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A Highly Efficient "Transfinite Recursive

Definitions" Axiom for Set Theory

ROBERT S. WOLF

Introduction We will consider formal set theories with an axiom (schema)
that is well-known as a theorem or principle of set theory, but to our knowl-
edge has not been proposed previously as an axiom. Essentially, this new
schema RD says that the epsilon relation is one on which functions can be
defined by transfinite recursion. At first, one might suspect that this would be
equivalent to the more familiar axiom schema of (transfinite) induction on
epsilon. With enough other axioms present, this is true. At the same time, we
find (as is sometimes the case) that recursion is in some ways a more powerful
principle, and that this effect becomes more pronounced when the underlying
logic is intuitionistic rather than classical.

Specifically, we will see that the technical situation is as follows:

1. Classically, even our strongest version of RD (out of three versions) is
provable in ZFC set theory. So RD gives nothing new. Its main feature in this
context is its great "efficiency": when added to just a few of the axioms of ZF,
RD suffices to derive the full axioms of replacement, choice, and foundation in
any form (including induction on epsilon). Thus RD can be used to give a very
"short" axiomatization of ZFC.

2. Our use of RD arose while studying axiomatic set theories with the law
of the excluded middle confined to bounded predicates—theories which we
have called "partially intuitionistic". In this context, we find that the efficiency
and strength of RD are even more striking. It is still the case that RD, plus a
few basic axioms, proves replacement in any reasonable form, choice, and
induction on epsilon (though certain other forms of foundation don't seem to
follow). In the other direction, the two weaker forms of RD are still derivable
from more standard axioms. However, full RD is not provable in any straight-
forward way even from very strong forms of these standard axioms. We
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conjecture that it is in fact independent of them. On the other hand, it turns
out that the addition of RD to these more standard systems (even ones with a
very limited form of replacement) does not increase their proof-theoretic
strength.

Our definitions and notation are in Section 1. Section 2 contains the
material outlined above concerning RD and its relationship to more familiar
axioms. In Section 3 we discuss, informally and with no proofs, a related topic:
the delicate relationship among different foundation axioms in weak (classical
or partially intuitionistic) set theories.

1 Preliminaries We let JC denote the usual first-order language (with
equality) of set theory, with a symbol 1 for absurdity rather than one for
negation. We use the standard abbreviations ~φ, φ «•—• ψ, 3\xφ, x C y, 3x C yφ9

\fx C yφ, 3 x e yφ, and \/x e yφ. The latter two will usually be further abbrevi-
ated to 3xyφ and \/xyφ. We also write 3<2χφ as an abbreviation for \/x, y(φ(x) Λ
φ(y) -> x = y). The symbol h will denote provability in the intuitionistic
predicate calculus.

Definition A formula of JL is called bounded (or restricted) iff all its
quantifiers are of the form Mx ey oτ3x ey.

The set of bounded formulas is called Δo.

Definition A formula of .£ is called ^-bounded iff all its quantifiers are of
the form Vx e y, 3x e y, Vx C y, or 3x C y.

The set of ^-bounded formulas is called Aζ.
We now proceed to define various axioms in -£. First, we let Ext, Pair,

Sum, Pow, Inf, Reg, and AC denote the usual forms of the axioms of exten-
sionality, pairing, sum set, power set, infinity, regularity, and choice. We also
use standard forms of the schemata of induction on epsilon, law of the ex-
cluded middle, separation, replacement, and collection:

TTζ =df Vx[Vyxφ(y)-+φ(x)} -• Vxφ(x)
SePφ =df ValbVx[x e b <-+x e a/\φ(x)]
LEMφ =df φ v ~φ
RePφ =df Vxa^ yφ(x,y) •* 3b\/y(y eb<-+ 3xaφ(x,y))
Collφ =df \fxa3yφ(x, y) -> 3ZΛ/xfl 3ybφ(x, y).

(In all axiom schemata such as the above, unspecified predicates like φ may
have free variables other than those shown.)

In the presence of classical logic plus a few basic axioms, replacement and
collection imply each other and separation.1 But without classical logic, re-
placement and collection do not imply full separation. In fact, in theories with
LEMxey, Sepφ trivially implies LEMφ. So our partially intuitionistic theories
never have full Sep. Without classical logic, Rep and Coll also apparently do not
imply each other. It is therefore natural to consider stronger forms of these
axioms which imply both the standard versions. Here are two examples of this.
The first, used by Tharp [2], is a concise axiom which seems to be strictly
stronger than Rep and Coll combined. The second, which we call "iterated
choice collection", is our idea of the strongest form of this type of axiom that



TRANSFINITE RECURSIVE DEFINITIONS 65

one can reasonably concoct. It implies any natural form of replacement or
collection, as well as AC and Sum (the variables / and t will always denote,
respectively, a function and a transitive set):

Rep'φ =df \/xa3yφ(x,y) ~* ^b[\jχalyhφ(xyy) A VyblxjpOcy)]
ICCφ =df Vx 3yφ(x, y) -> Ma 3f, f[aCt A Dom(f) = t A Rng(f) C t

A\/xtφ(x,f(x))].

