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Congruences in Lemmon's S0.5

JEAN PORTE

1 The status of SO.5 The system SO.5, defined by Lemmon [4], has a
special status among the modal propositional calculi. It is the weakest system
which has the following properties:

(i) The set of theses is closed under substitution and material detachment
(ii) The theses of modal degree at most one are the same as in S5.

Indeed, S1-S5 and Feys' T all have the same theses of modal degree at
most one and, among the systems which have this property, S5 is the strongest,
and SO.5 is the weakest.

It has been proved by Hughes and Cresswell ([2], p. 288) that the rule of
replacement of strict equivalents does not hold in SO. 5.

Now no particular connective can be said to have a "birthright" to be
present in a replacement theorem. In the normal modal systems (in the sense of
Kripke [3] or in the sense of Lemmon-Scott [5]), the classical double implica-
tion, <—>, has this property. In the nonnormal Lewis systems (57, S2, S3) there
is no replacement theorem for <—>, but there is one for "strict equivalence",
defined as L(x -+y) A L(y -* x) (it could be defined as L(x «—• y)).

Can we define in SO. 5 another connective which has the replacement
property? I will study this problem using general notions and results about
"congruences" in propositional calculi, which are recalled in the next section
(some of these definitions and results have been published, in a somewhat
different form, in [9]).

The results will be that such connectives C(x, y) (indeed infinitely many
such connectives) exist, but they characterize only identity between formulas,
i.e., \~C(x, y) iff x - y. A few consequences of this fact are discussed in
Section 4.
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2 Congruences in propositional calculi

Definition 2.1 A congruence, E, is an equivalence relation between for-
mulas, compatible with the set of theses, for which the replacement property
holds; i.e.:

a. For all formulas x, y\ if xEy and kx then \~y.
b. If a{x) is a formula containing x as a subformula, and a(y) is like a(x)

except containing y in place of an occurrence of the subformula x,
then: if xEy then a(x)Ea(y).

Definition 2.2 A congruence is formula-definable if there is a formula
f(x, y) containing x and y as subformulas, such that

xEy iff \~f(x,y).

In the classical propositional calculus the classical "equivalence", E, is a
congruence, and it is formula-definable by

xEy iff \~x <—> y.

But there are other congruences, for instance identity, and these other con-
gruences are not formula-definable (see Theorem 2.2 below).

Congruences are relations, and can therefore be ordered by inclusion.

Theorem 2.1 The set of all congruences of a propositional calculus, ordered
by inclusion, constitutes a complete lattice.

Proof: Let & be any set of congruences. The greatest lower bound of & is the
intersection of all the relations in (3; and the least upper bound is the transitive
closure of the union of all the relations in '&.

In particular, the set of all the congruences of a propositional calculus
contains a minimum element, the identity, and a maximum element.

Theorem 2.2 If a congruence is formula-definable, it is the maximum
congruence.

Proof: Let us suppose E is definable by the formula /, and let E1 be another
congruence. Then we have:

(1) xE'y [hypothesis]
(2) xEx [reflexivity of E]
(3) \~f(x, x) [by (2) and the definability of E]
(4) f(x, x)E'f(x, y) [by (1) and the replacement property for E'

(Def. 2.1b) with a(z) = f(x,z)]
(5) \-f(x, y) [by (3), (4) and Def. 2.1a]
(6) xEy [by (5) and the definability of E]

Thus xE'y implies xEy for all formulas x, y and every congruence E'.

Corollary / / identity is formula-definable, it is the sole congruence. (This
corollary is one of the chief ways to use Theorem 2.2.)
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Remarks (i) Only one congruence can be formula-definable, but the same
congruence (the maximal one) can be characterized by various formulas, even
by infinitely many formulas. For example, in the classical proposition calculus,

xEy iff \~x <—• y
or xEy iff \~~lx <—•* ly
or xEy iff h l l x <-+ 11 y,

and so on.

(ii) Definition 2.2 can be extended by allowing a "formula-definable"
congruence to be characterized by a set (either finite or infinite) of formulas

xEy iff \~fi(x, y) and h/2(x, y) and . . . .

Then nothing need be changed in Theorem 2.1, the Corollary, or in Remark (i).
For instance, in the classical implicational calculus, the maximal congruence
may be characterized by

xEy iff \~x -> y and \~y -> x.

3 Congruences in Lemmon's SO. 5 In this section SO. 5 is defined using "1
(negation), ->• (classical implication), and L (necessity) as primitives.

An axiomatization consists of three axiom schemas and a rule:

\~Lt if t is a tautology
\~Lx -* x \
\~L(x -* j>) -» (Lx -* Ly) \ for all formulas x, y

x, x -> y I y )

(It follows at once that SO. 5 contains the classical propositional calculus.)
A decision method, based on a special nonnormal Kripke-style semantics,

has been discovered by Cress well [1] (see also Hughes and Cresswell [2],
Ch. 15). It will be used to prove:

Theorem 3.1 In SO.5 identity is formula-definable, and is therefore the
sole congruence.

