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Although Aristotle (Metaphysics, Book IV, Chapter 2) was perhaps the
first person to consider the part-whole relationship to be a proper subject
matter for philosophic inquiry, the Polish logician Stanislow Lesniewski [15]
is generally given credit for the first formal treatment of the subject matter
in his Mereology.1 Woodger [30] and Tarski [24] made use of a specific
adaptation of Lesniewski's work as a basis for a formal theory of physical
things and their parts. The term 'calculus of individuals' was introduced by
Leonard and Goodman [14] in their presentation of a system very similar
to Tarski's adaptation of Lesniewski's Mereology. Contemporaneously with
Lesniewski's development of his Mereology, Whitehead [27] and [28] was
developing a theory of extensive abstraction based on the two-place predicate,
'x extends over y\ which is the converse of 'x is a part of y\ This system,
according to Russell [22], was to have been the fourth volume of their
Pήncipia Mathematica, the never-published volume on geometry. Both Les-
niewski [15] and Tarski [25] have recognized the similarities between White-
head's early work and Lesniewski's Mereology. Between the publication of
Whitehead's early work and the publication of Process and Reality [29],
Theodore de Laguna [7] published a suggestive alternative basis for White-
head's theory. This led Whitehead, in Process and Reality, to publish a revised
form of his theory based on the two-place predicate, 'x is extensionally con-
nected with y\ It is the purpose of this paper to present a calculus of
individuals based on this new Whiteheadian primitive predicate.

Although tlie calculus presented below utilizes most of Whitehead's
mereological definitions, it differs substantially from Whitehead's system
presented in Process and Reality. Whitehead does not axiomatize his theory,
but refers to assumptions which include both probable axioms and desirable
theorems without any distinction. There is, however, a difficulty with his
definitions and assumptions which has led me to revise his system in the
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present axiomatization. From his definition of 'x is a part of y\ it follows
that '(x)(x is a part of x) ' (TO.5 below). From this and Whitehead's Assump-
tion 5, \x)(y)(x is a part of y D x is connected to yY (T0.11 below), it follows
that '(x)(x is connected to x) ' (T0.1 below). From this and Whitehead's
Assumption 4, '(x) ~ (x is connected to x)', a contradiction follows.2 Also,
Whitehead does not include the quasi-Boolean operators in his system. On
the contrary, he informally assumes that each individual is continuous—an
assumption which I have dropped. Likewise, Whitehead does not introduce
the quasi-topological operators and predicates as I have done. Both of these
parts are extensions of his mereological definitions.3

I have chosen to present the present system as an uninterpreted calculus;
however, it will be an aid in reading the axioms, definitions, and theorems to
keep a particular interpretation in mind. Following Whitehead we may
interpret the individual variables as ranging over spatio-temporal regions and
the two-place primitive predicate, 'x is connected with >•', as a rendering of
'x and y share a common point'. As a result, 'x is a part of yy becomes a render-
ing of 'All the points of x are contained in the points of y*\ 'x overlaps y9

becomes a rendering of 'x and y share a common interior point'; and 'x is
externally connected to y' becomes a rendering of 'x and y share a common
point, but they share no interior points'; that is, they share only boundary
points. In so doing, however, we must remember that the individuals are spatio-
temporal regions; the individual variables do not range over points. Whitehead's
mereological system was, in fact, constructed in order to define points. Points
were defined as certain sets of sets of infinitely converging regions. Thus a
two-place predicate, ' . . . is incident in . . .,' holding between a point and a
region, was then defined. In the present system, due to the presence of the
algebraic operators, a simpler definition of a point can be constructed in terms
of a modified maximal filter, modified due to the presence of external con-
nectedness. With this definition the two-place predicate, ' . . . is incident
in . . .,' is definable. With the definition of a point and the definition of this
two-place predicate, then the theorem, 'x is connected with y if, and only if,
there is a common point incident in both x and y' becomes provable, as do
analogous theorems for the above suggested interpretation. Also, an open
region will have only its interior points incident in it, while a closed region
will have also its boundary points incident in it. This extension of the present
system, however, is the subject of another paper,4 and is suggested here only
as an aid in reading the present one. Taken as an uninterpreted calculus, the
present system may have a number of different interpretations and it stands
on its own.

