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Equivalence Relations and S5

G. E. HUGHES

1 An equivalence relation is commonly defined as one which is reflexive,
symmetrical, and transitive. This paper* starts from the problem of finding a
pair of conditions on a dyadic relation which together yield equivalence but
neither of which by itself yields either reflexiveness or symmetry or transitivity.
It will be shown that there are infinitely many such pairs of conditions.

There is a parallel problem in modal logic, that of finding a pair of for-
mulas which, if added to the minimal normal modal logic K, yield precisely S5,
but neither of which, when added to K, yields either Lp O p or p O LMp or
Lp D LLp as a theorem. It will be shown that there are infinitely many such
pairs of formulas.

2 One solution to the second problem is provided by the following for-
mulas:

A LMLpDp
B MLp>LMLLp.

Since in S5 an affirmative modality is equivalent to its last member, it is
clear that A and B are theorems of S5 and hence that S5 contains K+ A4 + B.
For the converse it is sufficient to derive MLp D Lp and Lp O p. We first note
that A is interdeducible in the field of K with its dual:

A p DMLMp.
We then have:

MLp D Lp [B, A(Lp/p) X Syll]
Lp>op [A'(Lp/p), B(MLp/p), A(LMLp/p), A X Syll]

*I acknowledge with gratitude the help given to me by Dr. R. L. Epstein in preparing this
paper. In particular, he is responsible for the generalizations of conditions Y and Z in
Section 4.
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That neither Lp D p norp O LMp nor Lp O LLp is a theorem of K+ 4 or
of K+ B can be shown as follows. The frames of Figures 1 and 2 are frames for
K + A and K + B respectively. Yet since neither frame is reflexive or symmetri-
cal or transitive, the three formulas mentioned can be falsified in each of them.
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For good measure we can also show that neither 4 nor B is a theorem of
K+ LpDp (T) or of K+ pDLMp (B® or of K+ LpDLLp (S4°). These systems
are known to be characterized by the classes of all reflexive, symmetrical, and
transitive frames respectively. However,

(i) In the model on the reflexive transitive frame of Figure 3 in which
V(p) =1y}, A is false at x

(ii) In the model on the symmetrical frame of Figure 4 in which V(p) =
@, A is false at x

(iii) In the model on the reflexive transitive frame of Figure 5 in which
V(p) = {3}, B is false at x

(iv) In the model on the symmetrical frame of Figure 6 in which V(p) =
{y}, B is false at y.
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3 K + A and K + B are characterized respectively by the classes of all frames
satisfying the following conditions Y and Z:

Y Vx3z(xRz A Vw(zRw D wRx))
4 (xRy AxRz) D Iw(zRw A Yv(wR?v D yRv)).

The proofs of soundness are left to the reader. We prove completeness by
the method of canonical models.

3.1 Completeness of K + A We have to show that in the canonical model
(W, R, V) for K + A, R satisfies Y. Let x be any point in W. What is needed is to
show that there is some point z € W such that: (i) xRz, and (ii) every point to
which z is related is related to x. It is sufficient to prove that

I'=f{o: Lace x} U{LMB: Bex}

is consistent, for: (a) if I' is consistent there will be some z € W such that I" C z;
(b) since {a: Laex} C z, we shall have xRz; and (c) since {LMpB: B € x} C z, then
if zZRw we shall have {MB: 8 € x} C w, and hence wRx.
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Suppose that I is inconsistent. Then for some wff’s La, 84, . . ., B, € X,

FaD~(LMByA...ALMB).
Hence by K,

LoD L~(LMByn...nLMB,).
Hence, since La € x, we have L~(LMB, An...ALMB,) € x, and thus
(*) ~M(LMBy A. .. NLMB,) € x.
But since 8, . . ., B, € x, we have, by 4',
MLM@ByA...ABy)ex

and so, by K, M(LMBy A...nLMB,) € x.
But this contradicts (*); therefore I is consistent, as required.

