can be arithmetically expressed.

Proof (x, y) is the provability predicate for HA, whose intuitive meaning

is: x is the (Gδdelnumber) of a proof of the formula (with Gδdelnumber) y.

Pr (y) is the proof predicate for HA. Pv(y): = 3#Proof (x, y).

Analogously for ω-HA:

ωProof {x, y, z): x is a proof of y and its ordinal is z.

ω Pr'(j ): = 3x3 zω Proof (x, y, z).

Norm( y): = ω Pr (3;) and the proof is normal.

The uniform reflection principle for HA is:

RFN Vy(Pr(rAy^) —Ay),

where y is the only free variable in A and ΓAylί is the Gδdelnumber of the

sentence obtained from Ay by substituting n for y.

Kreisel and Levy [4] have shown the significance of the reflection

principles and in Section 10 they asked for a proof of the following (which is

only possible using a cut-free or a normal semiformal system):

HA + Tlε oHRFN.

The proof was first given in Lopez-Escobar [6], using a cut-free sequent

system. We will sketch rather informally the proof of the same result

using normalization. The correspondence between cut elimination and

normalization is well known; however cut-free and normal derivations have

a rather different structure: while in cut-free systems the subformula

property (which is used in the proof of RFN) is immediate, in normal

systems it has to be derived by some intermediate steps. The main lines

in the proof of 7.1 are taken from Lopez-Escobar's work, which, in

general, makes much more careful statements about the formalization of

the semiformal system and the system in which proofs are given.

7.1 Theorem HA + Tlεo H V y (Pr (ΓA;yπ) — Ay).

Proof: The proof is given in HA + TlεQ by the following steps:

i. Vy(Pr(rAyn) - ω Pr (ΓAyn))

ii. Vy (ω Pr(rAy n) — Norm (OljΠ))

iii. V3; (Norm(Γ.A3P) —• Tn(
rAyn)) (n depending on the logical degree

of A)

iv. Vy(Tn(
rAy~")-> Ay).
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Step i is achieved by formalizing the proofs of Theorem 3.2 and 4.1.3.
Step ii by formalizing the proof of 5.2. Step iii will be given in 7.3 and
Step iv in 7.2.

7.2 Truth definition

7.2.1 We give recursively the following truth definition Tw for closed
formulas. The obvious valuation function Vαl for closed terms is supposed
to have been given.

Definition (by induction ά(A)\ i.e., the logical degree of A):

(i) for atomic A = tι = t2

To(rti = O ^ V α l ^ ) = Vαl(ί2)

(ii) Tn+ι(
ΓAoB^^Ύn(

ΓAoB^y[Tn(
ΓA-")oTn(

ΓB^)] (0 = Λ, v , - )

Jn+l(
rQxAx^)^>Tn(

rQxAxn)v QxJn(
rA^) (Q Ξ 3, V)

7.2.2 Theorem For all sentences A such that d (A) ^ n

Ύn(
ΓAx'Ί)<-^Ax.

Proof: By induction on n. As to the basis n = 0, the conclusion follows
from the definition of To and the properties of Vαl

VαKίJ = Va\(t2)<r->tι = t2.

The proof of the step is easily given by cases, according to the main logical
constant in A.

7.3 Truth definition of sentences and normal ω -derivations

7.3.1 Let Γ =ΦA symbolize: "A is deducible from Γ"; Γ is always finite
in ω-derivations, we put Γ = {Al9 . . ., Am}\ TW(ΓΓΠ) is a shorthand for
TnΓΛ^A. . . Λ L ( Γ A W

Ί ) .

7.3.2 Theorem Let Γ=^>A; d(A, ) < n(i = 1, . . ., m); ό(A) ̂  n.

If TkjA is normal, then T M ( Γ Γ Π ) — T W ( Γ A Π ).

Proof: The whole proof would be taken from (the formalization of) the
subformula property. We give only the part of the proof which make use of
6.1.2, by induction on the length of a path. The basis is obvious; the steps
are given by cases. Let P be the formula preceding A in the path.

Case 1. A is in the E-part of the path. By induction hypothesis

T«( Γ Γ π )-T n ( Γ P π ) .

A is subformula of P, hence by definition of Tn

TJΓP^)-> v r ^ ) .

Case 2. A is in the minimum part of the path.

Subcase 2.a. A is the first formula in the minimum part: do as in Case 1.
Subcase 2.b. A is consequence of the Λ-rule. By induction hypothesis

τ w r n -> T/W(Λ).
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The conclusion is false; hence, for some z, T^(ΓA/Π) is false, and the

Theorem follows by vacuous implication.

Subcase 2.c. A is consequence of a basic rule. Then Vαl preserve To. In

the case the conclusion of the rule is false, it is also false for the premiss:

then do as in Subcase 2.b.

Case 3. A is in the l-part of the path. Induction hypothesis

τ,m-τwrpr)
(for all i; P{ the i-th premiss of A in the z-th path through A). All P^ are

subformulas of A, hence their degree is k <n. Then by the definition of Tn

if for all i it is T fe(
ΓP, π ) , then TW(ΓΛΠ).

7.3.3 Corollary For a sentence A such that 6 (A) < n

N o r m M π ) - T w ( Γ A π ) .
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