In the above, of course, Dom(f) and Rng(f) denote the domain and the
range of/, respectively. Some other standard notation we will use is: Rel(x) to
mean x is a (binary) relation; the variable r for relations; Fld(r) to denote
Dom(r) U Rng(r); Fncix) to mean x is a function; Transix) to mean x is
transitive; and 3c or TC(x) to denote the transitive closure of x. Less standardly,
we will write x for x U {x}. (Though if x is transitive, in particular an ordinal,
this corresponds to the usual definition of successor.)

The axiom ICC defined above was thought of as a sort of sup of two other
strong forms of collection, called "choice collection" and "iterated collection":

CCφ =df \/xalyφ(x, y) -* lf[Dom(J) = a Λ \/xaφ(x,/(*))]
ICφ =df Vx3M*, y) -* Va3t[a C ί Λ \/xt3ytφ(x, y)].

The technical connection among all these collection and replacement axioms is
discussed at the end of the next section. One more somewhat standard axiom
that will be useful is:

WIO =df "Every well-ordering is isomorphic to an ordinal."

We will now define our three axiom schemata of transfinite recursive
definitions. First we need to define a predicate which we think of as saying,
"/ is a (recursively) 'good' function on the (transitive) domain t, with respect
to the formula φ(υh υ29 v3)":

GFφ{f, t) =df Fnc(f) A Transit) Λ Dom(f) = t A \/utφ(ft ΰ, f(μ), u).

Definition For each φ as above (possibly with more free variables), RDφ is
the formalization of the following statement: If, for every x, every good
function on x can be extended to one on xr, then for every x there is a good
function on 3c.

As mentioned in the Introduction, we also define two weaker forms of
this axiom. RD% (resp., RD^) is obtained from RDφ by replacing the words
"has an extension" with "has a unique extension" (resp., with "has a nonempty
set of extensions"). So RDU is the weakest of the three versions. (It would be
natural to strengthen the conclusion of RD^ (resp., RD%) by replacing the
words "a good function" with "a unique good function" (resp., with "a non-
empty set of good functions"). But even in our weakest theory /*SΌ, these
stronger-looking versions of RDU and RDS are derivable from the original
versions (see the remark following Corollary 2.8).)

The reader may wonder why we have chosen transitive sets as the natural
domains of good functions. It would be possible to use arbitrary sets, but then
certain details become somewhat messy. On the other hand, if we used ordinals,
RD would be simpler to work with but at the same time less general. This latter
form of RD will be discussed at the end of Section 2.
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We are now ready to define several theories.

Definitions

IS0 =df Ext + Pair + Pow + Inf + A0-LEM + A0-Sep

IS =dfIS0 + Sum+Reg +A0-Coll
Kx =df IS + TIe + WIO + Aξ-Cott
K2 =dfKχ + LEM
K3 =df K\ + RD (= ISQ + WIO + RD, as we shall see)
ZF =df IS + LEM + Rep.

So Kx has both LEM and Rep restricted. K2 adds full LEM, while K3 adds full
RD (which includes full Rep); and ZF adds both. One of the main results of
[3] and [4] is that Klf K2, and K3 are equiconsistent. (In fact, so are
Ki,K2+ V = L,zndK3 + V = L.)

2 Properties of the transfinite recursive definitions schemata In this section
we investigate the relationship among the schemata RDU, RDS, RD, and more
standard axioms. For the most part, these results are straightforward, but care
is required when doing set-theoretic proofs without classical logic. Certain
simple facts proved in [3] and/or [4] are not reproved here.

Let us first examine what it takes to prove each form of RD.

Lemma 2.1 /il-

ia) GFφ(J, ί i) Λ ί 2 C ί ^ GFφ{f \ t2, t2)

(b) GFφ(f Ϊ)+-+Dom(f) = x Λ VuxGFφ{f\u', u'\

Proof: Trivial.

Theorem 2.2 IS + 77e + Rep h RDU.