Proof: Let us consider the formula

L(Lx-+Ly)

where x and y are arbitrary formulas. If x = y, this formula becomes L(Lx -+
Lx), which is a substitution instance of L(p -* p) (where p is a propositional
variable), and hence an ^.5-thesis. But if x ¥= y, Cresswell's method leads to
the examination of the formula Lx -> Ly in a nonnormal world ([2], pp. 286-
287), where x and y can receive different values; whence a SO.J-model which
falsifies the formula. Then

x=y iff \-L(Lx-*Ly),

and the result follows by the Corollary.
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By the same decision procedure we see that

x=y iff L(Lx^Ly)
x = y iff LLx -* LLy
x = y iff LLx <-—• LLy
x = y iff LiLLx -• LZy),

and so on.

Then, if one tries, for instance, to define a "super-strict equivalence" by

xEy iff \~L(Lx<-+Ly)

this new connective has the replacement property, but E is simply identity!

Remarks (i) The five formulas just examined are particular cases of a
general feature of SO.5 which can be proved by the decision method, namely:
A formula of modal order greater than one is a thesis of SO. 5 if and only if it
is a substitution instance of a first-order thesis. The first-order theses of SO. 5
are exactly the theses of the "Basic Modal Logic" of Pollock [7]. This proves a
conjecture of Lemmon (see [4], p. 181, footnote).

(ii) A formula such as LL(x *—» y) cannot characterize a congruence, for
no formula of the form LLz can be a thesis of SO. 5.

4 Consequences

They are severe!
If SO.5 had been defined with all the classical connectives ("1, ->, v, A, <—•)

none of them could be "defined" by means of the others. For instance p v q
and (p -> q)-* q would not be "synonymous", in the sense of Smiley [11], for

\~LL(p v q) -> LL(p v q)

while

LL{p\j q)-+LL((p-> q)-> q)

is not a thesis.
Similarly, if we consider the formulas

(1) LLLp^LL^M-lp
(2) LLMp -» LL~lL-]p

and apply the decision procedure given in [2], then:

• if L is primitive and M defined (as ~\L1), then (2) is a thesis but (1)
is not

• if M is primitive and L defined (as ~1M~1), then (1) is a thesis but (2)
is not

• if L and M are both primitive, neither (1) nor (2) is a thesis.

This last fact had already been noted by Milberger [6].

5 Other weak modal logics One may conjecture that identity is the sole
congruence in certain very weak modal propositional systems.



676 JEAN PORTE

In [8] and [10] various modal systems are constructed systematically,
starting from a very weak system Sa and using two operations, v and p. In that
construction pSa = SO. 5, vpSa = T, and vpvSa = S4. It has just been proved that
identity is formula-definable in pSa. It follows that the same result holds for the
weaker systems (Sa and S^). The maximal congruence may be defined by "strict
equivalence" (as in the Lewis systems), and the congruence does not reduce to
identity, in seven systems. It remains to examine the case of the systems vSa

and pvSa, which can be considered as "by-products" of the construction. It
will presently be proved that identity is the sole congruence in these systems.

The system pvSa differs from pSa = SO. 5 by a supplementary axiom
schema:

\~Lx -• LLx for every formula x.

This suggests the following modifications of Cresswell's semantics for SO. 5 (see
[ 1 ] or [2], Ch. 15). It will be postulated, for a new class of nonnormal frames,
that:

(i) In a nonnormal world, TV, any formula of the form Lx can be true, but
it can be false only if x is false in another world accessible to N (then
there are worlds accessible to a nonnormal one).

(ii) The accessibility relation is transitive.

Validity is defined as in the Kripke-style semantics with nonnormal worlds
(see [2],Ch. 15).

The proof of validity of the axioms and rules of SO. 5 is similar to that in
Hughes and Cresswell ([2], p. 286). The supplementary axiom schema, Lx ->
LLx, is proved valid as in S4, as shown by the following chart in the style of
Hughes and Cresswell, where the Ws are normal worlds and the ATs are non-
normal.

Wx: I Lx->LLx I1 ° ° 1

Nx: || x\ Lx || \

7V2: x j x impossible

Now let us consider the formula

L(L(Lx^Lp)-*L(Ly->Lp)),

where p is a variable which occurs in neither x nor j ^ . It is valid if x = y, for in
this case it has the form L(z -> z). It is not valid if x =£ y, as shown by the
following chart:
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Wt: I L(L(Lx -+ Lp) -> L(Ly -> Lp))

\

Nx: L{Lx -> Lp) -> £(/,>> -+ Lp)

i' i
7V2: I Ly->Lp

z l o o

»>•• [0
No step contradicts propositional logic, for x =£ y and p ¥= y.

Let us abbreviate that formula as F(x, y, p). If pu p2, • . ., pn> • • • a r e a^
the propositional variables, we have

xiTy iff F(x, y, px) and F(x, y, p2) - • • and F(x, 3̂ , p/2) . . ..

By Theorem 2.2 (and its Corollary and Remarks) it follows that identity
is the sole congruence in the logic defined by validity in the above class of
frames. But as this logic is at least as strong as pvSa, we have:

Theorem 5.1 In pvSa identity is the sole congruence.

It follows that identity is also the sole congruence in all systems weaker
than pvSa, such as vSa, pSa = SO.5, etc., since \~L(z -+ z) even in Sa.

In the following chart (see [8] or [10]), where the arrows show relative
strength of the systems constructed from Sa, the systems at the left of the
broken line have identity as sole congruence.

vSa pvSa , '

^ V ^ ^ ^ ^ ^ S*f>vPSa VpvSa

pSa = S0.5 vpSa = T
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