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Inexact Geometry

M. KATZ

1 Introduction In Tarski [13] elementary geometry is construed as a
first-order theory, in the classical predicate calculus, of two predicates: the
ternary predicate of betweenness and the quaternary predicate of equi-
distance.* A simplified version for the one-dimensional case, using only
betweenness (and, of course, equality, which can be considered part of the
logic), is given in Roberts [11]. A finite structure (X, b) is a model of this
theory iff there exists a real-valued function / on X such that for all x, y, z e X

b(x, y, z) iff \f(x) -f(z)\ = l/(x) -f(y)\ + \f(y) -f(z)\.

With only one very minor modification, but with equality replaced by
'indifference', Roberts shows that his axiom system becomes a theory of
what he calls 'tolerance geometry'. A finite structure (X, i, b) is a model of
this theory, and of the theory of indifference as described in, e.g., Roberts
[10], iff given any positive real number ε there is a real-valued function /on X
such that for all x, y, z e X

i(x,y) iff l/0t)-/O0Kε

b{x, y, z) iff \f(x)~f(y)\ + I/O/) -/(z)l - \f(x) - f(z)\ <ε.

Tolerance geometry is meant to tolerate errors (of measurement, or of
perception) smaller than a fixed but arbitrary ε. It is thought to be particularly
suitable for the geometry of visual perception. In this context ε could represent
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differential threshold and i indistinguishability of stimuli. If the 'gap' between
two stimuli (e.g., the distance between two points) is smaller than ε, i.e., if they
are within the threshold from each other, they are indistinguishable (and see,
e.g., Zeeman [14]).

One problem with this approach is that the threshold is not a constant
entity. It is defined statistically to be the number ε such that if the 'distance'
between two stimuli is ε then the stimuli are indistinguishable in exactly half
of the trials; and yet it changes from one series of trials to another. This
means, in fact, that there are degrees of indistinguishability: a high degree
could be attached to a pair of stimuli which are indistinguishable in most cases
and a low degree to a pair of stimuli which are indistinguishable in only a few
of the cases. We thus suggest that the yes-or-no notion of threshold, based on
the 'half-trials' cut-point, should be replaced by a variable notion of indistin-
guishability. The degrees of this new variable may well be related to magnitudes
of the gaps between stimuli, which in turn can sometimes be represented, as we
shall soon explain, by distances along a straight line.

This idea applies also to the problem of measurement errors which is
among the chief concerns of every scientist, not only the psychologist studying
visual perception. In any branch of scientific research errors arising from the
dispersive outcomes of repetitive experiments are not fixed and sometimes
unbounded. There is a very rich literature dealing with this problem from a
statistical-probabilistic point of view, but we cannot refer to it here if we want
to keep this paper within manageable proportions. We hope to do so in a
subsequent paper, while here we shall only be concerned with the multi-valued
logical approach.

That the problem of variable errors can be treated within multi-valued
logic was already noted in Goguen's work on the 'logic of inexactness' [5],
which he applies to fuzzy sets and to the social sciences, in Giles' work on the
'logic of risk' [4], which he applies to physics, and in Scott's work on the
'logic of error' [12]. All these logics are essentially the Lukasiewicz logic (see
Lukasiewicz [8] and Lukasiewicz and Tarski [9]), but the interpretation is
new. In a structure X of this logic every statement φ is a real-valued function
on a certain power Xn of the domain X of X, and the value of the function in a
particular point 3c of Xn is the error involved in asserting φ in the point x.

Take, for instance, the case of asserting b (for 'betweenness') at the point
(x, y, z). In classical geometry this assertion would be true if y is strictly
between x and z, and false otherwise. In tolerance geometry it will be true if y
is between x and z to within an error not exceeding some fixed ε, and false
otherwise. In inexact geometry, which we shall axiomatize in this paper within
the logic of inexactness, it will be true up to the deviation of y from being
between x and z. In other words the statement can be attached to various
degrees of (partial) truth; it will be fully true if y is strictly between x and z
and partly true otherwise (it will never be fully false, unless we impose an
arbitrary maximal error, which is hard to justify in most cases).

