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General Models of Set Theory

THOMAS P. WILSON

Quine explains the concept of set by considering an open sentence and
observing that

The notion of class is such that there is supposed to be, in addition to the
various things of which that sentence is true, also a further thing which is the
class having each of those things and no others as member. It is the class deter-
mined by the open sentence. ([4], p. 1)

The task of set theory is to formulate this idea rigorously in a way that blocks
the paradoxes. In addressing the problem, technical investigations of set theory
have been confined to what might be called its “internal structure”, in which
the discussion is framed in an underlying logic containing only those primitive
predicates essential for formulating set theory itself. However, the intuitive
notion of class is one in which sets can be specified by any clear extra-set
theoretical condition. For example, informal asides in expositions of set theory
frequently illustrate basic ideas using sets specified by open sentences such as
“x is blue’, “x is a man”, “x is a parent of y”, and so on. Further, the notion
of an interpretation in model-theoretic semantics appears to require that sets in
the domain of the model be specified by predicates of the object theory that
are no part of the set theory in terms of which the model is formulated. Most
importantly, however, if the notion of class is to be used in formalizing every-
day or scientific discourse, for example, to explicate the application of mathe-
matics to empirical subject matter, specification of sets by extra-set theoretical
formulas is inescapable.*

*This research was supported in part by the Social Process Research Institute, University of
California, Santa Barbara. I am indebted to J. E. Doner and J. S. Ullian for valuable
comments on earlier drafts, and to Doner in particular for suspecting that general models
are strongly inaccessible.

Received July 19, 1979, revised fanuary 21, 1980



GENERAL MODELS OF SET THEORY 37

Thus, the notion of class that set theory is intended to capture is one that
is essentially indifferent to the subject matter to which it is applied, much as
the logic of identity applies to any and all predicates in a first-order language,
no matter how they may be interpreted. Such a liberal conception might
seem to reopen the door to the paradoxes, but since the familiar difficulties
arise only within the internal structure of set theory itself, allowing sets to be
specified by extra-set theoretical predicates need not conflict with moves
adopted to avoid internal inconsistency. From an intuitive point of view, then,
set theory appears as a logic that, while requiring careful attention to its
internal structure to block the paradoxes, can be applied without restriction to
any extra-set theoretical content whatever.

In sum, to represent adequately the intuitive notion of class, a formal set
theory must be general in the sense of providing for the specification of classes
by predicates in addition to those of the set theory itself, no matter how these
extra-set theoretical predicates may be interpreted substantively. This require-
ment can be formulated as a demand that an acceptable set theory have a
general model, that is, a model in which the extra-set theoretical primitive
predicate symbols of the language can be interpreted within the domain of the
model in any fashion without altering the status of the interpretation of the set
theoretical predicates as a model of the set theory. It is important to recognize
that a stipulation that a set theory have a general model is a semantic one, for
it concerns the interpretation of the theory rather than its logical structure.
Consequently, this requirement cannot be formulated within the theory itself
but instead must be stated in a metalanguage.

The requirement that an acceptable formalization of the intuitive notion
of class be general seems natural and compelling. It is appropriate, therefore, to
investigate in a preliminary way the availability and properties of general
models of set theory. The surprising result is that the concept of a general
model is extremely strong. By rather simple methods we show that the only set
theories in a very wide class, which includes Quine’s NF [4] and Ackermann’s
theory [1], having general models are the Zermelo-Fraenkel theory ZF and its
close relatives. Moreover, by a straightforward argument it follows that if ZF
has a general model, then the Morse theory M ([2], pp. 138-146) is consistent
and has a general model. The ease with which these results are obtained suggests
that the approach of considering not merely the internal structure of a formal
theory but also its intended interpretation may prove to be a powerful tech-
nique in sorting out issues that are indeterminate when considered from within
the formal structure of the theory alone.

1 General models For the object language .Z consider a first-order predicate
calculus with primitive predicates e, P}, Pi, ..., P2 P% ... ... wherecisa
dyadic predicate for set membership and P} is a predicate taking i arguments.
We introduce identity by assuming

(1) Extensionality Schema Vz(zex <> z¢ey) nAx .~ Ay, where Ax is
any atomic formula of Z.