3.2 Completeness of K + B Let (W, R, V) be the canonical model for K + B,
and let x, y, z be any points in W such that xRy and xRz. We have to prove that
there is some w e W such that: (i) zZRw and (ii) for every v such that wR?v, we
have yRv. It is sufficient to show that

I'={o: Laez} UILLB: LB € y}

is consistent; for suppose some w € W includes T, then: (a) since {a: Laez} Cw,
we have zRw, and (b) since {LLB: LB € ¥} € w, then for any v such that wR?%v
we have {8: LB € y} C v, and so yRv.

Suppose that T is inconsistent. Then for some Lo € z and some LB € y,

FaD~LLB.

Hence by KX,
FMLo D ML ~LLg.
Now La € z and xRz;so ML« € x, and therefore
ML ~LLB e x.

Hence by K,
(*x) ~LMLLB € x.
But since Lf € y and xRy, we have ML{ € x, and hence by B:

LMLLB € x

which contradicts (**). Therefore I is consistent as required.

4 The results of Sections 2 and 3 amount to an indirect proof that condi-
tions Y and Z together yield equivalence, and thus provide one solution to the
first problem of Section 1. (We shall give a direct proof in a moment.)

Conditions Y and Z can be generalized as follows. For each n € Nat (=1),
we define

Y, Vx3z(xRz A Vw(zR"w D wRx))
Z, (xRy AxRz) D Iw(zRw A Yu(wR"* v D yR"™v)).
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We shall show that if »n is odd, then if R satisfies Y,, and Z, then R is
symmetrical, reflexive, and transitive, i.e., is an equivalence relation. Since the
original Y and Z are simply Y, and Z, respectively, the proof will clearly cover
them.

We note that each Y, explicitly includes seriality, i.e., the condition that
Vx3z(xRz).

Proof that R is symmetrical: Suppose aRb. Then by Y, thére is some ¢ such
that

(1) aRc
(2) VYx(cR"x O xRa).
Since aRc A aRc (by (1)), then by Z,, there is some d such that

(3) cRd
4) Vx(@R"*x D cR"x).

Now by seriality there is some e such that
(5) dR"le.

(This holds even if n = 1, for then e = d.) Then from (3) and (5) we have cR"e.
Hence by (2),

(6) eRa.

Now from (5), (6), and aRb we have dR"*1b; hence by (4) we have cR"b and
so, by (2), bRa.
Note that this result holds whether n is odd or even.

Proof that R is reflexive: Let a be any element. Then by Y,, there is some b
such that

(1) aRb
(2) Vx(bR"x D xRa).

From (1), by symmetry, we have bRa and, therefore, if n is odd, bR"a. Hence
by (2), we have aRa.

Proof that R is transitive: Suppose aRb and bRc. We can assume symmetry and
reflexiveness. By Y, there is some d such that

(1) cRd
(2) Vx(dR"x D xRc).

Moreover, since aRa and aRb, there is (by Z,,) some e such that

(3) bRe
(4) Vx(eR"*x D aR"x).

We note that by symmetry, (3) gives eRb. Suppose now that » = 1. Then by
eRb and bRc (given) we have eR?c; so by (4) we have aRc. Suppose now that
n> 1. Then by eRb, bRc, (1), and reflexiveness we have eR"*1d. Hence by (4)
we have aR"d; hence by symmetry we have dR"a, and so by (2) we again have
aRc.
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We note that the oddness of n is essential to the proof of reflexiveness, but
that, given reflexiveness, transitivity follows whether » is odd or even. We also
note without proof that if » is even, R satisfies the condition that if xR3y then
xRy.

That neither reflexiveness nor symmetry nor transitivity follows from any
Y, or Z, by itself can be shown from the fact that in Figures 7 and 8 we have
models for Y, and Z, respectively. Clearly neither is reflexive or symmetrical or
transitive.
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5 Corresponding to the conditions Y, and Z, respectively are the modal

formulas (for each n = 1)

A, LM"LpDp
B,  ML"p D LML"*p.

