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On Extensions of Lωω(Qi)

XAVIER CAICEDO

Introduction Lωω(Qλ) is the logic that results by adding to first-order logic
the quantifier "there are uncountably many", studied by Mostowski, Fuhrken,
Vaught, and Keisler. It is countably compact and satisfies a downward
Lowenheim-Skolem theorem down to ttx (see [3] and [5]). However, it does
not satisfy the interpolation theorem (see [4]). An important unsolved problem
about this logic is the existence of countably compact extensions of Lωω(Q1)
satisfying interpolation (see [8] and the discussion in [2], p. 221). There are
many interesting countably compact extensions of Lωω(Qί)i some of them
satisfying the Lowenheim-Skolem theorem down to N l 5 for example its closure
under Δ-interpolation (cf. [1], [8]) or stationary logic, Lωω(aa), a fragment of
second-order logic introduced by Barwise, Kaufmann, and Makkai [2]. But
none of the known examples satisfies interpolation.

In this note* we show that the monadic fragment of Lωω(Q^) satisfies the
interpolation theorem and is, in fact, a maximal monadic logic satisfying
countable compactness and a form of the downward Lowenheim-Skolem
theorem down to #x. This is similar to Lindstrom's theorem for Lωω, and it
follows from the topological properties of the space of models. We introduce
monadic filter1 quantifiers and show that they are essentially the cardinal
quantifiers (Section 2). A back-and-forth characterization of elementary equiva-
lence is given for those logics obtained by adjoining filter quantifiers to the
propositional connectives (Section 3). This is used in Section 4 to show that if
two sentences of i ω ω ( Q i ) n a v e a n interpolant in the infinitary logic Looω(Qx)
allowing conjunctions of arbitrary sets of formulas, then they have an inter-
polant2 in Z/ω ω(βi). Actually, a stronger result is proved: if L* and L # are

*The content of this paper was announced in the Notices of the American Mathematical
Society, vol. 24 (1977), p. A-437. Details and generalizations appear in the author's
doctoral dissertation, Maximality and Interpolation in Abstract Logics, University of
Maryland, 1978.
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countably compact extensions of Lωω(Q1), L* obtained by adding filter
ω^complete quantifiers, and L* -< L # , then two disjoint PC classes of L# that
can be separated in the infinitary logic LZω, can also be separated in L*. With
this we may show that Lωω(Q^) is a maximal countably compact sublogic of

Back-and-forth or game characterizations of elementary equivalence for
Lωω(Q\) have been introduced before by others (see for example [10]) and
have been used to prove theorems about preservation of elementary equivalence
by various operations. Krawczyk and Krynicki [6] give a general characteriza-
tion for monotonous quantifiers. Our version differs from those in that in our
"game" the "players" do not choose subsets but elements of the universe. By
doing so they are choosing equivalence classes with respect to certain equiva-
lence relations. This way, the existence of a back-and-forth relation between
two structures becomes a Σ}-definable property in the corresponding logic
(see Lemma 3.3).

Structures will be denoted by 21, 8, . . ., and their corresponding universes
by A, B, . . .; \X\ is the cardinal of the set X. If K is a class of structures and c is
a cardinal, Kc denotes the class of structures in K of cardinality smaller than or
equal to c. An abstract logic is understood as in Barwise [1]. We identify first-
order languages with similarity types of structures. If L is an (abstract) logic
and r is a language, Lτ denotes the class of sentences of L with symbols in r. L
is said to satisfy LSc(d) if every consistent set of sentences of L of cardinality
smaller than or equal to c has a model of cardinality smaller than or equal to d.
If a: T -+ r is an interpretation (see [ 1 ]), .21 is a r'-structure, and φ e Lτ, then
21 I a and φ^ denote respectively the restriction of 21 and the relativization
ofφ.

1 The monadic fragment of Lωω(Qx) If r is a language let E% denote a set
of representatives, with respect to isomorphism, of the class of r-structures of
cardinality smaller than or equal to c. Let L be a logic, then EC

T(L) denotes the
topological space that results of giving to Ec

τ the topology generated by the
restrictions of the Zr-elementary classes to EC

Ύ, It is not difficult to prove:

Lemma 1.1 If L is closed under conjunctions and negations, is countably
compact, satisfies LS#0(c), and \LT\ < No, then E%L) is a compact topological
space where the clopen (closed and open) sets form a basis, and coincide with
the Lτ-elementary classes restricted to Ec

r.