Note that Ax may have further free variables in addition to x, and that for
typographical simplicity we reduce the use of parentheses by employing dots
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in a manner similar to Quine [5]. We then define identity, x = y, as an abbrevia-
tion for Vz(z £ x <z ¢ y), from which reflexiveness, x = x, is immediate, and
substitutivity, x = y A Ax .= Ay, is just (1) written in abbreviated notation
([31, pp. 159-161, [51,[6], pp. 62-63). We shall say that an occurrence of € in
a formula of Z is inessential if and only if it is in a context that can be abbrevi-
ated as identity. We can accommodate atoms by treating them as degenerate
sets that are their own sole members ([4], [S]) provided axioms of regularity,
if assumed, are limited to sets having no atoms as members, but for simplicity
we shall assume explicitly that there are no atoms.

Let D be a nonempty set and £ C D X D an interpretation of ¢ in D. By
an interpretation ® of the P,’ in D we mean a doubly indexed sequence &,
i=1,2,...j=1,2,... such that ®} is an i-adic relation on D. An E, ®-
formula in a model (D, E, ®), then, is a formula built up from E and the ®} by
truth-functional composition and quantification restricted to D. If S is a set
theory having (1) together with some specified additional axioms, then
(D, E, ®) will, in general, be a model of S only for certain interpretations ® of
the P,i in D, but not for others. Consequently, we adopt:

Definition 1 (D, E) is a general model of S if and only if (D, E, ®) is a
model of S for every interpretation ® of the P]’ inD.

We prove here a simple property of general models. A model is said to be
normal when the relation interpreting identity within the model coincides with
actual identity between objects in the domain of the model.

Theorem 1 A general model is normal.

Proof: Let (D, E) be a general model of a set theory S with ¢ interpreted as E
in which (1) holds, and let I = {{x, y): Vz({z, x) € E < {z, y) € E)} be the re-
sulting interpretation of = in D. Consider an interpretation ® of the P,’ in D
such that P? is interpreted as ®% = {(x, y): x, y € D A x = y}. Since (D, E) is
general, the properties of identity continue to hold:

(i) &, x)el
(ii) (x, y>elIan Ax .~ Ay, where Ax is any atomic E, ®-formula.

And since, for x, y € D, {x, y) € ®? <= x =y, we have

G) &, x)e ®?
(ii") (x, y> e ®? A Ax .~ Ay, where Ax is any atomic E, ®-formula.

Now take Ax in (ii) as {u, x) € ®? to get {x, ) € I A {u, x) € ®% .~ (u, y) e B
But this holds for all u, and in particular when u is x. Hence, recalling (i), we
have that (x, y) € I = (x, y) € 3. The converse follows by an exactly parallel
argument.

Consequently we may confine attention to normal models.

2 Existence of general models for protostandard set theory Set theory has
been developed from a variety of different and not entirely intertranslatable
points of view. However, despite the lack of a canonical formulation, certain
basic constructions hold in most reasonable proposals for axiomatic set theory.
In particular, every plausible formalization of the intuitive notion of class that
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does not involve proper classes assumes extensionality, allows the formation of
pairs, permits the construction of new sets from old by forming sum-sets and
power-sets, assumes some version of a replacement principle, and asserts the
existence of sets outright in some form of assumed or derived axiom of infinity.
Set theories of this sort we shall call “standard”. More formally,

Definition 2 A set theory without atoms or proper classes is standard if and
only if (1) and (2)-(7) below are axioms or theorems.

(2) Pairs JzVwwez <= w=uvw=v).
(3) Sum Sets dzVw(w € z <= Ix(w € X A x € V)).
(4) Power Sets JzVww e z <> Vx(x e w > x € v)).

(5) Replacement Schema VwVxVx'(Gwx A Gwx' = x' =x) > IyVx(xe
y <> Iw(w € v A Gwx)), provided Gwx is an e-allowable formula of Z with no
free occurrences of y, where g-allowability is some explicit but here unspecified
constraint that can be decided in a finite number of steps and is such that any
formula of Z having only inessential occurrences of € is e-allowable.

(6) Infinity JyVx(x=A—>xey A xey—>xtey), where A is the empty
set and x* is the successor of x.

(7) Pure Sets There are no atoms.

