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Consequences, Consistency, and

Independence in Boolean Algebras

FRANK MARKHAM BROWN and SERGIU RUDEANU

Introduction In this paper we work within an arbitrary but fixed Boolean
algebra (J5, +, , ; , 0,1) and with vectorsx = (xu . . ., xn) e Bn,y = (yu . . ., ym) e
Bm, where n and m are two arbitrary but fixed positive integers.* A Boolean
function f:Bn-+Bis characterized by the Boole expansion theorem [1], [2] 1

(1) / ( * ! , . . . , * „ ) = X) f(<Xi,...,<xn)x*1...x%n,
( α 1 , . . . , α M ) e \Ό,l\n

where LJ denotes iterated sum (disjunction) when the vector (au . . ., an) runs
over {0, 1!" and x° = x', x1 = x. If each (au . . ., an) e {0, l\n is interpreted as a
number i e ίθ, . . ., 2n - li written in basis 2 and the corresponding minterm
x"1. . . Xnn is denoted by m.(x), formula (1) becomes

(2) / ( Λ : ) = Σ !o" 1/(Om /(^)

In particular a Boolean function r: Bn+m ->B admits the expansions

(3) r{x,y)=ΣJf=-Q

ιr{i,y)mi{x)

= λjj=0 r(x, J)mj(y)

=Σ;: o " 1 Σ;Γo" i κu )m/wm/(J,)

*The work of F. M. Brown was supported by the National Science Foundation under Grant
MCS 77-01429.
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As is well known, every system of Boolean equations and/or inequalities
in the variables x, y is equivalent to a single equation of the form

(4) r(x,y)=l .

We will refer to the Boolean function r as the resolvent of the system. For every
y e Bm, Equation 4 is consistent with respect to Λ: if and only if

(5) (e»r)O0=l

where the eliminant exr is defined by

(6) {βxr)(y) = Σζlιr{i,y) .

Poretski [20]-[23] has been concerned with the problem of determining
all j-consequences of Equation 4. More precisely, a consequence of (4)
independent of x, or briefly, a y-consequence of (4), is a Boolean equation
h{y) = 1 such that

(7) V*VXK*,J>)= 1 = ^ 0 0 = 1 )

By an abuse of terminology we will refer also to the Boolean function h as a
y-consequence of Equation 4 or, simply, of the function r. Poretski made a
remark which, in modern terminology, can be restated to the effect that the set
of all j>-consequences of r is the principal filter generated by the eliminant exr.
As a matter of fact, there is a one-to-one correspondence between the y-
consequences h(y) = 1 of r(x, y) = 1 and the Boolean functions h such that for
all Λ: and y, r(x, y) < h(y). Thus not only is (exr)(y) = 1 the least consequence
of r(x, y) = 1 independent of x, but exr is the least upper bound ofr indepen-
dent of x and the mapping r h* exr is a closure operator. This last remark has
turned out to be an efficient tool for solving many problems in Boolean algebra,
as shown by Lapscher and his school ([10], [4], [5], [11], [3]). As a matter of
fact, the mapping ex is more than a closure operator: it is a quantifier in the
sense of Halmos [8] (cf. [7], [ 10]). Propositions 1 and 2 below state in a more
formal way a part of the results recalled in this paragraph; more details can be
found in [24].

The aim of this paper is to study the important particular case when r is
the resolvent of a system of equations of the form

(8) y=f(χ),

where / = (fu . . ., fm) is a vector of Boolean functions fu . . ., fm each from
Bn to B. The j>-consequences of (8) are the relations of functional dependence
which exist among/1? . . ., fm\ Equation 5 characterizes in this case the range
of the map /: Bn -> Bm and we describe the eliminant exr in terms of the func-
tions fl9 . . ., fm (Theorem 1). Thus in particular the consistency of the system
(8) is equivalent to the functional independence of the functions/1? . . .,fm and
also to the surjectivity of the map /; we give a direct characterization of this
situation in terms of the functions fu . . .,fm (Theorem 2). Moreover, we obtain
the eliminant of a subsystem of y = f(x) from the eliminant of the whole
system (Theorem 3). Finally (Propositions 3, 4, and Theorems 4, 5), we con-
struct a parallel theory in which we confine our attention to ̂ -consequences h
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which are simple Boolean functions, i.e., built up from variables and the basic
operations +, , ' without making use of constants from B; or equivalently,
Boolean functions h such that h{i) e {0, 1} for all i = 0, . . ., 2n - 1 (cf. [24]
which lays stress on the distinction between Boolean functions and simple
Boolean functions). To construct this theory, we introduce a new closure
operator s (in fact, a quantifier) which associates with every Boolean function
φ the least simple Boolean function sφ which includes φ (Lemmas 4 and 5)
and we work with the closure operator sex (Lemma 6) instead of ex. The most
significant result (Theorem 5) seems to be the fact that the role of functional
independence in the former theory is played in the latter theory by the weaker
independence introduced by Moore [18] as early as 1906,2 which turns out to
coincide with Marczewski's general concept of independence in abstract algebras
applied to Boolean algebras (cf. [6], [14]-[17], and especially [15]).