In the following formulation I am assuming classical first-order quantifi-
cation theory with identity and some form of set theory, although the use
of set theory is minimal and, as I suggest below, can be dispensed with. For
convenience I have divided the system into (1) a mereological part, which
systematizes the mereological predicates; (2) a quasi-Boolean part, which
introduces the Boolean operators and the universal individual, but no zero
(or null) element (thus the reason for the term 'quasi'); and (3) a quasi-
topological part, which introduces topological operators and predicates, but
here again there is no zero (or null) element and no boundary elements (thus
the use of the term 'quasi' here).
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/ Mereologicalpart Taking 'Cx,y' as a rendering of ιx is connected to y\
we can introduce a definition of 'DCx,y' (x is disconnected from y) and the
standard mereologial definitions of Ψx,y' (x is a part of y), 'PPx,y' (x is a
proper part of y), Όx,y' (x overlaps y), and 'DRx,y' (x is discrete from y)
as follows:

Do.i ΉCxy =def '~cxy
D0.2 Ψx,y' = d e f \z)(Cz,x D Cz,yY
D0.3 ΨPxy = d e f 'Ac,? ~Py, * '
D0.4 Όx,y = d e f \Ίz)(.Pz,x />zj>)'
D0.5 ΌΛ;c,y' = d e f '-<?*,>>'.

This distinction between 'Cx,y' and Όx,^' constitutes the virtue of
this new calculus. It gives us the power to define ΈCxy (x is externally con-
nected to y), 'TPx,y' (x is a tangential part of y), and 'JvTAc,j>' (x is a nontan-
gential part of y) as follows:

D0.6 ΈCxy = d e f 'CK,* ~0xy
D0.7 TΛf,yf = d e f Λc,y (3z)(ECz,x • ECz,yY

D0.8 ΉTPxy = d e f 'Λf,̂  ~(3z)(£ Cz, x • ECz,y)\

Our axiomatization requires only two axioms: a mereological axiom,

A0.1 (x)[Cx,x • (y){Cx,y D Cy,x)}

and an axiom involving identity, analogous to the axiom of extension in set
theory,

A0.2 (x)(y)[(.z)(Cz,x = Cz,y)Dx=y].

From our definitions and two axioms the mereological theorems listed
below are provable. I have listed the theorems in their order of provability,
some because of their own intrinsic interest and some because of their simpli-
fication of the proofs of later theorems. The proofs of these theorems are on
the whole simple and straightforward. In the case of a few more complex ones
I have listed the theorems and definitions from which they follow in an order
from which a proof might be constructed.

T0.1 (x)Cx,x
T0.2 (x)(y)(Cx,y = Cy,x)
T0.3 (x)(y)l(z)(Cz,x = Cz,y)=x=y]
T0.4 (x){y){~DCx,y = Cx,y)
TO. 5 (x)Px,x
T0.6 (x)(y)(z)[(Px,y • Py,z) D Px,z]
T0.7 <x)O')[(Ar,j' Py,x) = x=y)
T0.8 (x)(y)[Px,y = (z)(Pz,x D Pz,y)]
T0.9 (x)(y)(z)[(Px,y Cz,x) D Cz,y]
T0.10 (x)(y)[Cx,y s (3z)(Pz,y • Cx,z)]
TO. 11 (.x)(y)(Px,y D Cx,y)
T0.12 (x)(y)(z)[(Px,y • DCz,y)DDCz,x]
TO. 13 (x)~PPx,x
T0.14 (x)(y)(PPx,yDPxy,



A CALCULUS OF INDIVIDUALS 207

T0.15 (x)(y)(PPx,y D ~PPy,x)
T0.16 (x)(y)(z)[(PPx,y • PPy,z) D PPx,z]
TO. 17 (x)Ox,x
TO. 18 (x)(y)(Ox,y = Oy,x)
TO. 19 (x)(y)(Ox,y D Cx,y)
T0.20 (x)(y)[(Px,y • Oz,x) D Oz,y]
T0.21 (x)(y)(Px,yDOx,y)
T0.22 (x)(y){~DRx,y = Ox,y)
TO.23 (x)(y)(z)[(Px,y • DRz,y)DDRz,x]
T0.24 {x)~ECx,x
TO. 25 ( jOOOCECx^st fO,*)
T0.26 (x)(y)(ECx,y D Cx,y)
T0.27 (x)(y)(£Cjc,y D ~Ox,y)
T0.28 (xX^tCx^Ξ^Cx.yvOx,^)]
T0.29 (x)(y)[Ox,y = (Cx,y • ~ECx,y)]
T0.30 (x)(y)[-ECx,y = {Ox,y = Cx,y)]
T0.31 (x)(y)ί~(3z)£Cz,x D [Px,y s (z)(Oz,x D Oz,y)]\
T0.32 0c)(y)(.TPx,y D Px,y)
T0.33 (x)(^)[Γi }x,7 3 (3z)(ECz,x • ECz,y)]
T0.34 (x)(^)(z)[(ΓPz,x Pz,y • Py,x) D ΓPz,^]
TO.35 (ΛX^ίiVΓΛc^DΛc,^)
T0.36 (jcXy)!/^/^,^ => ~(3z)(£Cz,x JFGr,y)]
T0.37 (x)(y)(TPx,y D ~NTPx,y)
T0.38 (x)(y)[7ϊ )x )>' s (Λ,y ~iVΓPx,y)]
T0.39 (x)(y)[NTPx,y s (Λc,y ~ΓPx,y)]
T0.40 GOϋOrAr^ = (STx,^ vNTPx,y)]
T0.41 (jc)(NΓΛc,χΞ~(3y)JFO',jf)
T0.42 (x)(^)(z)[(7VΓ/>x,^ Cz,x) D Cz,y]
T0.43 (x)(y)(z)[(NTPx,y • Oz,x) D Oz,y]