Although the main concern in this paper is with standard set theories, it
will be useful first to consider general models for theories with less structure.
Specifically, we weaken (5) to

(5') Aussonderung Schema dyVx(x ey <> x e v A Fx), provided Fx is an
e-allowable formula of Z with no free occurrences of .

Then we may adopt:

Definition 3 A set theory without atoms or proper classes is protostandard
if and only if (1)-(4), (5"), (6), and (7) are axioms or theorems.

Since (5') follows from (5) by taking Gwx in (5) as w = x A Fx, every
standard set theory is protostandard.

Protostandard set theories can be classified in various ways, but two types
will be of particular importance here. First, note that the successor function in
(6) can be defined in a number of ways. In particular, following Frege, we can
take x* to be the set consisting of all those objects w’ obtained by adding a new
element to some member w of x. In such Frege theories, as we may call them,
it follows from (6) and (3) that there is a universal set ¥ such that x ¢ V for all
x. Thus, in Frege theories, (5') reduces to a version of the classical comprehen-
sion schema

IyVx(x € y < Fx), provided Fx is an e-allowable formula of Z with
no free occurrences of y.

Clearly, the e-allowability constraint here is essential, since otherwise Russell’s
paradox is forthcoming at once. The most familiar example of a Frege theory
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is Quine’s NF [4], in which e-allowable formulas are those that are stratifiable.
Second, as an alternative, we can follow Zermelo and take every formula of £
as e-allowable. In this case, x* must be construed in a more limited way, such as
Zermelo’s own or von Neumann’s. The prototypical example of a Zermelo
theory is Zermelo’s original set theory with Aussonderung but not replacement,
and lacking the axioms of choice and regularity. Thus, let Z) be the set theory
given by (1)-(4), (5", (6), and (7), where in (5") all formulas are ¢-allowable;
and let Z be Z_y augmented with

(8) Regularity vZzA->Ju(wevaVi(tev—>tiu)).

The distinction between Frege and Zermelo theories is fundamental:
Frege theories cannot have general models, but apparently Zermelo theories
can.

Theorem 2 A general model of a protostandard set theory is a general
model of Z(y, and if the membership relation in the model is well-founded, the
model is isomorphic to a natural model of Z. Moreover, a natural model of Z is
general.

Proof: Let (D, E) be a general model for a protostandard set theory S, where
g-allowability has some fixed specification. What is required first is to show
that (5") holds in the model for any formula. Let the free variables in an
E, &-formula Fx,...x; be just xq, . . ., x;. Since (D, E) is a general model, in-
terpret Pi as {xy, . . ., x: Xy, . .., X0 € D A Fxy. .. x;}. Then, since Pix, ... x;
is e-allowable, (5') yields

IpVx,(x, ey <= x e vAPlix, ... x;).

Thus, since P} is equivalent in D to F, (5') holds in (D, E) without restriction,
and so (D, E) is a general model of Z.

Next if a general model for S has a well-founded membership relation, it
is isomorphic to a model (D, E) such that (x, y) € E if and only if x, y € D and
x ey ([7], p. 171). From this and Theorem 1 it follows that D is transitive.
And in turn from these and (3) we have

(i) xeD—->uUxeD.

Further, suppose w C x and x e D. Invoking generality, interpret P} as w; then,
by (5') w =w N x belongs to D. From this and (4) it then follows that

(i) xeD—>PxelD.

So, by (i) and (ii), R, € D for every ordinal & € D, where R, = {x: rank x < a}.
Hence D = R, for the least ordinal 6 ¢ D, and so (D, E) is a natural model of Z.

Finally let Ry be a natural model of Z, where 6 > w, and let ® be any
interpretation of the P]’ in Ry. Obviously (1)-(4), (6) and (7) hold. Consider any
E, ®-formula Fx. If v € R,, then v C Ry, and so v N {x: Fx} € Ry. Hence (5")
holds. But & is arbitrary, and consequently <D, E) is a general model.

Consequently, if we require a set theory without proper classes both to be
protostandard and to have a general model, we are confined essentially to
extensions of Zy. In particular,
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Corollary No Frege theory has a general model.

Observe, moreover, that these results hold if the universe of a protostandard set
theory is supplemented with proper classes that are defined as objects having
members but which cannot themselves be members of other objects.