Similar remarks apply to the other predicate with which we shall be
concerned in this paper, namely 'metric equality' which we denote by e. This
one should be compared with classical equality and with Roberts' indifference.
In the classical case x = y is true if x and y are identical and false otherwise. In
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the indifference case i(x, y) is true if x and y are indistinguishable (i.e., identical
to within ε) and false otherwise. In the multivalued case the (full or partial)
degree of truth of e(x, y) is a function of the distance between x and>\ What
happens in the cases of both e and b is that Roberts' fixed error (ε) becomes
variable, its values in a structure reflecting truth-values of the logic.

The logic of inexactness will be introduced in Section 2. In Sections 3 and
4 we shall axiomatize (metric) equality and betweenness within this logic so
that a real-valued structure (X, e, b) would be a model of our axioms iff there
is a real-valued function / on X such that for all x, y, z e X

e(x,y)=\f(x)-f(y)\

b(x, y, z) = ±(l/(χ) -f(y)\ + 1/00 - f(z)\ - \f(x) -/(z)l).

2 The logic of inexactness Let L be a first-order language with

(1) a countable set V of variables

(2) sets of m-place predicate symbols for various m's in ω

(3) the connectives Λ('and'), v('or'), and -^('implies')

(4) the auxiliary symbols comma and parenthesis.

Definition 2.1 The formulas of L are defined inductively as follows:

(i) If for some m e ω, p is an m-place predicate of L and ΰ e Vm then pv
is an atomic formula of L

(ii) If φ and φ are (atomic or nonatomic) formulas of L then φ Λ ψ,
φ v φ and φ -* Φ are formulas of L.

Definition 2.2 A (real-valued) structure X for L consists of

(i) a nonempty set (the domain of X, to be denoted by X)
(ii) for each m e ω and each m-place predicate p of L a nonnegative

real-valued function on Xm (the interpretation of p in X, to be
denoted also by p).

We now want to define the (truth-)value of each formula of L in points
of the appropriate power of the domain of a given structure for L. In the
sequel we assume that ϋ e Vn (for some n e ω) is a list of pairwise distinct
variables of L, and that if Ίι e Vm (for m e ω) is the list, in order of appearance,
of the not necessarily pair-wise distinct variables of the formula φ of L, then
there is a not necessarily 1-1 function i:m -+ n such that for all / < m, U(j) =
v(i(j)). Then if X is a structure for L and 3c e Xn we write </?ϊ;3c for the value of φ
at the point (5C(Ϊ(0)), . . ., 5c(ϊ(m - 1))) of Xm.

Definition 2.3 The values of formulas of L in points of (powers of) the
domain X of a structure X for L are defined inductively as follows:

(i) If pu is an atomic formula of L then

(pU)ϋx=p(x(i(0)),...,x(Km-\))),
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with notations as above and with p on the right standing for the
interpretation of p in X.

(ii) If φ and φ are formulas of L such that φϋx and φϋx are already
defined, where ϋ is the list of all distinct variables of φ and φ, then

(φ Λ φ)ϋx - max(φϋx, φϋx)
(φ v φ)ϋx - min(</?i;3c, φϋx)

(φ ~* Φ)vx = φvx - φϋx .

In the last term, and throughout this paper, if ε and δ are real numbers then
ε ~ δ stands for max(0, ε - δ).

Let us now turn to what we call deduction expressions (in the language L).
These are expressions of the form Γ h Δ (read: T yields Δ', or 'from Γ deduce
Δ') where Γ and Δ are finite sets of formulas of L. We adopt the conventions of
writing φ for \φ\ and Γ, Γ' for Γ U Γ' in a deduction expression, and of writing
h~Δ when Γ is empty.

Definition 2.4 If, for some n e ω, v e Vn is the list of all distinct variables
of the members of Γ U Δ, then the structure X for L is a model of the deduc-
tion expression Γ h Δ in L if for all x e Xn

max φϋx > min φϋx .
φeT φeA

(Here we shall adopt the convention max ψ = 0, where Φ is the empty set.)

Definition 2.5

(i) A theory T in the language L is a list of deduction expressions in L.
(ii) The structure X for L is a model of the theory T in L (and we write,

somewhat colloquially, X e T) if it is a model of each deduction
expression of T.