1 We begin with an equivalent definition fory-consequences:

Lemma 1 The relation (7) holds if and only if

(9) \/y((lxr(x,y)=l)^h(y)=\) .

Proof: (7) =» (9): Take y e Bm. If r(x, y) = 1 for thaty and some* e Bn, then
AO0 = 1 by (7).
(9) => (7): Take y e Bm and x e Bn. If r(x,y) = 1, then 3ΛΓ r(x,y) = 1, hence
h(y) = 1 by (9).

Thus condition (i) in Proposition 1 below is a stronger variant of defini-
tion (9) of j>-consequences and, in fact, Proposition 1 suggests various ways of
saying that ex is the least ^-consequence of r.

In the sequel, notations like h = 1 will always denote identities: for all

y,h{y)= 1.

Proposition 1 Suppose the Boolean equation r(x,y) = 1 is consistent with
respect to (x,y). Then the following conditions are equivalent for a Boolean
function g: Bm -*B:

(i) Vy((lxr(x,y)=\)<^g(y)=\)
(ϋ) A Boolean equation h(y) = 1 is ay-consequence of r(xt y)^ 1 if and

only if

(10) VKsθ>)= 1=^00=1)

(ϋi) A Boolean equation h{y) - 1 is a y-consequence of r(x, y) = 1 if and
only if g < h

(iv) A Boolean function h:Bm->B fulfills

(11) (VΛ β Bn)Ofy e Bm)(r(x, y) < h(y))

if and only ifg<:h
(v) The function g is the eliminant g = exr.

Proof: (v) =*• (i): Take an arbitrary but fixed y and apply the Boole-Schroder
Theorem ([1], [2], [26], (vol. 1, Section 22), (cf. the dual of Theorem 2.3 in
[24])).
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(i) => (ii): Suppose (9) and take y e Bm. If g(y) = 1, then 3x(r(x, y) = 1) by (i),
hence Λ 0 0 = 1 by (9). Conversely, suppose (10) and take again y e Bm. If
3JC(KΛΓ, y) = 1), then g(y) = 1 by (i), hence h(y) = 1 by (10).

(11) =* (iii): Taking h = g in (10) we see that g is a j>-consequence of r by (ii).
Thus

(12) Vx\fy(r(x,y)=l=*g(y)=l)

by (7) and since (4) is consistent in (x,y) by hypothesis, it follows from (12)
that g(y) = 1 is consistent, too. Now we make use of the second part of the
so-called Verification Theorem [19], [12] (cf. the dual of Theorem 2.14 in
[24]), which states precisely that if the equation g(y) = 1 is consistent, then
(10) is equivalent to g < h.
(iii) =* (iv): Suppose (11). Then h is a j>-consequence of r, hence g </z by (iii).
Conversely, suppose g < h. Then (7) holds by (iii). But (4), regarded as an
equation in (ΛT, y), is consistent by hypothesis, therefore (7) implies (11) via the
Verification Theorem.
(iv) =*• (v): As ex is a closure operator, r < exr, hence g < exr by (iv). On the
other hand, taking h = g in (iv) we deduce r < g. But ex leaves unchanged the
functions independent of x, hence r<g implies exr < exg = g.

Remark 1 Suppose r(x, y) = 1 is inconsistent. Then (exr)(y) = 1 has no
solutions, hence properties (i) and (ii) above are still valid for g = exr. In other
words, every Boolean equation in y is a consequence of the (false!) equation
Kx»y) = l Thus property (iii) fails forg = exr. However properties (i), (ii), and
(iii) hold for the constant function g = 0.

Remark 2 If r is expressed in a disjunctive form, i.e., if r is given as a sum
of terms, then exr is obtained simply by deleting all the Λr-variables, with the
convention that if a term contains only Λr-variables, the result of the deletion
is l .

This known property follows from (6) by observing that each r(i, y) is
obtained by deleting the Λ -variables from some (possibly none) terms of r and
by cancelling the remaining terms (if any) and conversely, the j>-part of each
term of r is included in some r(i, y).

Example 1 Let

rfri, χ2> y\> yi> y*> y*)= - x i ^ 1̂ 2/3̂ 4 + xxx'iyiyWsy*+ χ\χ2y\yϊy-sy\
+ χ\χ'τy\y\yiy*

Then

(exr)(y) = yxy2y\y\ + yιy'2y'*y* + y\y'iy3^4 + yWiy3^4

Example 2 Let

r(xh x2, yh y2) = abx1x2yίy2 + ab'xxyxy2 + axxx2yxy2 + dbx2y\y2

+ bx\x2y\y2 + db'y\y\ + dx2y\y\ + b'x\y\y\ + χ\x2y\y2 .
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Then

(exr)(y) = aby1y2 + ab'yxy'2 + ay xy\ + α'fryΊj^ + by\y2 + α'δVΊ^i

+ ̂ 71/2 + ̂ 1 / 2 + ^1^2

= ̂ 1^2 + ̂ 1 + ^ 2 + ̂

If we specialize Proposition 1 to the case when the eliminant is the con-
stant function 1, we recapture the Boole-Schroder Theorem plus the property
that in this case there are no nontrivial ^-consequences of r:

Proposition 2 The following conditions are equivalent:

(i) \/ylxr(x,y)=\
(ii) A Boolean equation hiy) = 1 is ay-consequence of r(x, y)= 1 if and

only ifh is the constant function h = 1
(iii) The eliminant is the constant function exr= 1.