Proof: Assume φ is given. Working in IS + TI€ + Rep, assume the hypothesis of
RD%. We will prove the conclusion of it in the stronger form \/x 3! fGFφ(f 3c).
By 77e, it suffices to prove this for an arbitrary x, assuming it holds for eachj>
in x. Now, by the hypothesis of RD%, a good function on y has a unique
extension to one o n y . So we have VyxΊ\fGFφ(f,y'). By Rep, we can form the
set of all these /'s; then by Sum we can form the union of all these/'s. Call it
g. We will show GFφ(g, 3c). Trivially, g is a relation. The domain of g is

U y = x U U y. Clearly, this set contains x, is transitive, and any other
yex yex

transitive set containing x must contain this set; i.e., Dom(g) = x. (Note that we
have just proved, in IS + TIe + Rep, that every set has a transitive closure. This
simple but vital fact can actually be proved in IS + 77e.)

We next show g is a function. We just need to prove that the /'s whose
union is g are "compatible". So suppose we have y\ e x and GFφ(fi, yl), for
/ = 1, 2. We need to show that f1 = f2 wherever both are defined. So say
w e y\ Π y'2. We want fx(w) = /2(w); we'll prove the stronger statement fx\\ w' =
f2 tw', using TIe. That is, we can assume \/vw(fι^ υ = f2 IV). But note that

w = U υf. Thus fx \ w = f2 I w. But by Lemma 2. l(a), fx \ w is a good function

on w. So it has a unique extension to w', which thus must be the same for f2.
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So g is a function on 3c. By Lemma 2.1(b), it is in fact a good function.
Finally, we must prove g is the unique good function on x. This proof is almost
identical to the proof that g is a function, so we won't repeat it.

The reader may have noted that the above proof essentially follows
classical reasoning. Recall that our partially intuitionistic theories all have
AQ-LEM. In other words, classical logic may be used in them as long as a proof
is "talking about" a set rather than the whole universe or a proper class. In
simple results, this is often the case. The interested reader may wish to go
through the previous proof and isolate the places in it where A0-LEM is actually
needed.

Lemma 2.3 IS proves the equivalence of AC, Zorns Lemma, the Multipli-
cative Axiom, the Hausdorff Maximal Principle, and the Well-Ordering Principle.

Proof: In the usual classical proof of these equivalences, LEM, Coll, and Sep
are needed only for bounded predicates. So the proof can be formalized in IS.

Theorem 2.4 IS + TI€ + Rep + AC hRDS.

Proof: Given φ, we work in IS + TI€ + Rep + AC and assume the hypothesis of
RDφ. Consider the predicate φ*(x) which says: "for all y in x , the collection of
good functions (with respect to φ) on y forms a nonempty set".

Using TIe, we will prove the conclusion of RD^ in the stronger form
Vxφ*(x). (For note that φ*(x) implies in particular that the collection of good
functions on 3c forms a nonempty set.)

So assume Vuxφ*(u). As in the proof of Theorem 2.2, we have that

x - U u . So, given y ex, Sy = \g: GFφ(g,y)\ is a nonempty set. Also, by the

hypothesis of RD^, for each g e Sy there is a nonempty set of good extensions
of g to y . By Rep and Sum, we can form the set of all these extensions for all
g e Sy. By Lemma 2.1(a), every good function on y is an extension of one on
y, so we have the set Siy) = {g: GFφ(g, y')\ Φφ.

Using Rep and Sum again, we next form the set S = LJ_ S^y\ We then

II ye*
define R = U S. Clearly, R is a relation with domain x. R need not be a
function, but by Lemma 2.1(b) every good function on x must be a subset of
R. Also by that lemma,

GFφ(g, x) *->Dom(g) = x Λ MyxGFφ{g \ y, y)
<-> Dom(g) = x Λ \/yx(g t y e S).

Now, by A0-Sep we can form the set Sx = \g C R: Dom(g) = x Λ \/yx(g ϊ y e S)\.
And, by the above, we have Sx = \g: GFφ{g, x)\.

It remains to show that Sx Φ φ. To do this, first use AC to define a well-
ordering r on the range of R. Consider the predicate φ*(vh v2, v3) which says:
"υ3 e x and v2 is the Meast object such that φ(vh v2, v3); or v3 4 x and υ2 = </."
(The extra parameters of φ* are x, r, and those of φ.)

Now, the hypothesis of RD^+ holds, as follows: say GFφ+(g, t). If t $ x,
then g U \{t, φ)\ is the unique φ+-good extension of g to t'. If t e 3c, then t C x,
whence it is clear that GFφ(g, t). So by the hypothesis of RD^, there is a
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nonempty set of <p-good extensions of g to t'; i.e.. \v2'> φ(g, v^ t)\ is a nonempty
set. Also, this set is contained in the range of R. Hence this set must have an
Meast member w. (Note that if the nonempty class \υ2' φ(g, v2, t)\ were not a
set, we could not make this conclusion.) Thusg U \(t, w)\ is the unique <p+-good
extension oϊg to tf.