Let Λf(βi) denote the monadic fragment of Lωω(Q{)\ it does not have
function symbols or rc-ary relation symbols for n > 1. M(QX) is countably
compact and satisfies LS#£#{). Moreover, if r is a finite monadic language then
I ^ ( G I ) T ' ^ ^o a n d s o the above lemma applies. However, we have a stronger
statement:

Lemma 1.2 Let r be a finite monadic language, then E^iMiQi)) is a
compact Hausdorff space with the clopen sets as a basis.

Proof: To prove the Hausdorff separation property it is enough to show that if
21 and 5B are r-structures with \A\, \B\ < ^ί then 21 = M « 2 I ) S implies 21 « 8. Let
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τ = (Pi)i<n, and for each f e 2n form the formula Uf(x) = Λ P^ι\x), where

P°(x) = P{x) and P\x) = πP(x). For any structure 51 define Uf =[a e A:
51 1= Uf(ά)\. \f\A\ < Nx the isomorphism type of 51 is completely determined
by the cardinals Cf = I ί/^l, where / e 2". Since cy < X1? these cardinalities are
expressible by sets of sentences of M(QX) and so they are preserved by ele-
mentary equivalence. This proves the claim.

Theorem 1.3 M(QX) satisfies interpolation.

Proof: Let Kλ and K2 be disjoint PC classes of M(QX). Suppose that K{ =
{5ϊ \ αz : 51 1= 0/i where αz : r -* r/ are interpretations (see [1]) and 0/ eM(Qx)Ti

for z = 1, 2. We may assume without loss of generality that r is finite; then K^
and ^ 2 J a r e disjoint compact subsets of E*i(M(Qj)). By well-known separation
properties of compact Hausdorff spaces, these classes may be separated by an
open set. Since there is a basis of clopen sets, the separation may be realized by
a clopen set. But in this topology every clopen set is elementary, thus there is a
sentence σ e M(QX) such that AΓf1 C Mod(σ)^ C K$K Suppose Kx <t Mod(σ),
then there is a structure 51 1= 0X such that 51 I a1 l£ σ and so 51 1= ~\σ^\ Apply-
ing the Z/Sf^ίftj), the sentences φu π σ ( a i ) must have a model of cardinality
<«x, call it δ. Then δ t otx e AΓf i and δ 4 Mod(σ)*\ a contradiction. We con-
clude that Kx C Λίod(σ). Similarly, Mod(σ) C ^ 2 .

In the next theorem we do rcoί assume thatΛ/* is closed under relativiza-
tion, conjunctions, or negation.

Theorem 1.4 (Lindstrom's theorem for M{Qγ)) Let M* be a countably
compact extension of M(Q{) satisfying LS^J^^), and let r be a finite monadic
language, then M* ^MiQ^.

Proof: Let φ e M*, Kγ = Mod{φ), K2 = Mod(iφ). Using that Λf* is countably
compact and satisfies LS^0(^χ) it is easy to see that Kf1 and Kξ1 are comple-
mentary compact subsets of E^iMiQ^). As in Theorem 1.3, there exists
σ e Λf(Qi)τ such thatJΓ?i C Mod(σ) C JΓ?i. By the i S ^ K O in M* again, we
have A^ C Mod(σ) Q K2- Kx and so φ = σ.

The same method we have used here may be applied to first-order monadic
logic, Mωω, to give trivial proofs of interpolation, and of "Lindstrom's theorem
for MωJ\ first proved by Tharp [9]. The following is an interesting application
of Theorem 1.4.

Corollary 1.5 If M{ad) is the monadic fragment of stationary logic, then
M(aa)=M(Qί).

2 Monadic filter quantifiers A monadic quantifier is a function C that
assigns to each set A a family of its subsets C(A), with the property that if
(A, S) « {B, T) then SeC(A)*=*Te C(B). The dual quantifier C is defined by
C{A) = \SQA\ A - S i C(A)\. Obviously C = C. Given a family of quantifiers
(Q)ieh t n e logic L(Ci)iej is obtained by adding to the atomic formulas and
propositional connectives of first-order logic the quantifier symbols Cz (/ e /),
allowing formulas of the form Qxφ in the formation rules, and defining:

51 t=CiXφ*=>\a€A: 51 t=φ(a)| e QC4).
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Since SI 1= ζixφ «=* a N -IC, ΛΠ0, I(CZ) is equivalent to L(CZ). Abusing the
language, we will use the same symbol for the quantifier and the corresponding
quantifier symbol.