Proof: If for all x and y, r(x, y) Φ 1, any Boolean equation hiy) = 1 is a
consequence of the false premise (4) and properties (i), (ii), and (iii) fail. If (4)
is consistent, apply Proposition 1 with g = 1.

In the remainder of this section we confine our attention to the particular
case when r is the eliminant of a system of equations of the form

(8) y-fix) .

In this case we refer to exr as the eliminant of the system (8) and to the
j>-consequences of (4) as j>-consequences of (8).

Lemma 2 A Boolean equation hiy) = 1 is a y-consequence of the system
y = f(x) if and only if

(13) (VxeBn)(h(f(x))=\) .

Proof: Suppose (9) and take x e Bn. Setting y = f(x), it follows that 3x(y -
fix)); hence hiy) = 1, that is, hifix)) = 1.

Conversely, suppose (13). Take>> eBm such that 3xiy =fix)). Then hiy) =
λ(/(*) )=l .

Remark 3 Lemma 2 may be reworded to the effect that the y-consequences
of the system of Equations (8) coincide with the relations of Boolean functional
dependence (13) connecting the functions fu . . . ,/ m . Notice also that (13) can
be written in the compact form

(14) fto/= 1 .

In view of Remark 3 we see that Theorem 1 below solves the following
equivalent problems: (α) find the consistency conditions for (8) with respect to
Λ ; iβ) determine the range of the map /; (7) determine all the relations of
Boolean functional dependence connecting the functions fu . . . ,/ m .

Theorem 1 The following conditions are equivalent for a Boolean function
g:Bm-+B:
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(i) Vy((3*(j> =/(*))) ***g(y) = 1)
(ii) The range of the map f: Bn -• Bm is

(15) \yeBm\g(y)=\]

(iii) A Boolean function h: Bm -+ B fulfills the identity h o / = 1 if and
only if

(10) Vy(g(y)=l*h(y)=l)

(iv) A Boolean function h: Bm -* B fulfills the identity h o / = 1 // and
only ifg < h.

(v) The function g is given by

(16) giy) = Σ;^"1[Σίo"1/w/(Λ/))]'w/O')

(vi) g is the eliminant g = exr of the resolvent r of the system y = fix).

Comment Formula (16) is a compact version of

(17) g(yι,...,ym)= Σ [Σf=~1(fmyi..Λfm(i)ym]yΊ1...yy

m

m

7i,.. ,7me {0,l|

Proof: (i) «=> (i i) : Trivial paraphrase.
(i) «=» (iii) «=> (iv) <=» (vi): As the system (8) is consistent with respect to
(x,y), we can apply the equivalences (i) <=> (ii) <=* (iii) <=* (v) in Proposition 1
via Remark 3.
(11) <=» (v): By Corollary 2 to Theorem 1 in [25] .

Corollary 1 The following identity holds:

(18) (V*e£*)((^r)(/(*))=1) .

Corollary 2 The equation (exr)(y) = 1 is consistent.

Example 3 Consider the system

yι = axuy2 = bx2

where a and b are constants from B. Then

rix.y) = ϋΊα*! +/i(fl' +*fi))CM*2 +^2(6' +^2))

so that r is the function given in Example 2, where we have determined exr.
Now ej/ can be computed directly using formula (16):

(exr)(y)= (Sf.o/i(/)/'2(o)/ij/i+ (Σ^/KOΛO^^ί

+ (Σtofi(.0f#))yJ2+ (Σ'-oΛ(O/2(θ)>Ί^2
= (1 1 + . . 0/1/2 + (1 0 + 1 i + β' O + fl'6)^Ί>'2 + (0 1 + 0-6'

+ α 1 + a b')yxy\ + (O O + Ob + α O + a- b)yιy2

= y\y'2 + by\ + ay'2 + ab .

Example 4 Consider the system

y\ = χi> y* = *2> y% - χ\, y* = A •
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Then

r(χ, y) = O Ί * I + / i * i ) ( > 2 * 2 + y 2X2)^3X1 + /3*iX:v4*2+ ^4*2)
= ίy\y 3X1+ y\yzχ\){yiy\χi ^y\y^τ)

so that r is the function given in Example 1 where we have determined exr.
Now exr can be computed directly using formula (16), which involves 16
j-minterms. This computation is left to the reader.