In view of our remarks on the logic of inexactness in the Introduction
above it should be clear why in the definitions of this section we have reversed
the usual semantics of the Lukasiewicz logic. In Definition 2.4 we say, in effect,
that φ is truer than φ if the error in asserting φ is smaller than the error in
asserting φ. In Definition 2.3 (ii) we say that an 'and' assertion maximizes the
error, that an 'or' assertion minimizes it, and that the error in asserting φ -* φ
is just the degree of φ being truer than φ, as measured by φ - φ (while if φ is
truer than φ then there is no error in asserting φ -> φ).

Thus absolute truth attains the value 0 (no error) in our logic. There is no
absolute falsehood since there is no maximal potential error, the logic being
valued in [0, <»). This is also the reason why we did not include the negation
connective in the language L, quite apart from the fact that we do not need
negation for what we intend to do in this paper. However, it should be clear
that nothing of what we do here would change if we decide to fix an arbitrary
maximal admissible error, 1 say, in our logic. Then the range of values would be
[0, 1 ], and negation would be defined in the usual way by

~φϋx = 1 - φϋx ,
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with φ, v and 3c as in Definition 2.3, which in fact is short for

~φυx = (φ -+ 'absolute falsehood') vx .

This definition of negation is, of course, purely semantic. So was most of
the discussion of the logic of error in this section. A syntactic treatment of this
logic, including partial axiomatization (by means of Gentzen-style inference
rules), as well as extensions to languages with quantifiers, is to be provided in a
subsequent paper (Katz [7]).

3 Metric and linear models Let L be a first-order language as before, with a
binary predicate e representing equality.

It was noted by Scott [12] that, within the logic of error, equality need
not, and should not, be two-valued as it had been in almost all previous treat-
ments of real-valued logic (e.g., in Chang [1], in Fenstand [3], and in Chang
and Keisler [2]). Equality in a structure X should instead be perceived as a
measure of distance between elements of X. The error in asserting that x and y
are equal increases as the distance between x and y increases. So, the closer are
x and y to each other the truer is the assertion that x and y are equal. In this
way equality, like any other predicate, may obtain any value in [0, <*>), and we
can safely say that "all elements are equal, but some are more equal than
others".

Definition 3.1 The theory ME (in L) of metric equality is:

(re) h e(u, u)
(sy) e(uy v) r~ e{υ, ύ)
(tr) e(u, v) h~ e(v, w) -+ e(w, ύ)

where u, v, w e V.
Here (re) stands for reflexivity, (sy) for symmetry, and (tr) for transitivity.

Definition 3.2 If X e ME then X is said to be a metric model, or a model
with metric equality.

Lemma 3.3 If X is a metric model then for all x, y, z e X

(re) e(x, x) = 0
(sy) e(x, y) = e(y,x)
(tr) e(x, y) > e{z, x) - e(y, z).

Proof: Obvious.

So, if X is a metric model then e is a real-valued pseudo-metric on X. This
seems to be a natural generalization of the two-valued case, since in two-valued
logic equality is just the two-valued metric on the domains of the appropriate
structures. The requirement that in the real-valued case equality should also be
the two-valued metric seems to be less plausible.

In view of these remarks it is now clear that in Definition 3.1 the reason
we have transitivity in the form (tr) instead of full-transitivity in the form

(ft) e(u, v), e(v, w) h e(w, ύ)
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(note that in real-valued logic φ Λ 0 ->χ is in general stronger than Ψ -> (0 -• χ)),
is that for an arbitrary (pseudo-) metric e on a set X it is certainly not true in
general that

max(e(x, y), e(y, z)) > e(z, x)

for all x, y, z e X.
Perhaps the first structure that comes to mind when we think about metric

models is the structure R whose domain is the set R of real numbers and whose
equality is measured by the ordinary absolute-value distance. We shall now
provide conditions necessary and sufficient for a metric model to be embeddable
in R. Models satisfying these conditions will be called linear models, and the
theory appropriate for these models will be called the theory of linear equality.