T0.44 (x)(y)(z)[(NTPx,y • Cz,x) D Oz,j;]

Proo/: T0.36;D0.6;T0.42;T0.43.

T0.45 (x)(>')(z)[(/>x,7 NTPy,z) D NTPx,z]

Proof: T0.44;T0.9;D0.6;T0.6;T0.35;D0.8.

T0.46 (x)(y)(z)[(NTPx,y • Py,z) D NTPx,z]

Proof: T0.44;T0.19;D0.6;T0.6;T0.35;D0.8.

T0.47 (x)(y)(z)[(NTPx,y • NTPy,z) DNTPx,z].

Theorems 0.1-0.23, except those dealing with 'Cx,y' and 'DCx,y' ex-
plicitly, are standard theorems of the classical calculus of individuals (or
mereology). Theorems T0.24-T0.47 are due to the use of the new primitive
ιCx,y' and the subsequent definitions which it makes possible. Theorem T0.31
is particularly significant in that it shows the relationship between this new
calculus and the classical calculus of individuals. In the absence of external
connectedness, the partial-ordering relation, is a part of, reduces to the partial
ordering relation in the classical calculus. Again we see, in T0.30, that in the
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absence of external connectedness, 'Cx,y* and Όxy become synonymous
expressions.

// Quasi-Boolean part In order to introduce the quasi-Boolean operators
and the universal individual, we follow Tarski [24] and Leonard and Goodman
[14], introducing them by way of a theory for the fusion of sets. In what
follows, 'X\ Ύ\ and 'Z' are taken as variables ranging over sets of individuals,
that is, subsets of \x: Cx,x\. The expression, 'x = f'X' will be taken as a render-
ing of 4x is identical to the fusion of the set X9 and will be introduced as
follows:

Dl.l 'x =/'JΓ = d e f \y)[Cy9x = (3z)(z e X Cy,z)]\

Using this expression, we can define ςx + y' for the quasi-Boolean sum (join,
union, or addition), '-x' for the quasi-Boolean negate, or complement, '#*' for
the quasi-Boolean universal, or all inclusive individual, and 'x Λ>>' for the quasi-
Boolean intersection (meet or multiplication) as follows:

D1.2 cx+j>'=def'/Ίz:Pz,xvft,j/Γ
D1.3 '-χ'=d ef T\y:~Cy,xV
D1.4 4α*'=def Ύ ' ^ : C > ^ Γ
D1.5 'x Λ y' = d e f '/'{z: Pz,x Pz,y\\

As suggested earlier, the use of set theory can be eliminated. Instead of
using a Theory for the Fusion of Sets, one may, as Martin [20], use a theory
of virtual classes. Alternatively one can make use of a Russellian Theory of
Definite Descriptions. This was suggested by Leonard and Goodman [14] and
utilized later by Goodman [4] and Eberle [2]. Utilizing such a theory, the
following definitions would be substituted for Definitions 1.2-1.5:

D1.2' 'x+j>'=d e f \iz)\(w)[Cw,z = (Cw,x y Cw,y)]V
D1.3' '-χ'=άe{χiy)\(z)(Cziy = -Pz,x)V

D1.4' 'α*'=def'O>OKz)Cz,>>Γ
D1.5' 'x Ay' = d e f %iz)\(w)[Cw,z s (Cw,x Cw,y)]\\

In place of the definition of 'the fusion of the class' we could substitute a
definitional schema so that we could still speak of the sum of all the individuals
satisfying a certain predicate as follows:

Dl.l ' V . . . ' = d e f '(ix) \(y)[Cy,x = (3z)(. . . z Cy,z)]}\

where some predicate is to be written in for the ellipsis.
Either of these techniques of introducing the quasi-Boolean operators,

however, encounters a problem with reference to the classical rules of Universal
Instantiation and Existential Generalization. With reference to the Theory of
Definite Descriptions, this has been pointed out since Carnap [ 1 ]. It is simply
that without some restriction on these rules, one can make the following valid
inferences for any definite description.5 Let \ix)φx9 be some definite descrip-
tion in the theory, thê n

1. (x)x = x Identity Theory
2. (ix)φx = (ix)φx Universal Instantiation
3. (By)y = (τx)φx Existential Generalization
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And, of course, the same would be the case with a Theory for the Fusion of
Sets, where 'f'\x\ φxY is an expression of the theory. If we had a null element
in our Calculus of Individuals, we could simply let J'\x\ φx\ = 0*' be the case
whenever {x: φx\ is empty. Likewise in our Theory of Definite Descriptions, we
could let \ix)φx = 0*' be the case whenever \τx)φx' has no referent or is not
unique-a technique suggested by Frege [3], Carnap [1], and Martin [18] and
[19], One of the proposed virtues, however, of the Calculus of Individuals is
that it does not have a null element.

It appears that the most convenient way for us to handle this problem
here is to revise our underlying quantification theory along the following lines,
where 'α' and 'β' are names of arbitrary individual variables and V is either
the name of some arbitrary individual variable or the name of some operator
expression, in our case, some expression of the form, '/ ' ί. . . : . . . ) ' or some
expression introduced by way of an expression of this form:

Γ ((3α)α: = η (β)φ) 3 ψ,"1 where φ is like φ or differs from φ in containing
η where φ contains some free occurrence of β.

Since such a revision would also limit instantiation in our underlying identity
theory, we need to revise it also by adding an axiom:

Γ(3a)a = β.~1

This would, in effect, allow us to continue instantiating with individual var-
iables and allow all of our theorems, T0.l-T0.47, to continue as theorems.
Our revision, in effect, only limits Universal Instantiation where expressions
of the form, '/ ' ί. . . : . . . ] , ' and expressions introduced by expressions of this
form are concerned.

In addition to the definitions, D1.1-D1.5, we need the following axiom:

Al.l (X)(~X = ΛD (3x)x = f'X).

If we were to utilize the Theory of Definite Descriptions, then we would want
to replace Al.l with the following two axioms:

Al.l' (x)(y)(3z)z = x+y
Al.l" (3x)x=a*.

From Dl . l and Al.l the following theorems concerning the fusion of sets
are provable:

Tl.l (X){-X = A D {x)[CxJ'X = Oy)(y e X Cx,y)]\
T1.2 (X)(rX = A = (3x)x = f'X)
T1.3 (X)(x)(x eXD PxJ'X)
T1.4 (X)(Y)[~X = A - X C Y) D Pf'XJΎ]
T1.5 (X)(Y)[{~X = A X = Y)Df'X=f'Y]
T1.6 (x)x=f'\x\
T1.7 (χ)χ=f'\y:Py9χ\
T1.8 (x)f'\x\ =f'\y:Py,x\.

The existence of the sum of any two individuals, T1.9, and the existence
of the universal, or all-inclusive, individual, T1.23, follow from Al . l . Conse-
quently, the following theorems are provable without any qualification. I



210 BOWMAN L. CLARKE

continue my practice for the more complicated proofs of listing the theorems
and definitions in an order from which a proof might be constructed. (I.T. indi-
cates that Identity Theory is used.)

T1.9 (x)(y)(3z)z = x + y
T1.10 (x)(y)(z)\Cz,x +y = (3w)[(Pw,x vPw,y) Cz,w]}
Tl.ll (x)(y)(z)[Cz,x+y = (Cz9x v Cz,y)}
T1.12 (X)(Y)[(~X = A ~Y = Λ) Df'X U 7 =/'X+/'y]
T1.13 (jt)O0jt+j>=/'U! Uίj i
T1.14 (x)x+x = x
T1.15 OOOOx+j - y+x
T1.16 (x)00(z) (x +y) + z = x + (y + z)
T1.17 (X)(J;)PX5X+J;

T1.18 (x)(^)(z)[(Pz,xvPz^)DPz,x+^]
T1.19 (xKy)(z)(Px,yDPx9y+z)
T1.20 ( ^ ) ( j ) ( z ) ( x = ^ D z + x = z + ^ )

T1.21 ίχ){y){Px,y=Pχ+y,y)
T1.22 W(^)(/>x,J=J=x+^)
T1.23 (3x)x=α*
T1.24 (x)[Cx,α = O^XQ;^ Cx,y)]
T1.25 (x)Px,α*
T1.26 (x)Cx,α*
T1.27 (x)0x,α*
T1.28 (x)x+α*=α*
T1.29 W(W/V,x=x = fl*)

T1.30 (x)((3;)Cj,x=jc=α*)

ΛΌO/: I.T.;T1.26;T1.25;D0.2;T0.7.