Theorem 2 below specializes Theorem 1 to the case when g = 1. The
equivalences (iii) <==> (iv) <=• (v) in Theorem 2 were first established by White-
head [27] and Lΰwenheim [13] (cf. Theorem 8.3 in [24]; see also Corollary 3
to Theorem 1 in [25]).

Theorem 2 The following conditions are equivalent:

(i) \fy3x(y=f(x))
(ϋ) VyeίO, llm3Λ Cv =/(*))
(iii) The map /: Bn -• £ m w surjective
(iv) ΓAe cm/y Boolean function h: Bm -*B such that

(13) (V* €#•)(*(/(*)) = 0

w /Ae constant function A = 1.

(v) Σΐo" 1 m/ WO) = 1 ( / = 0 , . . . , 2 w - l )

(vi) 77ze eliminant of the resolvent r of the system y - f(x) is the constant
function exr = 1.

Proof: (i) «=> (iii) <=> (iv) «=• (v) ̂ ==> (vi): From Theorem 1 with g = 1.
(i)=»(ϋ): Trivial.
(ϋ) =» (i): It follows from (ii) and Theorem 1 that (exr)(j) = 1 for every
/ e SO, l } m ; hence (exr)(y) = 1 for every y e Bm in view of the first part of the
Verification Theorem [19], [12] (cf. Theorem 2.13 in [24]), which states
precisely that a Boolean equation φ(z) = φ(z) is verified for every z if and only
if it is fulfilled for all the vectors z made up of O's and Γs. Finally Vy((exr)(y) =
1) implies (i) again by Theorem 1.

At this point we state formally an idea which, in fact, has already appeared
in Theorems 1 and 2. We will say that the family {/l5 . . ., fm] is functionally
dependent provided there is a nonconstant function h such that the identity
(13) is fulfilled; otherwise the family {fu . . ., fm\ is functionally independent.

Theorem 2 yields two corollaries.

Corollary 1 If m> n the family \fh . . ., fm\ is functionally dependent.

Proof: Theorem 2 characterizes the functional independence of \fu . . .,/ml by
conditions (v), which can be written successively in the following equivalent
forms:

(19) ΠίιΣlStf(θ)=i
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(20) ΣΠ/Γo"
1^/(/(0(/)))=i

Φ

where φ runs over all maps 10, . . ., 2m - 1! -• ίO, . . ., 2n - 1}. But m > n
implies that for each map φ we can find/Ί, j2 e {0, . . ., 2m - li such that/Ί Φj2

and φ(ji) = φ(j2), therefore

Π fo"1 mi<f(ΦO'))) < mj^ifiφUiWm^iφUi))) = 0 .

Thus the left side of (20) vanishes, so that (20) fails.

Corollary 2 Let f: B -» B be a Boolean function. The singleton {/} is
functionally independent if and only iffis of the form

(21) f(x) = ax +a'x=a®x .

Proof: Formula (20) becomes

moί/ίOWm^/d)) + mQ{f{\))mλ(fm = 1.

That is, /'(0)/( 1)ι + /'(1 )/(0) = 1, which is equivalent to /(0) = /(1).
Functional independence is a hereditary property, i.e., every subfamily of

an independent family is also independent. This follows from the obvious fact
that functional dependence is co-hereditary, i.e., every superfamily of a depen-
dent family is also dependent. However no conclusion can be drawn a priori on
the independence of two disjoint nonempty families, the union of which is de-
pendent. Take, e.g., x = (xlf x2) and fx(x) = χh f2(x) = χ2i f3(χ) = χ'h f4(χ) = χ\.
Then \fh f2, f3, /4(, \fh f2, f3\, [fi, f3\, {/̂  / 4 ! are dependent families, whereas
\fi, fi\> \h> U\> ίAl are independent; cf. Examples 5-7 below.

The next theorem relates the dependence of a family to the dependence
of a subfamily. For the sake of convenience we denote a vector and the cor-
responding unordered family of components by the same letter.

Theorem 3 Consider a partition f = (/°, f1) of the family f of Boolean
functions. Let y - (y0^1) be the corresponding partition of the variable vector
and let r, t, and υ be the resolvents of the systems y = fix), y° - f°(x) and
y1 =f\x), respectively. Then

(22) r(xfy) = t(xfy°)υ(xfy
1)

(23) ext = eylexr

(24) exυ = eyOexr .

Proof: As the identity (22) is immediate, it suffices to prove (23). But (22)
implies r(x, y) < K c, y°), hence (exr)(y) < (ext)(y°), therefore

(eyίexr)(y°) = eyl(exr)(y) < eyl(ext)(y°) = (ext)(y°) ,

so that e xexr < ext and it remains to prove (ext)(y°) < (e iexr)(y°). By reason
of Proposition 1 it suffices to show that (eylexr)(y°) = 1 is a consequence of
t(x, y°) = 1. Take x, y° such that t(x, y°) = 1. Then y° = f°(x) and setting
y1 =f\x),y = O>°, y1), it follows that.y =f(x), consequently r(x,y) = 1, hence
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there is an x such that r(x, y) = 1, therefore (exr)(y) = 1 by Proposition 1;
further there is a^ 1 such that (exr)(y0,yι) = 1 and this implies e Λexr)iyQ,yι) =
1, again by Proposition 1; finally (e ι(exr))(y°) = 1, as desired.