So by Theorem 2.2, the conclusion of RD^+ holds. In particular, there is a
</?+-good function on x. But such a function is also a <p-good function. So Sx is
nonempty. This implies φ*(x), as desired.

The parenthetical remark near the end of the above proof points out why
full RD is not provable in the same way. The next well-known fact illustrates
this further.

Proposition 2.5 ZFC h RD.

Proof: Given φ9 assume the hypothesis of RDφ. Define the new predicate
φ+(υh ι>2, 1̂ 3) which says, "υ2 is an object of least ordinal rank such that
0̂>i> v2, υ3y\ Then the hypothesis of RD^+ is easily verified, so the conclusion

of it holds by Theorem 2.4. This easily implies the conclusion of RDφ.

Choosing the least rank in which an arbitrary predicate has a solution, as is
required in the above proof, certainly requires classical logic.

We are now ready to go the other way and examine the consequences of
the different forms of RD. The shortness of most of these proofs, in contrast to
most of the above ones, should highlight further the strength of RD.

Theorem 2.6 77e, Reg, Sum, Rep, and A0-Coll are all provable in IS0 + RDU.

Proof: Given any φ{x), let φ*(vh v2i v3) be simply φ(v3)Λυ2 = </>. Then the
hypothesis of Tl% trivially implies the hypothesis of RD^, and the conclusion
oϊRDV* trivially implies the conclusion of 77*. So IS + RDU h TIe.

Reg is a direct consequence of 77e and AQ~LEM.
Next, note that RDU is "rigged" to imply that every set has a transitive

closure; i.e., let φ be automatically true, and then RD% just says Vx (x exists).

And once we have x, U x can be formed by A0-Sep, since U x = \uex:
^yx(u €y)\. Thus IS0 + RDU h Sum. (The reader who finds this procedure
unesthetic is welcome to change the conclusion of all three forms of RD to
\/tlgGFφ(g, t), and add the axiom Sum to IS0. All our results still hold under
this revision.)

N o w , g i v e n φ(x, y ) , l e t φ * ( υ h υ2, v3) b e t h e p r e d i c a t e [υ3ea /\φ(υ3, υ2)] v
[v3 4 a Λ υ2 = 1̂ 3]. Then Repφ follows immediately from RD^*. So 7*SΌ +
RDU hRep.

Finally, we need to show that IS0 + RDU h A0-Colί We have already
shown that IS0 + RDU \~ IS - A0-Coll + TI€ + Rep, so we will prove A0-Coll in
the latter theory. So say φ(x, y) is Δo, and assume \/xa 3yφ. Now, it is not hard
to show (in this theory) the basic facts about ordinals and the cumulative
hierarchy. In particular, we can show that every set has an ordinal rank, p(y)
being, as usual, the least α such t h a t ^ e F α + 1 . So we reason as follows: given x
in a, pick a y0 such that φ(x, y0), and let a. = ρ(y0). Then, by A0-Sep we can
form the set {βea': 3y e Vβ+ι(φ(x, y))\. (The predicate to the right of the colon
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may not seem Δo, but it is with the function \{β, Vβ): β e a'\ used as a parame-
ter.) This set is a nonempty set of ordinals, so it has a unique least element. In
other words, we can prove the existence of the least rank in which a Δ o

predicate has a solution.
So we have \/xa3\β[β is the least ordinal such that 3y(p(β) - y and

φ(x,y))]- So by Rep we can form the set of all these 0's. Then by Sum we can
form their sup; call it a. Finally, set b = F α ' , and we have \ixaly^.

Proposition 2.7 7S0 + RDS h AC.

Proof: Let φ(υh v2, v3) be (v2

 = v3= φ)v (v2 e υ3). Then the hypothesis of RD%

is trivial, and the conclusion of it is \/x3f[Dom(f) = x Λ Vj e x(f(y) = y =
Φ v f(y) e y)]> which becomes precisely AC if we simply restrict / to x instead
of x.

We now summarize our results concerning the "efficiency" of the various
forms of RD. When we call two or more theories equal, we mean that they
prove the same theorems.

Corollary 2.8

(a) IS0 + RDu = IS+TI€+Rep
(b) IS0 + RDS = IS + TI€ + Rep + AC
(c) ISO + RDU + LEM = ZF
(d) IS0 + RDS + LEM = IS0 + RD + LEM = ZFC

Proof: (a) follows from Theorems 2.2 and 2.6. (b) follows from Theorems 2.4
and 2.6, and Corollary 2.7. (c) is immediate from (a) and the definition of ZF.
Finally, (d) comes from (c) and Theorem 2.5.