T1.31 (jc)-£Oc,fl*.

A theorem asserting the existence of the negate of any individual is not
provable, since the negate of the universal individual does not exist. Thus, the
following theorems, T1.32-T1.41, concerning the negate of an individual are
all conditional upon the existence of that negate. We can, however, prove that
there exists a negate of an individual if, and only if, that individual is not the
universal individual, T1.32.

T1.32 (x)(Gy)y = -x = ~x = a*)
T1.33 (*){(3z)z = -xD {y)[CyΓx = (3z)(~Cz,x Cy,z)]\
T1.34 (x)[(3z)z = -χD (y)(Cy,-χ = ~Py,x)]
T1.35 Cx)(Oz)z = -x D x = - -x)
T1.36 (x)[(3z)z = -x D (y)(~Cy,x=Py,-x))
T1.37 Qc)((3z)z = -x D ~Cx,-x)
T1.38 (x)[(3z)z = -x D (y)(x=y D ~x = -y))
T1.39 (x)((3z)z = -xD (y)Py)x + -x)

Proof: T0.11;T1.34;Tl.ll;D0.2.

T1.40 (x)(y)l((3z)z = -x (3z)z = -y) D (Px9y =ΞP-y,-χ)}

Proof: T0.6;T1.34;D0.2;T0.9;T1.34;T1.36;D0.2.
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T1.41 Qc)((3z)z = -x D x + -x = a*).

Likewise, in the absence of a null individual, we cannot prove the exis-
tence of the intersection of any two individuals. We can only prove that the
intersection of two individuals exists if, and only if, the two individuals over-
l a p ^ 1.42.

T1.42 (x)(y)((3z)z = x Ay = Ox,y)
T1.43 (JC)O)((3W)W =x Ay D (z){Cz,x /\y ΞΞ (3W)[(PW,X Pw,y)

Cz,w]l)
T1.44 M(y)\(3w)w = X Λ J / D (z)[Cz,xΛy D (Cz,x Cz,y)]\

Proof: T 1.43; TO. 10.

T1.45 (jc)(j/)i(3w)w=iΛ3/ D (z)[(Pz,x Pz,y) = Pz,x Ay]}

Proof: T1.43;D0.2;T1.44;D0.2.

T1.46 (x)(y) {[((3z)z = -x (3z)z = -y) (3z)z = x Λ j ] D χ Λ y =

Proof: I.T.;D1.5;T1.34;T1.11.

T1.47 (X)XAX = X

Proof: T0.5;T1.45;D0.2;T0.7;T0.17;T1.42.

T1.48 (x)(y)((3z)z = x Ay D x Ay =y AX)

T 1 . 4 9 (x)(y)(z)\[((3w)w = x A y ( 3 w ) w =y Λ z) ( 3 w ) w = (x Λ y ) Λ Z ] O

(X Λ^) ΛZ =X Λ (^ ΛZ)}

Proo/: T0.5;T1.45;T1.50;T0.7;T0.7.

T1.50 (x)(y)((3z)z = x Ay D Px Ay,x)

T1.51 (x)(^)[(3z)z = x Ay D (Pχ,y = χ = χAy)]
T1.52 (x)(y)l(3w)w =xAyD (z)(Px,y D Px A z,y)]
T1.53 ( x ) ( z ) [ ( 3 w ) w = x Λ Z D (y)(x=yD x Az=y AZ)]
T1.54 (x)(y)\(3w)w=xAy D {z)[NTPz,x Ay D(NTPz,x -NTPz,y)]\
Proof: T0.46;T1.50;I.T.;T1.48;T1.42;T1.18;T1.42.