Clearly the A and B of Section 2 are 4, and B, respectively. Since in S5 every
affirmative modality is equivalent to its last member, each 4, and each B, is a
theorem of S5; so S5 always contains K + 4, + B,,. We now show that if n is
odd, K + A, + B, contains S5. To do so it is sufficient to derive p D LMp,
Lp Dpand Lp O LLp.

We note that each A4, is interdeducible in the field of K with its dual

A, pDOML"Mp

(1)  ML"M(p Dp) [A4,(p D p/p), PC]
(2)  ML"M(p D p) D M(p O p) [K]
3) M(p O p) [(1), (2) X MP]
4 LpDMp [(3) X K].

All subsequent theorems will be of the form o D Xp, where X is an affirmative
modality. Clearly (4) enables us to replace L by M anywhere in the consequent
of such a theorem.

%) ML"Mp O LML"*'Mp [B.(Mp/p)]
(6) ML"Mp O LM"LLMp [(5) X (D]
@) LM"LLMp D LMp [A.(LMp/p)]
®) pDLMp [An, (6), (7) X Syll]
) MLp Dp [(8) X Duality]
(10) LLpOp [(4)(Lp/p), (9) X Syll].

(9) and (10) enable us to delete ML and any even number of consecutive L’s in
the consequent of a theorem.

(1 Lp D ML"MLp [An(Lp/P)]
(12) Lp D ML"p [(11) X (9)].

Now since » is odd, n — 1 is even. Hence:
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13) LpDp [(12) X (9) X (10)]
(14) Lp DLMLL"p [(12), B, X Syli]
(15) Lp D L"*'p [(14) X (9)].
Nowifn=1,(15)=Lp D LLp;and if n > 1 we have

(16) LpDLLp [(15), (13) X Syll (as often as required)].

(8), (13), and (16) are the required theorems.

None of these three is a theorem either of K + A, or of K + B, (for any rn).
This is proved by the fact the frames illustrated in Figures 7 and 8 are frames
for K + A, and K + B, respectively, but all three formulas can be falsified in
each.

Completeness proofs for K + A, and K + B, relative to the classes of
frames satisfying Y, and Z, respectively (for any n = 1) can be obtained by
straightforward generalizations of the completeness proofs given in Section 3.

6 For any even n (=2), K + A, + B, yields a system, weaker than S5, which
is characterized by the class of frames in which R is serial, symmetrical, and
such that if xR3y then xRy. It is equivalent to the system obtained by adding
to K the axioms Lp D Mp, p O LMp, and Lp D LLLp. The proof is left to the
reader.

The system in question does not appear to be equivalent to any of the
standard ones in the literature.

7 We turn now to the relations of the Y,’s and the Z,’s among themselves.
(a) If m >n, Z, entails Z,,,.

Proof: B,(L™ "p/p) = B,.

(b) If m <n, Z, does not entail Z,,,.

Proof: The model of Figure 8 in Section 4 satisfies Z,, but not Z,, for m <n.

Thus the Z,’s form a sequence in descending order of strength. The situa-
tion with respect to the Y,,’s, however, is more complex.

(c) If m>1, then Y, and Y, are independent.

Proof: (i) The model of Figure 9 is a model for Y, as is easy to check. But this
model does not satisfy Y, form > 1.

Fig. 9

For consider x,. The only points to which it is related are x, and x,. Now from
each of these we can reach x, (or for that matter x,) in m steps, for any m > 1.
But x is not related to itself (nor is x, related to x,). Hence Y, does not entail
Y,,. (ii) That Y,, does not entail Y, for m > 1 is a special case of the next
result, (d).
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(d) If m is not of the form n + r(n + 2), then Y,, does not entail Y,,.