Definition 3.4 The theory LE of linear equality is: (sy), (tr),

(li)! \~~(e(u, v) -» e(υ, w)) -• e(w, u),
(e(w, u) -* e(u, v)) -+ e(υ, w),
(e(v, w) -> e(w, u)) -• e(u, v),

(li)2 (e(v, w) -> e{w, u)) -> e{u, υ), (e(t, w) -> e(w, u)) -• e(u, t)
h ( φ , 0 -̂  e(t, u)) -> e(u, v), (e(t, v) -* e(υ, u)) -• e(u, t),

where u, υ, w, t e V.

Definition 3.5 If XeLE then X is said to be a linear model, or a model with
linear equality.

Lemma 3.6 If X is a linear model then for all x, y, z, p e X we have (sy), (tr),

(H)i either e(z, x) ~ (e(y, z) - e(x, y)) = 0
or e(y, z) - (e(x, y) ~ e(z, x)) = 0
or e(x, y) - ( φ , x) - e(y, z)) = 0

(li)2 max(e(x, ^) - (β(z, x) - e(^, z)), e(x, p) •=" (β(z, x) - e(p, z)))
> min(e(x, y) -1- (e(p, x) - e(.y, /?)), β(x, p) - (^(^, x) - e{p, y))).

Proof: Obvious again. Note that (re) follows from (li)!, so that a linear model
is in particular a metric model.

It can be seen from (li)j and (li)2 that the intuitive meaning of the first
axiom of linearity (li)j is that for each three "points" one is "between" the two
others, and that the intuitive meaning of the second axiom of linearity (li)2 is
that if both i; and t are "between" u and w, then i; and t cannot be on "different
sides" of u. This will be seen more clearly from (li)f and (li)f below, and still
more clearly from (b)1 and (be)2 of Section 4.

Lemma 3.7 Let e be a [0, ^-valued function on X2 for some nonempty set
X. Then (sy), (tr), (li)i hold for all x, y, z e X iff the following holds for all
x, y, z e X:

(li)f either e(y, z) = e(z, x) + e(x, y)
or e{x, y) = e(y, z) + e(z, x)
or e{z, x) - e(x, y) + e(y, z).
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Proof: Note that (re) follows from (li)*. Use this to derive (sy) from (li)* by
substituting x for z. Each case of (H)i follows from the corresponding case of
(li)*. If (tr) does not hold then none of the cases in (li)* can hold, so (tr) also
follows from (li)*.

Conversely each case of (li)* follows from (tr) together with the corres-
ponding case in (U)i- Symmetry (sy) is needed in order to allow us to inter-
change e(y, z) with e(z, x) in (tr) when e(z, x) < e(y, z).

Lemma 3.8 Let e and X be as in the previous lemma, and consider the
following

(li)* max(e(x, y) + e(y, z) - e(z, x), e(x, p) + e(p, z) - e(z, x))
> min(e(x, y) + e(y, p) - e(p, x), e(x, p) + e(p, y) - e(y, x))

for all x, y, z, p e X. Then we have

(i) ( l i) 2 -(l i)*
(ii) (li)* + (li)2*^(li)2.

Proof: That (i) is true is obvious since (li)* is just the special case of (li)2 where
all the ~'s are -'s.

For (ii) note first that by (li)* (in fact, just by (tr)), the ~'s following
e(x, y) and e(x, p) in (li)2 are actually ~'s. If one of the ~'s following e(z, x) in
(li)2 is not a -, then we have e{x, y) (or e{x, p)) in the antecedent of (li)2 and
e(x, y) ~ ε (or e(x, p) - ε), for some ε > 0, in the conclusion of (li)2, so that (li)2

clearly holds.
Now assume that all the~'s in the antecedent of (li)2are in fact -'s, so that

(li)2 and (li)* have the same antecedent. By (li)* there are three possibilities for
x,y,p:

(1) e(x, y) = e(y, p) + e{p, x)
(2) e(p, x) = e(x, y) + e(y, p)
(3) e(y, p) = e(p, x) + e(x} y).

Using (sy) (which follows from (li)* as was mentioned above), under each of
(1) and (2) we have 0 in the conclusion of (li)2, while under (3) we have

min(e(x, y), e(x, p))

in the conclusions of both (li)2 and (li)*.