So, even without classical logic, we have standard axioms which are
exactly equivalent to RDU and to RDS; and with classical logic the same holds
for RD. As we have already mentioned, this does not seem to hold for RD in a
partially intuitionistic context.

Theorem 2.9 /S o + RD \~ ICC

Proof: Assume Vx3yφ(x, y). Working in /*SΌ + RD, we first claim
Valf(Dom(f) = a Λ VΛW(JC,/(*))• (This will already show IS0 + RD hCC.) Let
φ*(vι, v2, v3) be φ(v3, υ2). Then the hypothesis of RDφ* is trivially established,
and the conclusion is precisely \/a3f(Dom(f) = Έ Λ Mxάψ(x, fix))-

However, given a, we do not just want a (p*-good function on a (that is, a
function / with Vx eaφix,f(x))). We want one on some t containing a, with
Rng(f) C t. Intuitively, such an / should be constructed by starting with one
on 5, and then extending it infinitely many times, letting the domain of each
successive function be the transitive closure of the field of the previous one.

To accomplish this formally, we use RD again. Let φ(vh v2, v3) be the
predicate which says: υ3 4 ω and v2 = φ; or v3 = 0 and υ2 is a < *̂-good function
on a\ or v3 = n for some n in ω, υx is a function with domain n\ and υ2 is a
φ*-good function on TCiFld(υλin))).

We prove the hypothesis of RDφ'\ say g is a <p'-good function on y. We
need to extend it to one on y\ which means finding v2 which satisfies
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ψ(g, Vi> y)- But we have already shown that every transitive set has a <̂ *-good
function on it. Since the desired υ2 is always φ or a <p*-good function on a
specific transitive set, it must exist.

So we have the conclusion of RDφ. Given any set a, let g be a <̂ '-good
function on ω. Note that each g{n) is then a <p*-good function. We define a

function /, with domain U Dom(g(n)), by the rule fix) = [g{n)]{x), where n
Ate cυ

is the least number such that x e Dom(g(n)). Let t be the domain of/. It is then
completely straightforward to verify that / and t satisfy the conclusion of
ICCφ, and we omit the details.

Corollary 2.10 In the theory IS0, the following implications hold (i.e., each
arrow A-+B actually means IS0 + A h B):

^rAC

RD—^ICC—^CCCΓ ;rReP

^Rep'ζ*
^Coll

Proof: The first arrow is Theorem 2.9. All the others are trivial.

Recall that the implications RD -> TIe -> Reg and RD -> Sum could also be
added to the above chart. However, for the moment we want to focus on the
relationship of RD to collection and replacement axioms.

We do not know how to reverse any of the above arrows, even in the
presence of a theory like IS + TI€ + WIO + AC. In fact, we conjecture that none
of them is reversible. (This includes the conjecture that Rep' does not follow
from Rep + Coll.)

If these conjectures are correct, they highlight further the strength of RD:
it stands at the top of this five-level hierarchy of axioms in which full collection
and replacement (usually thought of as strong axioms) share the bottom rung.
(However, we repeat that this hierarchy collapses when we talk about proof-
theoretic strength.)

For the sake of readability, we have left the schema IC out of the above
chart. The following implications are immediate: ICC -> IC, IC -* Coll, and
IC + CC -* ICC. We conjecture that CC does not imply IC, and IC does not
imply Rep (even in the theory IS + TI€ + WIO + AC).

We conclude this section with a brief discussion of the schema RD with
the domains of good functions restricted to ordinals, as mentioned near the
end of Section 1.

Definition For each formula φ(υh ι>2,1̂ 3), we let RDOφ be the same predi-
cate as RDφ, except that the variable x in RDφ gets replaced by an ordinal
variable. Also, let RDNφ be the same predicate with the ordinals further re-
stricted to be no greater than ω.

(I.e., RDNφ essentially says: if, for every natural number n, every </>-good
function on n can be extended to one onn+ 1, then there is a </?-good function
on ω.)

Clearly, RDO is weaker than RD, but one may suspect that it is not much
weaker. Theorem 2.13 will bear this out, showing that RDO implies RD when
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added to the theory Kx. Kί does not contain AC nor much Rep or Coll, but it
does contain the nontrivial foundation axioms TI€ and WIO (as well as A^-Coll),
which make it much stronger than IS. Loosely, we can therefore say that while
RD combines foundation, Rep, Coll, and AC, RDO only combines Rep, Coll,
and AC (as does ICC, but in a different way).