TL55 (x)χAa*=x
T1.56 (x)(y){[((3z)z = - * (3z)z = -y) ~ECxry] D (~x + ̂  =

It should be pointed out that Theorems T1.47 and T1.55 are provable
without any existential conditions since every individual overlaps itself and
every individual overlaps the universal individual, α*. Tl .56 is of special impor-
tance. It has been pointed out, since Leonard and Goodman [14] and Tarski
[26], that the linguistic domain of a classical calculus of individuals can be
characterized as a Boolean algebra with the null individual removed. Conse-
quently, Theorems T1.9-T1.55 likewise hold for the linguistic domain of a
classical calculus of individuals. This present calculus of individuals, however,
not only has the null element missing from its linguistic domain, there are
certain other elements missing; and this is indicated by the additional condition
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in T1.56. For '-x + y = α* = Px,y' holds for any x and y in our linguistic
domain only on the condition that the negate of x and the negate of y are
members of the domain, as in the classical calculus, but also only on the
condition that x and the negate of y are not externally connected. This addi-
tional condition in T1.56, as we shall see below, is due to the fact that there
are no boundary elements in the linguistic domain of this new calculus. Since
T1.56 is such a key theorem in characterizing the linguistic domain of this new
calculus, I shall include a proof for it. In the following proof, it shall be under-
stood that everything on the right-hand side of the vertical line is conditioned
upon the existence of the individuals on the left-hand side of the line, and S.L.
and Q.T. indicate that the step in the proof makes use of the underlying
sentential logic or quantification theory, as revised above.

1. (3z)z = -x Assumption
2. (3z)z = -y Assumption
3. (3z)z = -χ+y T1.9, 1
4. [(Bz)z = -χ+y '(z)((w)Cw,z=z=a*)} D

((w)Cw,-χ +y = -χ+y=a*) Q.T.
5. (w)Cw,-χ+y = -x +y=a* 3 and T1.26, S.L.
6. (w)(Cw,-χ v Cw,y) = -χ+y=a* 5, Tl.l 1, 1, S.L.
7. (w)(~Pw,x v Cw,y) = -x + y = a* 6, T 1.34, 1,S.L.
8. (w)(~Pw,xv~Pw,-y) = -χ+y=a* 7,T1.36, 2, S.L.
9. (w>)~(Pw,x -Pw,~y) = -χ + y =α* 8, S.L.

10. ~(3w)(iV,x Pw,-y) = -χ+y=a* 9, Q.T.
11. ~Ox,-y = -χ+y=a* 10, D0.4,2, S.L.
12. (~ECx,-y -Ox, -y) = ~Cx,-y T0.28, S.L., 2
13. (~ECx,-y -x + y = a*) = ~Cx,-y 12and 11,S.L.
14. (~ECx,-y --χ+y=a*)=Px,y 13,T1.34, S.L.
15. ~ECx,-yD(-χ+y=a*=Px,y) 14, S.L.
16. ((3z)z = -;c (3z)z = ->0D

[~ECx,-yD(-χ+y=a*=px,y)] 1-15

17. [((3z)z = -x (3z)z = -y) ~ECx,-y] D
(-x +y =α* Ξ/>XJ). 16, S.L.

/// Quasi'Topologicalpart It is this third part which constitutes the main
advantage of this present calculus of individuals. We saw earlier that by begin-
ning with 4C" as our primitive, we were then able to distinguish between ' C and
Ό ' , and consequently to define ΈC\ ΎP\ and 'NTP\ This latter predicate and
our Theory for the Fusion of Sets, enables us to introduce the quasi-topological
operators, Ίx9 for the interior of x, 'ex' for the closure of x, and 'ex' for the
exterior of x, and to define such quasi-topological predicates as ΌPx\ a render-
ing of 'x is open', and 'CLx\ a rendering of 'x is closed'. The definitions are
as follows:

D2.1 'ix9=tofT\y:NTPy,xV

D2.2 'cx'=Mr\y:~Cy,i-xr
D2.3 'ex9 = d e f Ύ\y:NTPy,-xV
D2.4 ΌΛc ' = d e f

 4x = ίx'
D2.5 'CZJC' = d e f 'x = cx\
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If we wanted to utilize the Theory of Definite Descriptions in our new calculus,
we could, along the lines of our definitional schema for the sum of all the
individuals satisfying a certain predicate, Dl.Γ, substitute the following for
D2.1-D2.3.

D2.1' 'uc'=def \iy){(z)[Cz,y = (3w)(NTPw, x - Cz,w)]V
D2.2' 'ex' = d e f \iy)\{z)[Cz,y = (3w)(~Civ,/-* Cz,w)]V
D2.3; 'ex' = d e f \iy){(z)[Cz,y = (3w)(NTPw,-χ Cz,w)]}\

For the quasi-topological part of the calculus, we shall need an additional
axiom:

A2.1 (x)((3z)NTPz,x (y)(z)\[(Cz,x D Oz,x) {Cz,y D Ozyy)\ D
(Cz,x r\y D Oz,x /\y)\).

The first half of the main conjunct in the axiom assures us that each individual
has an interior and the second half will assure us that the intersection of two
open individuals (that is, individuals not containing their boundaries) is itself
likewise open.