For example, 3(4) = f>(A) - \φ\, with dual 3(4) = V(4) = \A\, gives
first-order logic Lωω = 1(3). In general, we define Lωω(Q)i€l = L(3, Q)ze/, and
Looω(Q)i€j is the infinitary extension that allows conjunctions of arbitrary sets
of sentences in its formation rules. Other well-known monadic quantifiers are
the (constant) cardinal quantifiers βα(4) = \S C 4 : I Si > Ntt}, and Chang's
quantifier C7*(4) = {SC 4 : ISl = l4li.

Definition 2.1 A monadic quantifier C is & filter quantifier if the following
are valid schemata of the logic Lωω(C):

(a) \/χ(φ-*ψ)^(Cxφ-+Cxψ)
(b) Cx(φ vψ)-> (Oc0 v Cxψ).

Obviously, C is a filter quantifier if and only if:

1. SeC(4),S' DS=>S'eC(4).

2. U Sz e C(4) =» 3/ < n: Sz e C(4). (/ι e ω)

This is in turn equivalent to:

C(4) is a filter over 4, for all 4 .

The existential quantifier 3 and the Qα's are filter quantifiers, and Ch, restricted
to infinite structures, is a filter quantifier. These examples can be generalized as
follows: let / be a function from cardinals to cardinals and define <2/(4) =
{SC4: ISl >/(l4l)!. If/(c) = 1 or f(c) > tt0 for every cardinal c, Qf is a filter
quantifier. Surprisingly these exhaust all the possibilities.

Theorem 2.1 C is a filter quantifier if and only if C = Qf where f:
Cardinals-* ill UInfinite Cardinals.

Proof: Suppose that C is a filter quantifier and define:

{2 w ι «o, ifC(4) = ̂

minimum ISl such that S e C(4), if C(4) Φ φ.

We claim that S e C(4) <==> I Si >/(4), for all S C 4 . If C(4) = ̂  this is obvious.
If C(4) =5̂= φ then 4 e C(4) by the monotonicity condition (a) of Definition 2.1.
Let μ = minimum I Si such that S e C(4); it is enough to show that if T C 4 and
IΠ = μ, then T e C(4); thejrest will follow by monotonicity. Case 1: there is
Sj C(4) with ISl = μ and ISl = β > μ. Choose Tr C T such that \T'\ = μ and
17"I = β, then (4, Γ') « (4,S) and so Γ' e C(4) by the isomorphism condition
on quantifiers. By monotonicity, T e C(4). Case 2: there is no S e C(4) with
ISl =_μ and ISl > μ. Then l4l = μ. Suppose that \T\ = μ but T 4 C(4). Since
Γ_U T = 4 e C(4), then Γ e C(4) by condition (b) ofpefinition 2.1 therefore,
171 = μ. But this contradicts the assumption because 171 = I T\ = μ. Finally, note
that μ Φ 2, 3, . . . by condition (b), and/(4) depends only on 141.
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3 Back-and-forth for filter quantifiers Through this section let & - (Cλ)λ€j
be a family of filter quantifiers and L((5) the corresponding logic. 21 and δ are
structures of the same similarity type.

Definition 3.1 A &-back-and-forth from 21 to δ consists of the following
relations, subject to properties (i)-(v) below:

1. A linearly ordered set "P= (P,<) of parameters.

2. For each sequence σ e U An a family (~p

σ)V€p of equivalence relations

in A with finitely many equivalence classes, such that p < p implies
^p' c ~P

3. For each r e U Bn a similar family (~ζ)pep in J5.
ΐl 6 CO

4. A family (~p)pep of relations between sequences of elements of A and
sequences of elements of B of the same length, such that p <p implies
~ P ' C ~^

(i) φ ~P φ (φ = the empty sequence)

(ii) a' ~g a, (σ,α) ~? (r,ft), Z> - ? ft' =* (σ,β;) ~? (τ,b!)
(iii-λ) σ ^ ' τ , p < p ' f l e i , and \a: a' ~ζ a] e Cλ(A) => 36 e Jϊ[(σ,α) ^ p (τ,6)

andί^ ' Z? '-?^ ! e C λ ( ί ) ]
(iv-λ) As (iii-λ), alternating the role of A and 5
(v) (α1? . . ., an) ~p (bu . . ., Z?w) =» /(%) = Z?̂  is a partial isomorphism from

5ί toB.