3 Ackermann-type theories Before taking up standard set theories, we
consider one species of nonprotostandard theory, those for which the proto-
type is Ackermann’s theory [1]. In this section, we annex an additional
monadic primitive predicate M to the object language .Z and, in addition to (1),
assume (2)-(4) relativized to M, as well as

(9) Mx Anwex .= Mw
(10) Mx AVu(uew >uex).>Mw
(11) IxMx.

And, in place of (5) or (5') we adopt

(12) if the free variables of Fx other than x are restricted to M, then
Jy(My n Vx(x e y < Fx)), provided Fx is an e-allowable formula of Z,

where the concept of e-allowability is constrained as in (5) together with the
condition

Fx is g-allowable only if it has no occurrences of M, and Fx - Mx.
Theorem 3 No model of an Ackermann-type theory is general.

Proof: Let(D, E, S) be a model for an Ackermann-type theory, where F is the
interpretation of €, and S is the interpretation of M. Let [/ be the interpretation
in D of A, and, recalling (11), let v € D — S. Define a one-one mapping

x ifx#0,y
w(x)={7 ifx =0
hif x = 1.

Clearly, ¢ induces a structure (D, E*, $*) on D isomorphic to (D, E, S). Hence,
by construction,

xeS<>:x=M[N.v.x FyrxeS*

Next, assuming that (D, E, S is a general model, interpret P} as S* and P? as
E*. Note that v is the interpretation in D of the object A* such that, for all x,
1P2x A*, since, for all x, {x, 7) ¢ E*. Hence,

Mx «—>:x=A v.x 2 A* A Plx.

Abbreviating the right side as Qx, we have that Qx is equivalent to Mx but
contains no occurrences of M. Hence Qx A x ¢ x is e-allowable, and so by (12)
there is an R such that MR, and x € R <. MR A x ¢ x, from which Russell’s
paradox follows.

4 Remark What appears to distinguish set theories having no general
models from those that do is reliance on syntactical constraints, such as strati-
fication requirements or preclusion of certain predicates, in existence schemas
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to block the paradoxes. This seems to be effective so long as the only concern
is with the internal structure of the theory, but when provision is made for
extra-set theoretical predicates, the syntactical barriers to inconsistency ap-
parently are subverted. For example, consider the set theory NF, given by (1)
and the schema 3yVx(x € y <> Fx) for any e-stratified formula of Z, where
Fx is e-stratified if and only if the variables occurring in it can be assigned to
types in such a way that (a) in any occurrence u € v of ¢, v is one type higher
than u, and (b) in any occurrence of P}vl. .. U;, the vy are all of the same type.
Now suppose that the axioms governing £ continue to hold but that P? satisfies
the schemas Vz(Pizx <= P3zy) > x =y and 3yVx(Pixy < Fx) for any P%-
stratified formula F, where P%-stratification is defined by interchanging P? and €
in the definition of e-stratification. Then x ¢ x is P%stratified and so there is a
Q such that P2xQ <— x ¢ x. But P2xQ is e-stratified, so there is an R such that
x ¢ R < P2xQ. Now take x as R, whence R ¢ R < P3RQ. But PARQ <>
R ¢ R. In contrast, the limitation of size doctrine as a means of avoiding
inconsistency [2] does not appear to be vulnerable in the same way.

5 General models of standard set theories A standard set theory is obtained
from a protostandard one by assuming the replacement schema (5) instead of
the Aussonderung schema (5'). Let ZF ) be the standard set theory obtained in
this way from Zy. First note that, parallel to the first part of Theorem 2, we
have

Theorem 4 A general model of a standard set theory is a general model
Of ZF -

Proof: Suppose (D, E) is a general model of a standard set theory S, let Gwx be
any formula of Z, and interpret P? as the relation g = {(x, y): (x, y) € D A Gxy}
on D. Then, since P?wx is e-allowable,

YwVxVx'(Pwx A Piwx' = x' =x) > AyV¥x(x € y <> Iw(w € v A P2wx))

holds, and so (5) holds since P2wx is equivalent in D to Gwx. Consequently, S
can be extended to a theory in which every formula of Z is e-allowable and for
which (D, E) remains a model, and hence (D, E) is a general model of ZF,.
Next, instead of pursuing the full parallel to Theorem 2, we add the axiom
of regularity to obtain a considerably stronger result. Thus, let ZF be the set
theory with axioms (1)-(8) where in (4) all formulas of £ are e-allowable.