Given A2.1 and D2.1 the following theorems concerning the interiors of
individuals become provable:

T2.1 (x)(3y)y=ix
T2.2 (x)(y)[CyJx = (Ξz)(NTPz,x Cy,z)]
T2.3 (x)(y)(NTPy,x DPyJx)
T2.4 (x)Pix,x
T2.5 (x)(y)(Cy,ixDOy,x)
T2.6 (x)(y)(ECy,xD~CyJx)
T2.7 (x)(y)(ECy,xD~ECy,ix)
T2.8 (x)(y)(Py,iχDPy,x)
T2.9 (x)NTPix,x
T2.10 (x)~TPίx,x
T2.ll (x)(y)(Py9ix=NTPy9x)
T2.12 OcKy)(z)[(NTPx9y Cz,x) D Czjy]
T2.13 (x)(y)(z)[(NTPx,y Oz9x) D Ozjy]
T2.14 (x)(y)(Px,yDPiχJy)
T2.15 (χ)(y)(χ=y Diχ = iy)
T2.16 (x)ix+x = x
T2.17 (x)ixAX = ix

Proof: T1.51;T0.21;T2.4;T1.42.

T2.18 (x)(NTPx,x = ix = x)

Proof: T2.3;T2.4;T0.7;T2.11;T0.7.

T2.19 (x)(y)(Ox,y = OixJy)

Proof: T0.43 T0.43 T2.11 A2.1 D0.4 T2.4 TO. 19 T2.4.

T2.20 (xKy)(Ox,y = Ox,iy)

Proof: T2.21;T0.19;T2.4;T0.17;T0.19;T2.4.
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T2.21 (x)(y)(Cx9iy = Ox,y)
T2.22 (x)(y)(CxJy = Ox,iy)

T2.23 (x)(y)(Ox,iy = 0ix,iy)
T2.24 (JC)O)((3Z)Z =xΛy = (3z)z = ίx Λ /»

T2.25 (x)O0~£Cx,fr
T2.26 (x)Pix,iix

Proof: T2.24;T2.22;T0.18;D0.2.

T2.27 (x)iix = ix
T2.28 w*=α*

Proof: T2.27;T1.25;ΊΊ.31;D0.8;T2.11;T0.7.

Since the first half of A2.1 assured us that every individual has an interior,
T2.1, then all the theorems, T2.2-T2.28, are provable without an existential
condition. Theorems T2.4, T2.27, and T2.28 give us three of the four standard
properties of an interior operator. When, however, we come to the fourth
standard characteristic of an interior operator, that is, that the interior of the
intersection of two individuals is identical to the intersection of their interiors,
we run into a condition; namely, the condition that the intersection of the two
individuals exists, T2.32.

T2.29 (x)(y)((3z)z=x Ay DPix /\iy,x Ay)

Proof: T2.8;T2.8;T1.43;D0.2;T2.24.

T2.30 (x)00((3z)z = x A y D Pi{x A y\ ix A iy)

Proof: T1.54;T2.11;T0.10;T1.43;D0.2;T2.24.

T2.31 (x)(y)\(3w)w = x Ay D (z)[(NTPz,x - NTPz,y) = NTPz,x Ay]\

Proof: T1.54;A2.1;D0.6;T1.45;D0.8.

T2.32 (x)(y)((3z)z = xAyDixAiy = i(x Ay))

Proof: T2.31;T2.11;T1.45;T0.8;T2.30;T0.7;T2.24.

Likewise, since not every individual has a negate, all our theorems con-
cerning the closure of an individual are conditional upon the existence of the
negate of that individual, T2.35. In fact, at this point the proofs of the
theorems become exceedingly complex due to the need to prove that upon
the existence of the negate of the given individual, the other individuals used
in the instantiations of the needed theorems for the proof likewise exist.

T2.33 0c)((3z)z = cx = Qy)~Cy,i-x)
T2.34 (x)K3z)z = cxD (w)[Cw,cx s (3y)(~CyJ-χ - Cw,y)]}

T2.35 (JΓ)((3Z)Z = -x D (3z)z = ex)

Proof: T2.1;T0.6;T2.4;T1.25;T0.7;T1.30;T2.33;T1.30;T1.34;T0.5.

T2.36 (JC)[(3Z)Z = -x D (w) (Cw,cx = ~NTPw,-χ)]

Proof: T2.35;T2.34;T0.2;D0.2;T2.11.
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T2.37 (x)((3z)z = -χDcx = -i-χ)

Proof: T2.36;T2.11;T1.34;T0.3;T2.1;T2.35;T2.33;T1.30;T1.32.