Proof: The model of Figure 7 satisfies Y. Clearly it contains n + 2 points, and
the only point to which x, is related is x,. Now it is evident that »n steps will
take us from x; to x,.,, and also that any multiple of n + 2 further steps will
again take us to x,+,; but any other number of steps will take us to some point
other than x,,,, and no such other point is related to x,. Hence Y,, is not satis-
fied if m is not of the form n + r(n + 2).

(e) If n > 1 and m is of the form »n + r(n + 2), then Y, entails Y,,.

Proof: We can prove this by showing how to derive A, .,(n+2) (for arbitrary r)
as a theorem of K + A, (n > 1). The key step in the proof is the derivation of
the perhaps surprising theorem MLp O LLp.

Assume K and

Ay ILM"'Lp Dp(n>1).

We note as before that the dual of 4,, is

Ay p DML"Mp

and that as in Section 5 we can derive (1) Lp D Mp. We then have:
) LMp D ML"MLMp [A%(LMp/p)]
3) DML(p D L" ‘MLMp) [K]
“4) ~LMp D ML~p [K]
(5) DML(p D L" ‘MLMp) [K]
(6) ML(p DO L" *MLMp) [(3), (5) X PC]
@) LM"L(p D L"'MLMp) [(6), K, (1]
(8) pDL" 'MLMp [(7), A,, X MP]
&) LMMp DO LMML" *MLMp [(8), K]

(10) DLM'LMLMp X (D]

an LMMp D MLMp [(10), 4,]

(12) LMLp D MLLp [(11), Duality].

We note that if we have a theorem of the form o O X3, where X is an affirma-
tive modality, then (12) enables us to replace LML by MLL anywhere in X.

(13) LMLMLp D MLLMLp [(12)(MLp/p)]
(14) D MLMLLp [X(12)]
(15) DMMLLLp [X (12)]
(16) D MML(MLp D LLp) (K]
a7 ~LMLMLp D MLMLM~p (K]
(18) DMMLLM~p [X (12)]
(19) D MML(MLp D LLp) (K]
(20) MML(MLp D LLp) [(16), (19) X PC]
@n LM"L(MLp D LLp) [(20), K, (1)]
(22) MLp D LLp [(21), A, X MP].

(22) enables us to replace ML by LL anywhere in X in a theorem of the form
aD XB. Now let m =n +r(n + 2). Clearly Ay, Ap,(ML"Mp/p) X Syll yields
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(23) p DML"MML"Mp
and hence by repetition we have
(24) p DOML"MML"M ... ML"Mp

where ML"M occurs r + 1 times.

It is easy to see that there are n + 2 +r(n + 2) operators in the modality in (24).
We can now use (22) to replace each M except the first and the last by L, thus
giving ourselves n + r(n + 2) L’s. We thus have

(25) p DMLn+r(n+2)Mp’

which is A,,.

The upshot of (c)-(e) is that if n # m then Y, and Y,, are independent
except when n > 1 and m =rn mod(n + 2), in which case Y, entails Y,,, but not
conversely.

We note the following corollary of the proof in (e):

T+A,=S85foranyn>1.

Proof: T gives the theorem LLp D Lp, and this with (22) yields MLp D Lp, and
hence a standard basis for S5.

8 The results obtained in Section 7 enable us to generalize the results of
Sections 4 and 5 even further. For we can now prove the following:

For any odd n > 1 and any k (evenorodd) =1, K+ A4, + By = S5,and Y, and
Zy yield equivalence.

Proof: If n is odd then for every even r, n + r(n + 2) is also odd. Hence no
matter how large k may be, there will always be some odd m > k such that m =
n+r(n+2) for some r. By (e) in Section 7, A, is a theorem of K + 4,,; by (a),
B,, is a theorem of K + By; hence K + 4, + By contains K + A,, + B,,, and by
Section 5 the latter yields S5. Similarly, by Section 7(e) and (a), Y, and Z
entail Y,, and Z,, respectively, and by Section 4 these together yield
equivalence.
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