Example 5 Take the system in Example 4 and y° = O 1 ? y^.y1 = (y3, y4).
Then

Kχ,yo) = (yiXi + yΊχΊ)ίy2χ2 + y'2χ'2)
= χ\χ2yiy2+ χ\χ2y\y2 + χΊχ2yΊy2

 + χ\χ\y\y\
υ(χ, yι) = (y3χΊ + y'*χ d(y*χ2 + yΆx2)

= χfιχ2y3y^+ χ\χ2y*y\ + x \χWiy*+ x \χ2y'iy\

and r = ft; is the function in Examples 1 and 4. From exr which has been
computed in Example 1 we obtain ext and exυ by Theorem 3:

(ext)(y°) = eyl((exr)(y) = yxy2 + yiy'2 + y\y2 + y\y\ = 1

and similarly exυ= 1.

Example 6 Take again the system in Example 4 with j>° = (yh y3), y1 -

(y2, yd- Then

0*00°) = eyl((exr)(y) ^yxy\ + yxy% + y\y* + y ^ 3 = ̂ 1/3 + ^1^3

and similarly (e^i;)^1) = y2y\ +y\y*. The functional relations (ext)(f°) = 1 and
(e^X/1) = 1 (cf. Corollary 1 to Theorem 1) mean, of course, f3=f[ a.nάf^=f2.

Example 7 Now take the system in Example 4 with y° - (yh y2, y$),yι -
(y4). Then

0*00°) = eyl((exr)(y)) = yxy2y\ + yxyWz + y\y2y*+ y\y'iy*

= yiy
t3 + ytiy3 ,

(exυ)(yι) = y((^^)( j ) ) = y\ + n + ̂ 4 + y4 = 1 .

The latter result follows also from Corollary 2 to Theorem 1.

Remark 4 The above theory of functional dependence cannot be gen-
eralized by taking elements of an arbitrary Boolean algebra instead of Boolean
functions. For 0 fulfills 0' = 1 and every element a Φ 0 fulfills/(α) = 1, where
fφ 1 is the Boolean function fix) = a + x, for all x e B. Thus every nonempty
set would be dependent.

2 In this section we confine our attention to those j-consequences hiy) = 1
of r(x, y) = 1 which are expressed by simple Boolean functions h and we
construct a theory parallel to the one in the previous section.

Recall that for every Boolean function φ: Bq -* B one can find a constant
vector a e Bp and a simple Boolean function ψ*: Bp+q ->B such that

(25) (Vze5*)(ψ(z)=ψ*(α,z)) .

The nonnegative integer p, the vector a and the function φ* are not unique (cf.
Theorem 1.10 in [24]). It will be useful to remark that when dealing with a
finite number of Boolean functions, we may suppose without loss of generality
that the above vector a is the same for all the functions. The following property
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will be also needed: the Boolean function φ is simple if and only if φ(k) e ίθ, 1}
for every k e {0, li?; cf. Theorem 1.7 in [24].

In the sequel we will write simply

(26) (Vze#)0Kz)=iK*;z))

instead of (25).
The next lemma provides a better insight into the representation (26):

Lemma 3 Let φ: Bq ->• B be a Boolean function and (26) a representation
of it as a simple Boolean function, with a e Bp. Set

(27) H=\he{0, l\P\mh(a)Φ0\.

Then:

a) The representation (26) can be written in the form

(28) Φ(z) = ΣheHΨ(h;z)mh(a)

and the coefficients φ(h\k) are given by

(29) iW*;*) = (J *?*<•> <*<*>
v ' YK ' ' (0 otherwise.
β) The following conditions are equivalent:

(i) (VA e JΪ)(Vz e £«)(ψ(z) = Ψ(A z))
(ϋ) (VA e #)(Vifc e ίO, l\q)(φ(k) = φ(h;k))
(iii) φ is a simple Boolean function.

Proof a) The expansion (28) is immediate from (3). To prove (29), note
that each φ(k) is a sum of elements m^ia) with h e H, say

(30) Φ(k) = ΣheHkmh(a) .

It follows from (30) that h e Hk implies mh(a) < ψ(k), while v\ϊheH-Hk

then mh(a)φ(k) = 0 ^ m^(α); therefore

(31) ff* = lAefflmΛ(α)<ψ(Λ)l .

But (30) can be also written in the form

TjheHΦ(h\k)mh{a) = ΣheHkmh{a) .