Lemma 3.9 Let e and X be as in the previous lemmas and consider the
following:

(li)** if e(y, p) = e(x, z) = e(x, y) + e(y, z)
and e(y, z) = e{xy p)
and e(x, y) = e(z, p)
then e(x, p) = 0 or e(x, y) = 0

for all x, y, z, p e X. Then we have

(i) Qpl^Oi)**
(ii) (U)* + (H)**-+(H)*
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Proof: Again (i) is trivial since (Ii)* * is a special case of (Ii)*, and (ii) is proved
by checking various cases.

Corollary 3.10 Let X be a real-valued model for a language L with a binary
predicate e representing equality. The following are equivalent:

(i) X is a linear model
(ii) (Ii)* + (Ii)* hold for all x, y, z, p e X
(iii) (Ii)? + (Ii) J* hold for all x, y,z,pe X.

Proof: By the last three lemmas.

The reasons for introducing all these forms of (Ii) x and (li)2 are that

(1) (lp! and (li)2 are the direct translations of (li)! and (li)2

(2) (Ii)* and (Ii)* are the direct translations of two axioms of betweenness
given in the following section

(3) (Ii)* and (Ii)** are the easiest to use in proofs of some of the follow-
ing theorems.

We are now in a position to prove the main theorem of this section, the
theorem of embeddability (or representation) of linear models. We only sketch
the proof here, since a detailed version can be found in an earlier paper [6].

Theorem 3.11 The structure X (for a language L with a binary predicate e
representing equality) is a linear model iff there is a function f: X -+ R such that
for all x, y e X

e(x,y)=\f(x)-f(y)\.

Proof: That if such an / exists then X satisfies (Ii)* and (Ii)* * is easy to check.
For the converse assume X satisfies (li)f and (Ii)**. Then in particular X satis-
fies (re), (sy), and (tr), so that e is a pseudo-metric on X. Now, if the number of
equivalence classes of X mod e = 0 is 1 the proof is trivial. If not We fix arbitrary
x, y e X such that e(x, y) > 0 and for z e X we define

f(z\ = ί e(χ> z ) i f e^y> z ) ^ max(e(x, J>), e(x, z))
\-e(x, z) if e(y, z) > max(e(x, y), e(x, z)).

The proof that the function /thus defined on X to R satisfies the claim of
the theorem is technical and rather laborious. We have to compute e(z, p) in
terms of / for arbitrary z, p e X, checking separately each possible position of z
and p, relative to our fixed x and y, according to (Ii)*. There are quite a few
cases and subcases to check. In most cases we obtain the required result using
(Ii)* alone. Only in one single case we have to use (Ii)** also, so that this
condition cannot be considered very 'strong' or 'important'.

In fact it is shown in [6] that only in the case where the number of
equivalence classes of X mod e = 0 is exactly 4, (Ii)** is independent of (Ii)*. In
all other cases (Ii)* implies (Ii)**. Thus the deduction (li)2 can be dropped from
the theory LE of Definition 3.4 without much altering the appropriate class of
models. We call the theory thus obtained the theory of semi-linear equality (to
be denoted by SL) and its models semi-linear models. Obviously every linear
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model is semi-linear. It follows from the remarks in this paragraph that the
converse is also necessarily true unless the model has exactly 4 equivalence
classes mod e = 0.

4 Betweenness The notion of betweenness was implicit in our discussion of
linear equality, and we now want to make it explicit. We start with a language
L containing variables u, υ, w, t, . . ., a binary predicate e representing equality
and a ternary predicate b representing betweenness.

Definition 4.1 The theory LB of linear betweenness in L is:

SL,
(b)χ \~b(u, v, w), b(υ, w, u), b(w, u, υ)
(b)2 b(t, u, υ\ b(u, v, w) h e{u, v), b(t, u, w)
(b)3 b(u, v, w), b(v, t, w) \~ b(u, v, t), e(υ, w) Λ e(t, w)
(b)4 b(u, υ, w) h b(w, v, u)
(b)5 b(u, υt u) h e(u, v)
(b)6 (e(y, w) -> e(w, u)) -> e(u, v) h b(uy v, w).