Properties (iii-λ) and (iv-λ) must hold for all λ e /. The notation 21 ~c> δ
indicates that there exists a £>-back-and-forth from 21 to 58; 21 ~ £ 23 indicates
which is the set of parameters. We also use ~ to denote the back-and-forth
itself.

Definition 3.2 A filter quantifier C is κ~complete if CG4) is a /c-complete
filter over A Equivalently, C = β/ , where cof(f(c)) > K for every cardinal c.

Any filter quantifier is ω-complete; 3 is /c-complete for any κ\ 3 and Qx

are the simplest ωΓcomplete quantifiers. If (^consists of /c-complete quantifiers
(K > ω) we will weaken the finiteness condition, in (2) and (3) of Definition 3.1
of ^-back-and-forth, to:

~§ has fewer than K equivalence classes. (**)

However, in case (^contains non-ω^complete quantifiers, a back-and-forth can
be taken only in the original sense.

Definition 3.3 ~ is a ^-back-and-forth without parameters if we drop part 1
of Definition 3.1, postulate nonparameterized relations ~ σ , ~T, and ~ in 2, 3,
and 4 respectively, and state properties (i)-(v) without the parameter condi-
tions. The existence of such a relation is denoted by 21 ~& δ.

Lemma 3.1 21 ~ J δ z/ίm<i only if 21 ~ ^ δ where f> is not well ordered.

Proof: If ~ is a back and forth without parameters, take any linearly ordered
set ί> and define: a ~p

σ a {b ~? b') <=> a ~σ a' (b ~τ b'), σ ~? τ<=*σ ~τ.lf
21 ~% δ and px > p2 > . . is a descending sequence in ^ , define: a ~σ a
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(b ~ r b') *=> 3pn(a ~Pn a (b ~Pn b')) and σ ~ r <=* 3pw(σ ~ P « r). The equiva-
lence class of a with respect to ~ σ is the union of the equivalence classes of a
with respect to ~Pn (n = 1, 2, . . .)• Therefore, the number of equivalence
classes of ~ σ is bounded by the number of equivalence classes of any ~ζn. If
some ~p

σ

n has finitely many equivalence classes, the union may be taken to be
finite because there is a coarsest equivalence relation ~g/. To prove properties

(iii-λ) and (iv-λ) one uses the fact that in any case U En e C(A) *=» 3rc e
neω

ω{En e C(A)), where En is the equivalence class of a with respect to ~Pn.
Let (5 be a finite family of filter quantifiers. The quantifier rank of the

sentences of L((y) is defined as usual (see [1]), giving the same weight to every
quantifier of &. This way the number of nonequivalent sentences of rank less
than or equal ton (ne ω) becomes finite in case the language r is finite. =n de-
notes elementary equivalence up to sentences of quantifier rank strictly less
than n.

Lemma 3.2

(a) If the language τ is finite then: VL =n

L (^ }» =* 51 ~f£> ».

(b) « ~ ^ 8 - > » = l ω ω ( * ) B .

(c) a-g^δ^δ^W^B.

Proof:

(a) "=»". For k<n, (a,a,a) e Am+2, and (b,b,bf) e Bm+2 define:

β ^α'«(a,a > β )=ί ω ω W (a,ί f β ' )

The number of equivalence classes of ~% (respectively ^ ) is finite because

they are of the form [a]ξ = {a: («,α) 1= Λ /ί(β ')}, where t* is the set of
formulas of qr < k satisfied by a in (^L,ί), and there are finitely many of those.
To show property (iii-λ) (respectively (iv-λ)), let (&.,"#) =L^ω{&) (B> )̂» ^ i ,

and [ α ] | e C λW), then («,α) 1= Cλx Λ ̂ (x), 3x Λ /J(x). Since these sen-

tences have quantifier rank (qr) less than k + 1, they are satisfied also by (35,b)

and one may choose b e B such that (Vi9t,ά) =ϊωω{σ>) (8,2?, 6), and [Z>]| e

Cλ(B). The other properties are easy to check.