After Corollary 2.10, we conjectured that RD is independent of IS + TI€ +
WIO + ICC. By Theorem 2.13, the conjecture that RDO is independent of these
axioms is no stronger. However, we also make the stronger conjecture that
RDN is independent of these axioms.

Now to our results about RDO.

Lemma 2.11 IS + WIO + RDO h Every set is in one-to-one correspondence
with some ordinal.

Proof: Given any set x, let φ be the predicate:

(υ2 e x ~ Rng(υx)) v(v2 = χ- Rng(vx) = Φ),

(x is an extra parameter in φ). Trivially, the hypothesis of RDOφ must always
hold, since such a υ2 must exist. So, by RDO, we have that there is a <p-good
function on every ordinal.

Note that, if GFφ(f a), then either /: a —> x or there is some β < a such
that/r/?:/J o ^x

Now, in IS + WIO, we can prove Hartogs' Theorem in the usual way: given
any set y, we can form the set of all well-orderings on subsets of y. (Using an
appropriately large parameter, this requires only A0-Sep.) Then, by WIO and
Σx-Rep (which holds in IS), we can form the set of all the ordinals which are
isomorphic to these well-orderings. Finally, in IS it can be proved that the sup
of any set of ordinals is an ordinal. So let a be the successor of the sup of this
set of ordinals. Clearly, a cannot be mapped one-to-one into y, as desired.

So, for our given x, let a be an ordinal as guaranteed by Hartogs' Theorem,
and let / be a <p-good function on a. Since/cannot be one-to-one, some restric-
tion of/to a smaller ordinal must be a bijection.

Corollary 2.12 IS + WIO + RDO h AC

Proof: By the above, this theory proves that every set can be well-ordered,
which (in IS) implies AC.

Clearly, the two results above still hold using the weaker RDOS (defined
analogously to RDS) instead of RDO.

It may seem strange that an axiom like WIO is needed to prove something
as basic as Hartogs' Theorem, but as far as we know this is the case. As we will
mention in Theorem 3.1, WIO, Hartogs' Theorem, and several other predicates
are interchangeable in the presence of IS + TIe.

In the remarks following Theorem 3.2, we will conjecture that WIO does
not follow from the full schema RD. Some readers may wonder why, in the
theory IS + RD, one could not apply the method of the proof of Lemma 2.11
in reverse, to prove that every set can be mapped one-to-one to an ordinal
(which in turn would immediately imply Hartogs' Theorem and WIO). The
reason is this: when the predicate φ says that f(u) is not in Rng{f\u), then
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every </?-good function on an ordinal must be one-to-one, as in Lemma 2.11 (up
to the point where the desired range x is exhausted). The same conclusion fails,
however, for <£-good functions on arbitrary transitive sets.

Theorem 2.13 Kx + RDO h RD.

Proof: Working in Kx + RDO, assume that the hypothesis of RDφ holds. In Kx

(or even Kγ ~ WIO), it is easy to prove the standard facts about the cumulative
hierarchy, including that every set is contained in some Va. So, by Lemma
2.1 (a), it will suffice to prove that there is a <p-good function on every Va.

Let φ* be the predicate: GFφ(v2, VV3+ί) Λ U (Rngiv^) C v2.
We claim that the hypothesis of RDOφ* holds. For say / is a <p*-good

function on a. So for each β in a, φ*{f \ β, f(β), β) holds. This says that f(β) is a
(̂ •good function on Vβ+ι which contains every /(γ) for γ < β. In other words, /
defines an increasing α-sequence of </?-good functions on the sets Vβ+1, for

β < a. So let g = U (Rng(f)). U Vβ+ί = Va, so g is clearly a function on Va,

and by Lemma 2.1(b) it is in fact a <^good function.
To prove the hypothesis of RDOφ*, we must show that / can be extended

to a < *̂-good function o n α + 1 , which simply means thatg can be extended to
a < -̂good function on Va+ί. By the hypothesis of RDφ, we know that g has a
(^good extension to Va U \y], for each y e Va+1 - Va. By Lemma 2.11, define a
bijection between some ordinal and VOί+1 ~ Va. Using this bijection and an
obvious instance of RDO, we can use these one-set-at-a-time extensions of g to
show that there is a <p-good extension of g to all of Kα+1.

Thus, the hypotheses of RDOφ* holds. So, by RDO, there is a <^*-good
function on every ordinal. And we have already seen that this implies there is a
<p-good function on every Va, as desired.