Theorem § A model of ZF is general if and only if it is isomorphic to a
natural model Ry where 0 is strongly inaccessible.

Proof: Observe that if (D, E) is a general model of ZF, then E is well-founded.
For, suppose

x#F o AVw(w e x > Fv(v € x A (v, w) € E)).
Interpret P} as x, so that
IwPiw A Yw(Piw = Ju(Pluv Avew)),

which is impossible in view of (8).
Now a general model (D, E) of ZF is a general model of Z, and so we can
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appeal to Theorem 2 and take D = R, for some ordinal 6. To prove that 0 is
strongly inaccessible, it suffices to show that Ry, is a natural model of the
Morse theory M, that is, the impredicative extension of NBG. Since by assump-
tion Ry provides a model of ZF and the impredicative comprehension scheme
for proper classes is obviously satisfied in Ry4; the only question concerns
replacement, which can be formulated as a single axiom: if f C Ry X Ry is a
function,

(i) veR,>3Iy(yeRygaVx(x ey <= Iw(wev rlw, x)e f)));

i.e., the image of v € Ry under F is also in Ry. Now, since f C Ry X Ry, we can,
by generality, interpret P? as F, whence (i) follows as a consequence of the
replacement schema of ZF proper. Thus, 6 is strongly inaccessible.

To prove the converse, assume § is strongly inaccessible and let ® be any
interpretation of the PJ‘ in Ry. The axioms of extensionality, power set, sum
set, infinity, and regularity obviously are satisfied. Consider any E, ®-formula
Fwx such that VwVxVx'(Fwx A Fwx' .= x' = x). Observe that f = {{w, x):
Fwx} € Rgyq. Now, because 6 is strongly inaccessible and f is a function,
(i) holds. But then, substituting Fwx for {w, x) € f, we get the replacement
schema for ZF, as required, and the theorem is established.

An immediate consequence of this result is

Corollary A general model of ZF can be enlarged to a general model of M.

6 Remarks Although existence of a general model for ZF is a powerful
assumption, general models for weaker set theories are easily seen to exist
within ZF. Thus, if the axiom of infinity is dropped from ZF, the remaining
axioms are satisfied in R . Consequently, since w has all the properties of a
strongly inaccessible number except that it is not nondenumerable, the proof of
Theorem 5 can be adapted to show that the theory of finite pure sets has a
general model. Or if ZF is weakened by substituting Aussonderung for the
replacement schema, the resulting theory Z has R, as a natural model,
which, by Theorem 2, is general.

We note also that atoms can be accommodated in the foregoing results by
replacing (7) with an axiom asserting the existence of a set containing all atoms
and prefacing (8) with a stipulation that v contain no atoms.

7 Conclusion Obviously the requirement that a set theory have a general
model is extremely strong. By imposing it we narrow the otherwise embarras-
singly large array of alternative axiomatizations of set theory to essentially
two: extensions of ZF' and, if proper classes are admitted, extensions of M.
Moreover, Theorem 5 establishes a close connection between the concepts of
generality and strong inaccessibility, with the consequence that all theorems
about sets provable in M hold also in a general model of ZF. Thus, in a not
unreasonable sense, the theorems concerning sets provable in M constitute a
canonical formalization of the intuitive notion of a set, which lends some
interest to the question of whether these theorems can be axiomatized without
using proper classes or additional set-theoretic primitive predicates, and without
assuming more about sets than can be proved in M. This relation of strong
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inaccessibility to generality is somewhat surprising in view of the different
concerns that motivate them. The concept of strong inaccessibility arises
primarily in relation to considerations that can be formulated entirely in terms
of set theory itself and without reference to extra-set theoretical subject
matter, such as the conception of sets as generated iteratively and the numerous
important set-theoretical consequences of the existence of strongly inaccessible
numbers. In contrast, the notion of generality expresses a semantic condition
concerning the relation of set theory to extra-set theoretical subject matter,
and as we noted earlier, the primary motivation for the assumption of gen-
erality is philosophical: without it we are in a poor position to justify interest
in set theory as a medium for explicating such matters as the use of mathema-
tics in natural science.
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