(b) "*=". We use induction on the complexity of the formulas to show:

a~kb, qr(φ(y))<k =>((%, a) N φ(a) «=* CB, 6) 1=0(6)).
Since φ ~k φ for k< n, it follows that 51 = 2 ω ω ( ί > ) 8. The only interesting step

is when φ = C x^Cv,*), C = C λ. Suppose ? ̂ * b, qr (ψ(?,x)) < * - 1 and

(«,έi) t= Cxψ(a, x), then {α: 51 1= ψ(ί, α)} e C(A). By the finiteness of the num-

ber of equivalence classes of ~ ί - 1 and property (b) (in Definition 2.1 of filter

quantifiers) generalized to finite unions, either the above truth set is empty, in

which case both C(A) and C(B) must be trivial (using (iv-3)), or there is an

equivalence class [a)ψι e C(A) such that (« ,£) 1= ψ(a,a). In this case using
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(ϋi-λ), one finds b e B such that [b]ψx e C(B) and (a, a) ~k~ι (b, b). By induc-

tion hypothesis, Definition 3.1 (ii), and monotonicity of C, then (51,b) \=

C xφ(b, x). The other direction is similar. In case the quantifiers are ^-complete

and we have the weaker condition (**), we use that U Sμ e C(A) <=» 3μ <
δ(Sμ e C(A)) for any δ < K.

 μ < δ

(c) Similar to the proof of (b); the converse does not hold even if the language
τ is finite.

To show that the converse of Lemma 3.2 (c) fails, assume that 51. ~ i , ρ x 51,
where the relations ~σ have at most countably many equivalence classes. Then,
as in the proof of Lemma 3.2 (b), a ~ b implies (51, a) =Looω(Qi) (&•> b) a n c * s o ^
must have countably many £ooω(Qi)-types of elements. Therefore, any structure
for a finite language satisfying uncountably many £ooω(<2i)-types will provide a
counterexample. Actually, it is easy to give a structure for a binary relation
symbol satisfying uncountably many Lω α ;-types; such is the case of (ω U
^ ( ω ) , e), where we identify n < m with n e m. Every element of ω is defined
by a finitary formula and every subset of ω is defined by a countable conjunc-
tion of finitary formulas.

In the following lemma it is assumed that the logic Lωω(Qa, C>) is closed
under relativizations (see [1]). This means essentially that in any formula it
must be possible to restrict the meaning of the quantifiers to a subdomain
defined by a monadic predicate symbol. Logic with the Chang's quantifier does
not enjoy this property. If t: τ -» r is an interpretation, the universe of the
restriction U ft is given by the meaning of ί(V) in 51.

Lemma 3.3 Let ti'. τ -* 77 (/ = 1, 2) be interpretations between finite lan-
guages and let & be a finite family of'^ ^-complete quantifiers. Then there is a
sentence Δ(. . ., Uh U2, P, E) in Lωω(Q0L,(y) such that for structures 51/ of type
^ (i = 1, 2): 5Ij r tx - ^ ' ^ 5I2 \ t2 <=* 3 £ : (» , 5I l5 5I2, P, < ) t= Δ when Uf is

interpreted by Af = 151/1, and P, E are interpreted by P, <.

Proof: Add to the disjoint union of rx and τ 2 the following new predicates:

Ux(x), U2(x) denoting the universes A1 and A2 respectively.

Rι(x, x', y) (i = 1,2) denoting a "pairing" relation that permits us to talk
about pairs and sequences x in the relativized universes
ί/(V).

P(x), E(x, x') denoting the ordered set of parameters.

Ej(x, y, z, zf) (z = 1, 2) denoting the relation z ^f z where ~y is the sequence
"coded" by y.

I{x, z, z') denoting ~z ~x ~zf where t, ~z' are the sequences "coded"
by z, z'.

K(x) denoting a set of power less than ttα.

All the properties of a i^-back-and-forth may be easily translated to this
language using the suggested denotations. The quantifiers in & are used only to
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express conditions (iii-λ) and (iv-λ). The quantifier Qa is needed to express the
cardinality condition in the equivalence relations:

iQaxK(x) Λ Vx, y, z e ίf(V) lw[K(w) ι\Ei{x, y, z, w)].

In the translation of (v) one has to be careful to state the isomorphism between
the right relations; these are t^R) and t2(R) where R is in r. It is clear that we
need to express the right meaning of Cλ in those subsets of the large structure
defined by ^(V) and t2(V). That is the reason that we need relativization in
the logic Lωω{O).