3 Different forms of the axiom of foundation We have shown that the
schema RD, and its weaker versions, combine aspects of the axioms of choice,
replacement (and collection), and foundation. We have seen that, in a partially
intuitionistic context, the various classically equivalent forms of choice are still
equivalent, but we have conjectured that this is markedly not the case for
several classically equivalent forms of replacement and collection. For the sake
of completeness, we will now discuss the relationships among various founda-
tion axioms. Some versions which are classically equivalent will even create
theories of different proof-theoretic strengths in our partially intuitionistic
setting (in contrast to the situation with replacement and collection axioms).

When we refer to foundation axioms, we are actually talking about two
different types of statements. One type, the more usual one, consists of state-
ments which express in some way the well-foundedness of the epsilon relation.
The other type consists of statements which assert properties of other well-
founded relations.

There are three standard versions of the first type of foundation:
regularity, TIe, and the "least number principle" in the form of the schema:

LNPf =df lxφ(x) -> lx[φ(x) Λ \fyx~φ(y)].
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Classically, TIe and LNPe are trivially equivalent. But, by a simple and
well-known argument, LNP€ implies full LEM (assuming we have LEMx=y), and
so it cannot be considered as an axiom for a partially intuitionistic theory. The
same limitation holds for LNP on other well-founded relations. (These diffi-
culties with LNP were mentioned after the proofs of Theorem 2.4 and
Proposition 2.5. In our theories Kί and K3, LNPf cannot be proved in general
even for decidable φ, but it can be proved for bounded and even for "P-
bounded φ.)

As previously mentioned, in the presence of A0-LEM, Reg follows immedi-
ately from TIe. In theories without A0-LEM, this implication does not normally
hold, and 77e is usually the more appropriate axiom. Depending on what other
axioms are present, Reg may imply LEMe.

The other direction is less trivial—the usual proof of TI€ from Reg requires
full separation. Replacing Reg by TI€ in a weak set theory can increase strength,
as we will see in Theorem 3.2.

We now move on to the other type of foundation axiom. There are a
greater variety of this type, most of which are equivalent to each other. The
axiom WIO is the one example of this sort of foundation axiom which we have
already defined. Another example is the statement that every well-founded
relation has an (ordinal-valued) rank function. (A rank function on a binary
relation r is a function / such that, for all y in the field of r, f(y) = sup\f(x)'\
(x,y)er}. Also, when we say that r is well-founded, we mean that every
nonempty set has an r-minimal element.) Another important axiom of this
type is transfinite induction for well-founded relations. This is actually a
schema, since transfinite induction is a schema:

TI\f) =df \tx[Vy((y, x) e r -+φ(y)) -+φ(x)] -+ Vxφ(x).

We now summarize the main equivalences for this type of foundation
axiom. Proofs of them may be found in [3] (Theorem 2.4.9); they are all
pretty straightforward.

Theorem 3.1 In the theory IS + 77e, each of the following proves all the
others:

(i) WIO
(ii) Every well-founded relation has a rank function
(iii) Every well-founded partial ordering has a rank function
(iv) Every well-founded relation satisfying extensionality is isomorphic to

the epsilon relation on some transitive set
(v) Hartogs' Theorem: for every set there is an ordinal which cannot be

mapped one-to-one into it
(vi) Transfinite induction for well-founded relations
(vii) Transfinite induction for well-founded partial orderings
(viii) Transfinite induction for well-orderings.

In the notation of [3], the schema (vii) above is called SBI, which stands for
"set bar induction".

The equivalence of statements (i), (ii), (iii), and (v) actually holds in the
weaker theory IS. On the other hand, any of the schemata (vi)-(viii), plus Reg,
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proves *77e. (So Reg + SBI is an exact equivalent of TI€ + WIO.) This implies
that the entire equivalence of the above theorem does not hold in IS, since we
will see below that IS + WIO \f TIe.

We remark that all of the axioms of Theorem 3.1 follow immediately
from Reg + (full) Sep, or from TI€ plus a single instance of Sep.

We now consider the proof-theoretic strength of these different founda-
tion axioms. Loosely, we can say that Reg is weaker than TIe, which in turn is
weaker than Reg + WIO, which in turn is weaker than 77e + WIO. More pre-
cisely, we have the following theorem. Again, we omit the proof for the sake of
brevity, since it requires a great deal of technical machinery. Most of our
assertions about strengths of theories are taken from Appendix 2 of [ 1 ] or
pages 27-28 of [3].

When we write Tx < T2 or say that T2 is stronger than Tί9 we mean that T2

proves the consistency of Tx. Also, when we say two theories are equiconsistent
or have the same strength, we mean that their equiconsistency can be proved in
formal number theory.