We remark that this system differs from the one in Roberts [11] in that
instead of the theory SL of semi-linear equality Roberts starts with his theory
of the indifference predicate, and instead of (b)5 and (b)6 he has

[b] 5 b(u, v, w), b(v, u, w) h e(u, v), e(v, w) Λ φ , w)
[b] 6 e(u, υ) )rb(u, v, w).

The reason why in the real-valued case we have to start with something
other than the indifference relation is explained in the Introduction to this
paper. The reason we replace [b]5 by (b)5 is that the latter is simpler in its
formulation and the two are equivalent in the presence of the remaining axioms.
In the two-valued case this equivalence is easy to establish using the fact that the
theory of indifference contains reflexicity and symmetry for e (or/in Roberts's
notation). In the real-valued case this equivalence is also easy to verify as we
shall soon show. Finally, the reason we replace [b] 6 by (b)6 is that whereas in
the two-valued case the two are equivalent in the presence of the other axioms
(including, we note again, reflexivity and symmetry for e), in the real-valued
case, as we shall soon see, (b)6is stronger than [b]6, and it is the stronger version
that we shall need for our purposes.

Definition 4.2 Let I b e a real-valued structure for L. If X e LB then X is
said to be a linear betweenness model.

Lemma 4.3 If X is a linear betweenness model then for all x, y, z, p e X we
have (sy), (tr), (li)! and

(b>! min(ft(x, y, z), b(z, x, y\ b(y, z, x)) < 0
(b)2 max(£(p, x, y), b(x, y, z)) > min(e(x, y), b{p, x, z))
(b)3 max(fr(x, y, z\ b{y, p, z)) > min(b(xt y, p), max(^(^, z), e(p, z)))
(b)4 b(pc,y,z)>b(z,y,x)
(b)5 b(x,y,x)>e(x,y)
(b)6 e{x, y) ̂  (e(z, x) ̂  e(y, z)) > b(x, y, z).
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Proof: Obvious. It is also obvious that the inequalities in (b)1 and (b) 4 can be
replaced by equalities.

Lemma 4.4 If X is a linear betweenness model then for all x, y, z e X we
have

(re) e{x, x) = 0
[b] 5 max(6(x, y, z), b(yt x, z)) > min(έ?(*, y), max(e(j>, z), e(x, z)))
[b)6 e(x,y)>b(x,y,z).

(Note that [b] 5 and [ b ] 6 are the translations in X of [b] 5 and [b]6.)

Proof: We have already noted in the previous section that (re) follows from
(li)i It is obvious that [ b ] 6 follows from (b)6. Finally, in the presence of (re),
(sy), (b)4 and [b] 6 , (b)5 implies that [b] 5 is just a special case of (b)3.

Corollary 4.5 If X_ is a linear betweenness model then for all x, y e X

e(x, y) = b(x, y, x).

Proof: By (b)5 and [b] 6 .

Note that if JΠs a real-valued structure satisfying

then it is easy to check that X also satisfies (b)5. However, in that case X does
not necessarily satisfy (b)6, for let X = (x, y, z\, fix an ε > 0 and define:

b(x, y, z) = b(y, z, x) = e(x, y) = e(y, z) = ε
e(x, z) = 2ε
b(y,x,z)=0.

To obtain a structure X, determine the remaining values for e and b by means
of (re), (sy), (b)4, (b) s, and [b] 6 . It then requires some simple computations to
check that X satisfies all the axioms listed in (*). Yet X does not satisfy (b) 6

since

e(x, y) - (e(x, z) - e(y, z)) = 0

while

b(x, y,z) = ε>0.

We now turn to one of the central theorems of this section.

Theorem 4.6 If(X, e) is a semi-linear model then (X, e, b) is almost a linear
betweenness model iff for all (x, y, z) e X

{ e(x, y) if e(y, z) = e(z, x) + e(x, y)
e(y, z) // e(x, y) = e(y, z) + e(z, x)
0 // e(z, x) = e(x, y) + e(y, z) .