If we drop the finiteness condition in the languages and & in the above
lemma, we get a set (or a proper class) of sentences Δ.

4 Applications Through this section let & = [Qa, Qav . . ., Qan] where
cof (NttJ.) > Nα. Then the quantifiers are all ttα-comρlete, a n d Lωω(O) is closed
under relativization.

Theorem 4.1 Assume that Lωω{&) is countably compact and L# is a
countably compact extension of Lωω(&). If K1 and K2 are PC classes of L#,
inseparable by elementary classes of Lωω(β), then they are inseparable by
elementary classes of Looω{C^).

Proof: Let Kt - {21 \ U'. 21 1= 0/} where rz : r -• τ, are interpretations and
Φi e L*. (i= 1, 2). Since 3 is /c-complete for any K and the other quantifiers are
^-complete, we may apply Lemma 3.3 to the family (3,£>). Let Δ(Uh U2,
P, E, . . .) e Lωω(Qoc, 3, &) = Lωω(O) be the sentence given there. If Kx and
K2 are inseparable in Lωω(O) there are structures Wn e Kl9 %n e K2, such that
aΛ ^ωω(θ) 8 Λ f o r e a c h n e ω' T h e r e f o r e

5

 t h e sentence Δ Λ φψi> Λ φW has
models where the cardinality of P is n, for arbitrary n. Using countable com-
pactness, there is a model (. . ., 21, S, fi) where P is not well ordered, and so
21 r tί ~°° 5B h ί2. Hence, 21 ϊ ^ Ξ ^ ^ J B h ί2 by Lemma 3.2. But also 21 1= φx

and β \= 02, and so AΓj and K2 are inseparable in Looω(O).

Corollary 4.2 l e r L* ω be either Lωω(Qx) or Lωω(Qaί+1, . . ., Qan+i) where
K£? = Xα/, Λ«d let Ltω be the corresponding infinitary logic. Then:

(a) Let φ, φ e Lωω> Φ ̂  Φ If Φ and φ have an interpolant in Lίω they have an
interpolant in LZω.

(b) Let L# be a countably compact extension of l £ ω , then L# Π Ltω = LZω

Hence, L^ω is a maximal countably compact sublogic of Lίω.

Proof: Obviously, Theorem 4.1 applies to & - \Q\\. It also applies to & =
ΪQon+u J Qan+ύ because we may assume ax < α z and so cof(^ α / + 1 )= Na/+i >
Xα i + 1. Moreover, X"|> = Xα/ implies that N50

 i s small for Kα/+1 (see [3], p. 263)
and the logic Z ω ω ( Q α i + 1 , . . ., βα w+i) is countably compact. To prove (a) it is
enough to make L# = L^ω in Theorem 4.1. To prove (b), let φ e L# Π Z,*ω and
make Kx = Mod(φ), K2 = Mod(~iφ) in Theorem 4.1. If 0 4 L^ω these classes are
inseparable in LZω

 a ^d so they are inseparable in Ltω. This is absurd because
0 e Ltω.

The last corollary implies, for example, that if A(L(aa)) is the closure of
Stationary Logic under Δ-interpolation then A(L(aa)) Π Looω(Qι) = ^coωίβi)-
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Remark: In our doctoral dissertation we show that Corollary 4.2 still holds

with Lωω equal to stationary logic. Also, we have shown that the results remain

valid if we replace Looω with the large infinitary logic obtained by adding to

L%>ω (taken to be Lωω{Qx) or L(aa)) all monadic quantifiers, and we ask the

logic L# in Corollary 4.2 (b) to satisfy a downward Lowenheim-Skolem theo-

rem down to Nj. Therefore, we obtain a "Lindstrom's theorem" for Lωω(Qι)

with respect to extensions by monadic quantifiers. Moreover, any extension of

this logic satisfying interpolation must include nonmonadic quantifiers.

NOTES

1. In subsequent work related to this paper we have chosen to call these quantifiers, more
appropriately, cofilter quantifiers.

2. After this paper was written, we learned that this "relative interpolation theorem" and
its generalization to stationary logic were proven independently by J. Stavi and
J. A. Makowsky. See: J. A. Makowsky, "A note on stationary logic," Notices of the
American Mathematical Society, vol. 24 (1977), p. A-438.
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