Theorem 3.2 Let T be the theory IS + Aζ-Rep, or that theory plus AC
and/or full LEM (so there are four possibilities for T). Then

T<T+TIe<T+ WIO < T+SBKT + Sep.

We remark that the four theories denoted by T, Classical Type Theory,
and IS'Coll all have the same strength. But T + TIe is already stronger than
Zermelo set theory.

The four theories T + SBI are essentially Kh K^ AC, K2, and K2 + AC.
So, as mentioned in Section 1, these theories and the theory K3 all have the
same strength.

In Section 2, we showed that many statements are derivable in IS0 + RD.
We believe that WIO is an exception; in fact, we conjecture that IS + RD < K3.

We conclude this section with two generalizations of the schema SBI. Let
σ(x, >>) be any predicate (possibly with extra parameters). Then we can think of
σ as defining a "class binary relation". Let WFσ be the statement that σ(x, y)
defines a decidable, well-founded partial ordering, i.e.,

WFσ =df Vx, y(σ v ~σ) Λ \/X, y, z(σ(x, y) Λ σ(y, z) -* σ(x, z))
/\Vu[uΦφ-* 3yuVxu~σ(x>y)]-

Also, there is no problem stating the principle of transfinite induction on a
class binary relation; we let 77£ be the same predicate as TIφ(r), with σ(x, y)
replacing <JC, y) e r. (So TIφ(r) and TIf are both special cases of Tig.)

Now, define BI (full bar induction) to be the double schema WFσ ->• Tig.
Friedman [ 1 ] uses Reg + BI as the foundation axioms in the partially intui-
tionistic theory ZFC1/2. Also, on page A2.3 of [ 1], he defines an axiom which
is between SBI and BI in content. He calls it F, but we prefer to call it RBI,
"restricted bar induction". It is the double schema

[WFσ Λ 3b Vx, y(σ(x,y) -*x e b Λ y e b)] -> Tig.

It is clear that RBI, like SBI and the other axioms listed in Theorem 3.1,
follows from Reg + Sep. Also, in the presence of separation for decidable
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predicates (i.e., the schema \/x(φγ~φ) -* Sepφ), RBI becomes equivalent to
SB I. So RBI is provable in Kx + Rep, hence in K3. But we believe RBI to be
independent of the theories T + SBI (in the notation of Theorem 3.2). On the
other hand, Friedman points out that T + RBI has the same strength as T + SBI.

The full schema BI is more intriguing. It is the only axiom we know of
that is provable in classical ZF and seems plausible in a partially intuitionistic
context, but which we do not know how to prove in K3. Also, the interpreta-
tion used in [3] to interpret K3 into Kx does not work for BL In fact, we
conjecture that ZFC1/2 (which is contained in K3 + BI) is stronger than K3. On
the other hand, Theorem 6.4 of [ 1 ] shows that ZFC1/2 can be interpreted in a
classical theory which is not much stronger than K2.

There are some interesting parallels between BI and RD. Each is the
strongest-looking version of a certain type of axiom. Each is provable in classi-
cal set theory (RD requires choice, BI does not) but for each one the usual
proof requires full replacement and "least rank picking" of the sort that uses
full classical logic (recall Proposition 2.5). Hence, neither one seems provable in
natural theories obtained from ZFC by restricting Rep and/or LEM. Nor does
either one seem to imply the other. It would be interesting to formulate an
axiom that would combine BI and RD in a natural way. It would presumably
state that functions can be defined by transfinite recursion on well-founded
class relations. This "bar recursion" principle for set theory would require the
language of Von Neumann-Bernays set theory to even state. It is not clear
whether it would be provable in any reasonable version of that theory, though
it would probably at least be consistent if stated properly.

NOTE

1. The "few basic axioms" we have in mind here are those of the theory IS, defined at the
end of this section. These axioms may be "basic", but they are not trivial. I.e. to prove
Coll from Rep requires Pow, and the reverse implication requires A0-Sep.

REFERENCES

[1] Friedman, H., "Some applications of Kleene's methods for intuitionistic systems,"
pp. 113-170 in Cambridge Summer School in Mathematical Logic, Lecture Notes in
Mathematics, eds., A. R. D. Mathias and H. Rogers, vol. 337, Springer-Verlag, 1973.

[2] Tharp, L., "A quasi-intuitionistic set theory," The Journal of Symbolic Logic, vol. 36
(1971), pp. 456-460.

[3] Wolf, R., "Formally intuitionistic set theories with bounded predicates decidable,"
unpublished Doctoral dissertation, Stanford University, Sept. 1974.

[4] Wolf, R., "Partially intuitionistic formal set theories," to appear.

Department of Mathematics
California Polytechnic State University
San Luis Obispo, California 93407