Hence by suitable multiplication we get

heHk=>φ(h;k)mh(a) = mh(a)^0 Φmh(a) < φ(h;k)=*φ(h;k) Φ0^ φ(h;k) = 1

while

heH-Hk=>φ(h',k)mh(a) = 0^φ(h;k)Φ 1 =*φ(h;k) = O .

That is, φ(h\k) = 1 <=* h e H^ and this is precisely (29) on account of (31).
Note that (29)-(31) are also valid in the case H^ = φ, which is equivalent to
φ(k) = 0.
β) We make use of Theorem 1.7 in [24], quoted above.
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(i) =* (iii): For every k e {0, \\p we have φ(k) = φ(h;k) e {0, 1! because φ(w z)
is a simple Boolean function. Hence φ is simple,
(iii) => (ii): Take k e ίO, 11* and h0 e H. But

(32) Φ(k) = ΣheHΨ(h',k)mh(a)

by (28). If φ(k) = 0, then (32) implies in particular 0 = φ(ho;k)mho(a) with
mho(a) Φ 0, hence φ(ho;k) Φ 1, therefore φ(ho;k) = 0 = φ(k). If ψ(Λ) = 1,
multiply (32) by m^0(α), thus obtaining niho(a) = Φ(ho',k)mho(a), hence 0 Φ
mh0(

a) ^ Φ(ho;k), therefore φ(ho;k) Φ 0, consequently φ(ho;k) = 1 = ψ(fc).
(ϋ) =* (i): By the Verification Theorem.

Corollary The constant vector a determines uniquely the simple Boolean
function φ* associated with φ in (25).

At this point we associate with every Boolean function φ: Bq -> B, the
function sφ: Bq -+B such that

(33) ( V z e W ( s ψ ) ( z ) = Σ mk(z))

Lemma 4 sφ is a simple Boolean function and

(34) (Vke\0,m((sφ)(k)={l

0 l ί^ j fo)

(35) (\/zeB«)((sφKz) = Σh€HΦ(h;z)) .

Proof: Take ko e (0, 1!^. The index ko appears or not in the right-hand side of
(33) according as φ(k0) Φ 0 or φ(k0) = 0. Now (33) shows that in the former
case (sφ)(ko) > m^o(A:o) = 1, while in the latter case all mk(ko) = 0, so that
(sφ)(ko) = 0. This proves (34).

From (33) and (34) we get

(sφ)(z)= Σ !•"**(*)+ Σ O'mk(z) = Σlq:o(sφ)(k)mk(z)
φ(k)Φ0 ψ(fc)=O

and, moreover, all (sφ)(k) e ίO, Π, so that sφ is a simple Boolean function.
Finally, using (29) and (31), then (30) and (34), we see that

Σheίi Φ(h',k) = 0 ̂  φ(h;k) = 0 (VΛ) *=*Hk = φ^ φ(k) = 0 ̂  (sφ)(k) = 0

so that (35) holds for z = k e {0, 11; hence it is generally valid in view of the
Verification Theorem.

Remark 5 The expansions (28) and (35) show that sφ can be obtained
from φ by deleting the tf-letters; cf. Remark 2.

Example 8 Let

r(x, y) = O W i + y'i(a + x'i))(y2bx2 + y'2(b' + x'2))

be the function in Examples 2 and 3. Here a = (a, b)\ hence

(sr)(pc9 y) = y\y'2 +y\y2χ2 + y^x^ + J Ί * 1̂ 2*2

= y\y2 + χιy'2 + χ2y\ + χiχ2
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while for the function

(exr)(y) = yt

1y'2 + byr

1 + ay2 + ab

determined in Examples 2, 3, we get sexr = 1 because (exr)( 1, 1 y) = 1.

Lemma 5 (i) sφ is the least simple Boolean function which includes φ.
(ϋ) The map φ h> sφ is a closure operator.

Proof: Write the Boole expansion of φ in the form

φ(z)= £ φ(k)mk(z)
ψ{k)ΦO

and compare to (33): it follows that φ <sφ.
Further if φ < φ then φ(k) Φ 0 => φ(k) Φ 0, whence sφ < sφ follows

by (33).
Notice that if σ is a simple Boolean function, then sσ = σ. For (34) be-

comes for all k, (sσ)(k) = σ(k), hence sσ = σ by the Verification Theorem.
Taking in particular σ = sφ, it follows that ssφ = sφ.
Finally if σ is a simple Boolean function and φ < σ, then sφ <sσ = σ.

Remark 6 As a matter of fact, s is even a quantifier, i.e., it fulfills the
stronger set of conditions sO = 0, φ < sφ, and s(φ sχ) = sφ sχ.

Example 9 The functions r and exr in Examples 1 and 4-7 being simple, we
have sr = r and sexr = exr.

The next lemma relates the closure operators ex and s.

Lemma 6 α) The closure operators ex and s commute: sex = exs.
β) sex is a closure operator.
7) sexr is the least simple Boolean function independent ofx which includes
r and

(36) (VyeBm)(ζsexr)(y) = Σh€HΣt^KhU,y)) .