Equivalently, iff for all x, y, z e X

b(x, y,z) = \ (e(x, y) + e(y, z) - e(z, x)).
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(Here by "almost" we mean (X, e, b) is a model of LB except for (b)2.)

Proof: That these two conditions are equivalent is trivial. If one of these condi-
tions holds it is a matter of routine computation to check that (X, e, b) satisfies

Now assume (X, e, b) is almost a linear betweenness model. Note first that
by (b)6

if e(x, y) + e(y, z) - e(z, x) = 0

then b(x, y, z) = 0.

On the other hand assume that

(i) e(x, y) + e(y, z) - e(z, x) Φ 0.

Then by (Ii)* we have

either (ii) e(z, x) + e(x, y) - e(y, z) = 0
or (iii) e(y, z) + e(z, x) - e(x, y) = 0.

Without loss of generality assume (ii). Then by (b)6:

b(y, x, z) = 0.

If we assume that also

b(x, y, z) = 0,

we obtain from [b]5

e(x, y) = 0.

Together with (ii), this implies

e(x, y) + e(y> z) * Φ> x) ~ 0,
contradicting (i).
We conclude that

b(x, y, z) = 0 iff e(x, y) + e(y, z) - e(z, x) = 0.

Thus we can concentrate on the case where b{x, y, z)Φ0 and either (ii) or (iii)
above holds. In that case, by (b)ί we have

either b(y, x, z) = 0
or b(x, z, y) = 0.

Each of these, together with [b]5, [b]6, and (re) (and using symmetry of be-
tweenness (b)4 and of equality (sy), if needed) implies:

h(x v zλAe{x'y) i f ( i ί )

b(χ, y, z) <^e{y^ z ) . f ( i i i )

and so the proof is complete.

The following immediate corollary to Theorem 4.6 shows that the law of
substitution of equals holds for b. In this corollary, and in its proof, if a e A for
some set A, and ~a e Am for some m e co, then Έ[i/a], for i < m, is the element
of Am obtained from a by substituting a for #(/).
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Corollary 4.7 Every linear betweenness model satisfies

e(u, v) \~b{u0, uh u2)[i/u] -+b(u0, uh u2)[i/υ]

where u, v, UQ, uh u2e V and i < 2.

Proof: X satisfies this corollary if and only if for each / < 2 and for all x, y, xQ,

xh x2 e X

e(x, y) > b(x0, xlt x2)[i/y] - b(x0, xh x2)[i/x].

To see that this is indeed the case for any linear betweenness model X, substi-

tute the values for b by the second condition in Theorem 4.6 and then apply

(tr)

Lemma 4.8 In the theory LB of linear betweenness (b) 2 can be replaced by
each of (\ϊ)2and

(be)2 b(u, υ, w), b(u, t, w) h b{u, υ, t), b(u, t, υ).

Proof: X satisfies (be)2 iff for all x, y, z, p e X

(be)2 max(^(x, y, z), b(x, p, z)) > min(Z?(x, y, p), b(x, p, y)).

Substituting the values for b by the second equivalent condition in Theorem 4.6,
and multiplying both sides of the inequality by 2, we get exactly (li)f, which is
equivalent to (li)2 in presence of (li)f. Thus for a linear betweenness model X
(where clearly (li)* holds) (be)2 and (li)2 are equivalent.

To show that (li)2 can replace (b)2 in LB, let X be a model of LB. Then
(li)2 holds in X iff (li)f* holds in X (since (li)f holds in X). But (li)** is just a
special case of (b)2. So (b)2 implies (li)**, while (li)** implies one of the cases
of (b)2. Now it is a matter of simple computation to show that Theorem 4.6
implies the remaining cases of (b) 2 (and note that (b) 2 was not used in the proof
of Theorem 4.6).

The significance of this lemma is that

(1) it shows that our intuitive understanding of (li)2 in the previous sec-
tion was correct

(2) it gives two additional formulations of LB
(3) it implies immediately the following corollary, which apart from being

of interest in itself will be used in the proof of Theorem 4.10 (the
embedding theorem).

Corollary 4.9 Every linear betweenness model is in particular a linear model.

Proof: SL + (li)2 is exactly the theory LE of linear equality.