T2.38 (x)((3z)z = -χD i~x = -ex)

Proof: T2.1; T2.35; T2.33; T1.30; T1.32; T0.5; T2.35; T2.37; T1.30; T1.32;
T2.2;T2.36;T1.33;T0.3.

T2.39 (x)((3z)z = -χD c-x = -ix)

Proof: T1.35; T1.30; T0.5; T1.34; T1.32; T2.34; I.T.; T1.33; T2.35; T1.32;
T0.6;T2.4;T1.25;T0.7;T1.32;T0.3.

T2.40 O)((3z)z = -x D ix = -c-χ)

Proof: T1.30;T0.5;T1.34;T1.32;T2.39;T1.35;I.T..

T2.41 (x)((3z)z = -x D Px,cx)

Proof: T1.30; T0.5; T1.34; T1.32; T2.1; T2.35; T2.33; T1.30; T1.32; T2.35;
T1.35;T2.4;T1.40;I.T.;T2.37.

T2.42 O)((3z)z = -x D ccx = ex)

Proof: T2.1; T2.1; T2.35; T0.5; T2.35; T2.37; T1.30; T1.32; T2.1; T2.35;
T2.33; T1.30; T1.32; T2.35; T0.6; T2.4; T1.25; T0.7; T1.32; T1.32; T2.1;
T0.6; T2.4; T1.25; T0.7; T1.30; T1.34; T1.32; T2.27; T1.38; T2.37;T2.38;
T2.37.

T2.43 (x)(y)\[((3z)z = -x - (3z)z = -y) (3z)z = -x /κ-y] D
ex + cy - c{x + y)\

Proof: T1.35; T1.30; T0.5; T1.34; T1.32; T1.35; T1.30; T0.5; T1.34; T1.32;
T2.35; T2.35; T1.37; T1.37; T0.9; T0.9; T1.50; T1.48; T0.2; T0.2; T l . l l ;
T1.30;T1.9;T1.32;T2.35;T2.31;T1.46;T2.36;Tl.ll;T0.3.

T2.44 (x)(y)[((3z)z = -x - (3z)z = -y) D (Px,y D Pcx,cy)]

Proof: T2.1 T2.35; T2.33; T1.30; T1.32; T2.1 T2.35; T2.33; T1.30; T1.32;
T2.35;T2.35;T2.14;T1.40;T1.40;T2.37.

T2.45 (x)((3z)z = -χDex = i~x).

Theorems T2.37-T2.40 give us the standard relationships between the
closures and interiors of individuals, albeit conditioned. And theorems T2.41-
T2.43 give us three of the four standard characteristics of a closure operator,
albeit conditioned. Since we have no null individual we cannot prove the
fourth characteristic, namely, that the closure of the null individual is identical
to the null individual.

We mentioned earlier, with reference to T1.56, that the linguistic domain
of the present calculus of individuals not only lacked a null element, as does
the classical calculus, but it also lacks boundary elements. A boundary element
is generally characterized in this way: x is a boundary element if, and only if,
ix = 0*. Since every element in this calculus has an interior, T2.1, and we have
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no null element, it follows that we can have no boundary elements. Thus just
as the linguistic domain of the classical calculus of individuals is a Boolean
algebra with the null element removed, our theorems indicate that the domain
of the present calculus is a closure algebra6 with the null element and the
boundary elements removed. It is interesting, however, that so much topology
can be reflected under these conditions and with such minimal assumptions.
This should be particularly interesting to those in the Lesniewski tradition.
Likewise, it should also be of interest to those interested in Whitehead's Theory
of Extensive Connection, for it bodes well for the success of his over-all project
to found geometry on such a basis.

NOTES

1. For an exposition of Lesniewski's system, see [16] and [23],

2. This contradiction appears to have been noted first by Palter [21].

3. Dwight Van de Vate utilized an axiomatization of Whitehead's mereological system in his
Yale dissertation, The Formalization of Certain Aristotelian Concepts, 1957. His axioma-
tization differs from the present one in taking Xx)(y)[(z)(Oz ,x D Oz,y) D Px,yY as an
axiom. This makes it possible to prove as theorems: Xx)[Px,y = (z)(Oz,x D Oz,y\ and
Xx)ix = x\ As a consequence we have the unfortunate result that the calculus is reduced
to the classical calculus. Instead of Van de Vate's result, we have TO.31 as a theorem.
It was, however, Van de Vate's work that first got me interested in the present calculus
of individuals.

4. See my "Individuals and Points," forthcoming. This extension of the system, however,
requires that the system be nonatomic.

5. For a treatment of this general problem and some selected solutions, see [2], [5], [6],

and [8]-[13].

6. For a thorough discussion of closure algebras and their relation to topology, see [17].
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