Proof: The expansion (36) follows immediately from (6) and (35); it implies

(sexr)(y) = Σζ~1ΣheHKh;i>y)

^Σζ^ismy)^^)^) .

That is, a.
The implication a =» β is well known and easy to prove; let us check, e.g.,

the idempotency:

(sex)(sex) = s(exs)ex = s(sex)ex = (ss)(exex) = sex .

7) is immediate from the properties already established of the operators ex

and s.

Example 10 For the function

(sr)(x, y) = y\y\ + x2y\ + xxy\ + x λx2y xy2
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in Example 8 we have

(exsr)(y) = y\y\ + y\ + y\ + yxy2 = 1

and also sexr = 1 as found in Example 8. The same result may be obtained by
applying formula (36) to the function r in Examples 2, 3, and 8.

Notice that the commutativity sexr = exsr is trivial in the case of a simple
Boolean function r.

At this point we are in a position to begin the realization of our program.
In the sequel we refer to h(y) = 1 as a simple Boolean equation provided h is a
simple Boolean function.

Proposition 3 Suppose the Boolean equation r(x, y) = 1 is consistent with
respect to (x, y). Then the following conditions are equivalent for a simple
Boolean function go: Bm -> B:

(i) A simple Boolean equation h(y) = 1 is ay-consequence of r{x, y) = 1
if and only if

(37) Vy(g<jy)=l*h(y)=l)

(ii) A simple Boolean equation h(y) = 1 is a y-consequence ofr(x, y) = 1
if and only if go < h

(ϋi) A simple Boolean function h: Bm -* B fulfills

(38) (VΛ e Bn)(\/y e Bm)(r(x, y) < h(y))

if and only if g0 < h
(iv) The function go is go = sexr.

Proof: (i) =* (ii) =* (ϋi) =» (iv): Similar to the proof of the corresponding im-
plications (ii) =*...=» (v) in Proposition 1, via Lemma 6.
(iv) =* (i): Let h(y) = 1 be a simple Boolean equation. Suppose (37) holds. If
r(x>y) = 1 > t n e n a fortiori (sexr)(y) = 1 therefore h(y) = 1. Conversely, suppose
h is a y-consequence of r. Then exr < h by Proposition 1, hence sexr <^sh - h
by Lemma 4, and from sexr </ίwe infer (37).

Proposition 4 77ze following conditions are equivalent:
(i) 4̂ simple Boolean equation h(y) = 1 is ay-consequence ofr(x, y) = 1

if and only if h is the constant function h - 1.
(ii) The identity sexr - 1 holds.

Proof: Similar to the proof of Proposition 2.

Theorem 4 The following conditions are equivalent for a simple Boolean
function go: Bm -*B:

(i) A simple Boolean function h: Bm ->B fulfills the identity h o / = 1 if
and only if

(39) V^(go00=l^A00=l)

(ii) A simple Boolean function h: Bm -+ B fulfills the identity ho f= \ if
and only ifgo^h

(ϋi) The function go is given by
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(40) go(y)= Π O ^ + + J C 1 ) ,
Ot\t...tOtm€ ί 0, 1J

(iv) 7%e function go is go = sexr, w/zere r is the resolvent of the system

y=f(χ).

Proof: (i) <=* (ii) <*=* (iv): As the system^ = /(*) is consistent with respect to
(x, j>), we can apply the corresponding equivalences in Proposition 3, via
Remark 3.
(iii) <=» (iv): Let go be the function defined by (40). The Verification Theorem
shows that in order to prove go = sexr, it suffices to show that go(j) = (sexr)(j)
for every/ e iθ, \\m. Thus fix an arbitrary/ = (βl9 . . ., βm) e \0, \\m. Then

goϋ) = 0 «=> (3ctu . . ., otm e ί0, 1}X/Γ1 + . . . + Cm = 1 & tf1 + . . . + /3^m = 0)

*=>(3 α i , . . . ,cx m eί0, l } ) ( / 1

α i + . . . + / ^ = l&α 1 = ]3/

1&...&αm = ̂ )

^ (VxXtΛC*)^ +/1'(Λ)(5'1] . . . [fm(x)βm +/^)βm] = 0)

^ (VJCXK*, /) = 0) ̂  (Vi β {0, l!ΛXr(/, /) = 0)

<-* Σ^o" 1 K/, /) = 0 ̂  fer)(/) = 0 <=^ (jexr)(/) = 0 ,

by (34) in Lemma 4.