We can now easily prove the embedding theorem for linear betweenness
models.

Theorem 4.10 Let X be a real-valued structure for a language L with a
binary predicate e and a ternary predicate b. Then X is a linear betweenness
model iff there is a map f: X -+ R such that for all x, y, z e X
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b{x, y,z) = \ (l/(x) -f(y)\ + \f(y) -f(z)\ - \f(x) -f(z)\)

e(x,y)=\f(x)-f(y)\.

Proof: If such an /exists we require again computations as before to show that
X is a linear betweenness model.

Conversely, if X is a linear betweenness model then by Corollary 4.9 it is
in particular a linear model. Then by the embedding theorem for linear models
(Theorem 3.11) there is a function /satisfying the above condition for e, and
by Theorem 4.6 this /also satisfies the required condition for b.

Looking through the various results in this section, we see that in a certain
sense all that there is to be said about linear betweenness is already being said
by the axioms of linear equality. This "certain sense" is made precise in the
following theorem and corollary.

Theorem 4.11 The theory LB of linear betweenness is (sy), (tr), (li)2 +

(be)x Y-{{e{u, υ) ->• e(υ, w)) -• e(w, u)) Λ (b(u, v, w) «—• e(u, υ)),
((e(w, u) -+ e(u, v)) -* e(v, w)) Λ (b(u, υ, w) <—• e(υ, w)),
((e(v, w) -> e(w, u)) -* e(u, v)) Λ b(u, v, w).

Proof: Axiom (be)j is just an amalgamation of (li)r and a formulation in L
of the first condition in Theorem 4.6. Note that φ <—> Φ is short for (φ-+ φ) Λ
(Φ -*φ) Obviously its (truth-)value is given by the absolute difference.

Corollary 4.12 If(X, e) is a linear model then a ternary real-valued relation
b can be defined on X such that (X, e, b) is a linear betweenness model.

Proof: For any x, y, z e X define b(x, y, z) by means of one of the two equiva-
lent conditions in Theorem 4.6.

On the other hand, we can give a formulation of LB in which the predicate
b plays the main role. Here we start with (X, e) being just a metric model (i.e.,
a model of the theory ME of metric equality).

Theorem 4.13 The theory LB of linear betweenness is

ME,(b)i,Q>h,Q>)*,Q>)6,Q>h>

where (b) 7 is

b(u, v, w) h (e(υ, w) -> e(w, u)) -> e(u, v), (e(u, v) -> e(w, u)) -> e(v, w).

Proof: It is easy to see that a real-valued structure (X, e, b) satisfies the axioms
listed in this theorem iff it satisfies the axioms listed in Theorem 4.11.

Note by the way that (b) 7 (like (li)j which appeared in all previous formu-
lations of LB) is not necessarily true in the two-valued case.

In a rather artificial way we can obtain a corollary to Theorem 4.13 which
corresponds to Corollary 4.12 of Theorem 4.11. We do this by letting LB* be
the theory obtained from that in Theorem 4.13 by replacing, in each of the
axioms, every e expression by the appropriate b expression (the appropriate b
expression for e(u, v) is b(u, v, u)).
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Corollary 4.14 If(X, b) is a model of LB* then a binary real-valued relation

e can be defined on X such that (X, e, b) is a linear betweenness model.

Proof: For any x, y e X define e(x, y) by means of the condition in Corol-

lary 4.5.

We summarize this section as follows: we gave various formulations of the

theory LB of linear betweenness. We proved an embedding theorem, similar to

that in Roberts [11], which fits our intuition about inexact betweenness.

Unlike Roberts we did not have to restrict attention to finite models (even the

fact that, since the function / of Theorems 3.11 and 4.10 is clearly 1-1 on

equivalence classes mod e = 0, the number of such classes cannot exceed 2ω, is

a result, not a precondition, of our theory), or to impose a fixed maximal

error ε which would have contradicted our understanding of the logic of

inexactness. Thus we can consider LB an axiomatization of one-dimensional

inexact geometry. Perhaps this deserves further study into the ^-dimensional

case and the inexact equivalent of the second predicate of Tarski [13], namely

the equi-distance predicate.
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