Example 11 Take again the system

fi(xi, * 2 ) = *i> Λ(^i. ^2) = ^2 . h(x\,Xτ) = x\> fάxι,Xτ) = A

in Examples 4-7 and 10. Then

/Γ1 + /a

β2 + /3O3 + / 4 β 4 = l - * « i = «3 0rα a = α4 ,

hence

(^)O0 = r Π {y7 + yT + y%λ + yT)\
L^l,0:2,046 ίθ,ll J

Γ Π ( ^ 1 + y ? + >'33 + >'42)l
Jjx1}α:2><*3e {0,1} J

But the first factor equals

Π Π ίyϊ + yV + yϊ + y?)
αje jθ,lj α2,α46 {0,11

= Π (y? + y?+ Π ( ^ + ̂ ) \
α ie{0,l} V α2,θ4e{0,l} V ^ 2 ^ 4 '/

= β i I J 1} ( ^ + y?) = (^Ί + / 3 ) 0 Ί + ̂ 3) = ̂ '1̂ 3 + / ^ 1

and similarly for the second factor; therefore

(sexr)(y) = (y[y3 + y^y ^{y^y ^ + w i )

which coincides with (exr)O) found in Example 1. This should happen because
exr is a simple Boolean function.
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As stated in the Introduction, the main result of this section establishes
the equivalence between the identity sexr = 1 and the Moore-Marczewski
independence of the family {fl9 . . .,fm\.

We recall first that the origin of the concept of Moore independence is the
following remark: a system {pu . . ., pm\ of axioms is independent if and only
if none of the propositions

m

Pi Up/ ( / = l , . . . , m )
/=1

/ * /

is identically false. Moore [18] has introduced the concept of a completely
independent system of propositions: this means a system {pl5 . . ., pm\ such
that none of the minterms

P ? 1 • . . * # " ( α i , . . . , 0 ^ 6 1 0 , 1 } )

is an identically false proposition. On the other hand, Marczewski [14] has
used the framework of universal algebra to obtain a common generalization of
many concepts called "independence" in various fields of mathematics. A
system aί9 . . ., am of elements of a general algebra A is said to be independent if
every map from \au . . ., am\ to A can be extended to a homomorphism from
the subalgebra generated by au . . ., am to A. It turns out [15] that in the case
of Boolean algebras this concept reduces to Moore's complete independence.

Theorem 5 The following conditions are equivalent:

(i) The only simple Boolean function h: Bm -* B such that

( 1 3 ) (Vx e £ * ) ( / * ( / ( * ) ) = 1 )

is the constant function h = 1.

(ii) (Vα l 5 ...,ame 10, 11X/Γ1 + . . . + / * m Φ 1)

(ϋi) (Vα l s . . ., am e ίO, 1ΪK/Γ1 . C™ * 0)

(iv) sexr = 1, where r is the resolvent of the system y - f(x).

Proof: (i) «=> (ii) <=> (iv): From the equivalences (ii) <=> (ϋi) «=* (iv) in
Theorem 4 with go = 1.
(ii) <=» (ϋi): Observe that if (ptu ..., am) runs over ίO, l ! m , so does (α'l5 . . ., OLm)\
therefore both (ii) and (ϋi) are equivalent to

(V(α' 1 ? . . ., oίm) e ίO, 1} W X/Γ 1 . . . Cm Φ 0 ) .

Corollary 1 Let f: B -> B be a Boolean function. The singleton \f\ is
Moore-Marczewski independent if and only ifOΦfΦ 1.

Corollary 2 The concept of functional independence is actually stronger
than that of Moore-Marczewski independence.

Proof: Trivially a functionally independent family is also Moore-Marczewski
independent. The converse does not hold as shown, e.g., by the above
Corollary 1.
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Another example proving that the two concepts of independence are not
equivalent is provided by Examples 2, 3, 8, and 10, in which exr Φ 1 but
sexr = 1.

Example 12 Let us study the Moore-Marczewski independence of the
system \flt f2] where fλ(x) = ax and f2(x) = bx, with a, b constants from B. The
condition (ϋi) in Theorem 5 can be written successively in the following
equivalent forms:

3x abx Φ 0 & 3JC ab'x Φ 0 Sclxa'bx ΦO&lx a'b' + x'Φ0,
abΦO&ab' Φ0&a'bΦ0& a'b' Φ 0.

Example 12 shows in particular that Corollary 1 to Theorem 2 is no longer
valid for Moore-Marczewski independence. On the other hand, in the comments
preceding Theorem 3 we have shown that no conclusion can be drawn on the
independence of a subfamily of a family {f\, . . ,,fm} from the simple fact that
the latter is dependent. Examples 5-7 show that these comments remain valid
for Moore-Marczewski independence.

Finally notice that in strong contrast to Remark 4, the definition of
Moore-Marczewski independence makes sense without any change for elements
of an arbitrary Boolean algebra instead of Boolean functions.

Addendum

We have discovered after completion of the manuscript that the equiva-
lence of conditions (i) and (ϋ) in our Theorem 2 has already been remarked by
J. Kuntzmann [9] and taken by him as a definition of independence in the case
of simple functions (in our terminology). Kuntzmann establishes our Corollary
1 and studies in some detail the case m = n, as well as other properties.

NOTES

1. Often referred to by switching theorists as "the Shannon expansion theorem".

2. Marczewski attributes this concept to Fichtenholz and Kantorovitch in a paper published
in 1934.
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