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Elementary Formal Systems as a

Framework for Relative

Recursion Theory

BRUCE M. HOROWITZ

1 Background on elementary formal systems A nonempty ordered finite
set K is called an alphabet. Members of this set are called symbols. By a word in
K, we mean a nonempty finite sequence of symbols of K. Given the n symbols
xlt x2, . . ., xn of K (not necessarily distinct), let xxx2 - - • xn be the word in K
whose /th symbol is X/(l < / < n). The length of a word is the number of
symbols (counting repetitions) in that word. If X and Y are words in K, and X
is the word xxx2 . . . xn, Y is the word y\y2 . . . ym, then XY is also a word in K
and XY is the word xxx2 • • . xnyly2 . . . ym. XY is called the concatenation of
X and Y.

Definition of an elementary formal system (EFS) By an elementary formal
system (E) over an alphabet K, we mean a collection of the following:

1. the alphabets
2. another alphabet of symbols called variables, which range over words

in #
3. another alphabet of symbols called predicates, each of which is assigned

a unique positive integer called its degree
4. two more symbols called the implication sign and the punctuation sign
5. a finite sequence A l5 . . ., An of strings which are well-formed formulas,

called axioms. (The rules for their formation are listed below.)

The alphabets in 1-4 are to be mutually disjoint. Elements of K usually are
denoted by V, V, etc., variables by lxx\ 'x2\ etc., or V , 'y\ etc., and predi-
cates by lP\ 'Q\ etc., sometimes with superscripts and subscripts. The implica-
tion sign and the punctuation sign are denoted, respectively, by '-*' and ','•
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Let K consist of the symbols au . . ., an. By a term t of (E) we mean any
finite string 11 . . . t^, where each f/(l < z < A:) is either some #;( 1 < / < n) or a
variable. By an atomic (well-formed) formula of (E) we mean an expression of
the form Ptu . . ., tn, where P is a predicate of degree n and £1? . . ., tn are terms
of (E). By a well-formed formula (wff) F of (£) we mean either an atomic
formula Fu or an expression of the form Fx -* F2 , where Fj is an atomic
formula of (E) and F2 is a well-formed formula of (E).

An instance of a wff X is any string obtained from X by substituting words
in K for all variables, subject to the condition that the same word is substituted
for all occurrences of any variable. A sentence is a wff with no variables.

A string X of (E) is a theorem of (E) if X is either an axiom of (£), or is
derivable from the axioms of (£") by a finite number of applications of the
following two rules of inference:

Rule I. We may substitute words in K for variables to obtain instances of wffs.

Rule II. Providing Xx is atomic, we may infer X2 from Xx and Xx -* X2. (Rule
of Modus Ponens.)

If X is a theorem of (£), we write \~(E)X.

Let P be a predicate of degree 1 in an EFS (E) over K.
Let i be a set of words in K. We say that P represents A in (E) if for

every word X in K, X e A <===• f ^ P X
A set of words in K is called formally representable over K if A is repre-

sentable in some EFS over K. A is called solvable over K if both A and 4̂ are
formally representable over K.

There is a corresponding definition for relations: LotR(x1, . . .,xn) be an
ft-place relation. We say that R is representable in the EFS (E) if there is some
predicate of degrees in (E) such thatR(xu . . .,xn) «=* \jjF)Pxu . . ,,xn.

Since a function may be viewed as a single-valued relation, we have a
corresponding definition for functions: We say that the function/(x l5 . . ,,xn)
is representable in the EFS (E) if the relation f(xu . . ., xn) = y is representable
in the EFS (£).

Let B = !0, 1!. A binary elementary formal system is any EFS (E) over the
alphabet B. A binary numeral is a word in B. The binary numeral bnbn-x . . .
&J&0 represents the number 50 + 2&J + 4b2 + . . . + ^nbn.

A set of natural numbers is called recursively enumerable (r.e.) if it is
representable in some binary EFS. A set of natural numbers is called recursive
if it and its complement are r.e. The same definition holds for relations.

Binary elementary formal systems are the equivalent of Smullyan's dyadic
elementary formal systems [4]. However, we prefer the former for certain
technical reasons.

2 Pseudoelementary formal systems Le t « b e a na tu ra l n u m b e r . Le t n be
the binary numeral representing the number n. We define special axioms for B
to be all axioms of the form Pn if n e B and Qn if n i B, where P and Q are two
specific unary predicate letters.

We say that a set A is recursively enumerable in a set B if A is repre-
sentable in some binary EFS (E) having special axioms fori?, and fori? alone.
We say A is recursive in B if both A and A are r.e. in B.
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Note that an EFS with special axioms is not a true EFS because the
axioms of such an "EFS" must always be infinite in number. Therefore, we call
an "EFS" with special axioms for B a pseudoelementary formal system (PEFS).
To further illuminate this point, we show that if a PEFS were a genuine EFS,
then all sets would be recursive! In [4], Smullyan showed that r.e. by EFS
corresponds to the standard usage of r.e. Therefore, let^l be any set of natural
numbers. Construct the PEFS (E) having as axioms only the special axioms for
A. In this system (£), A is representable and so is^4: n e A => \~jjrjPn by axiom.
If \jgjPn, then it must be that n e A, for the only way we could prove Pn in
(E) would be by an axiom. Thus A is representable in (E) by P. Similarly,^ is
representable in (E) by Q. Thus, A is recursive. Since every set is not recursive
(or even r.e.) it follows that (E) is not a true EFS.

Note that 'A is r.e. in ft is equivalent to 'A is r.e.'. This is seen as follows:
Suppose A is r.e. Then A is representable in some binary EFS (E) by a predicate
P, i.e., n e A <==> Y^Pn. Let Q, R be predicates distinct from any predicate in
(E). Construct the PEFS (Ef) as follows: To the axioms of (£), add the special
axioms

Qn if n e <f>,Rn ifn$<j>.

(This amounts to adding Kn for all n.) It is easy to see thatP still represents^
in (Ef). Now suppose A is r.e. in <f>. Then A is representable in some PEFS (E)
with special axioms for <f> of form Qn if n e 0 and Rn if n 4 (t)- Since n 4 tf> for all
n, Rn is a special axiom for all n. Thus, we may replace Rn, for all n, by the
regular axiom Rx, to obtain the EFS (£ ') . In (£"'), A is represented by the same
predicate representing it in (E).

It readily follows that 'A is recursive in ft is equivalent to 'A is recursive'.
The assertion 'A is r.e. in B" is a formal way of saying that the elements of

A may be generated by some mechanical process, assuming one is allowed to
use a finite number of facts about membership in B. To see this, supposed is
represented by P in a PEFS (£) having special axioms for B. Enumerate all
proofs in (is), picking n if Pn happens to be the last line in a proof. This will
generate the set A. If n e A, then Pn will eventually turn up as a theorem of
(is). However, ifn 4 A, at any given stage even though Pn has not turned up, we
could never be sure that it won't show up at some future time. Now the reason
we are limited to using a finite number of facts about B is that a proof is a
finite sequence. Thus, even though an infinite number of special axioms for B
are available in (is1), only finitely many of them are allowed to occur in any
proof in (E). This infinite collection of knowledge aboutB corresponds to what
recursion theorists call an "oracle" for B.

The assertion 'A is recursive in B9 is a formal way of saying that one can
effectively decide whether or not any given number is a member of A, assuming
one is allowed to use a finite number of facts regarding membership in B. For,
if A is recursive in B, then there are effective procedures for generating the
elements of A and of A. Simply start both processes and wait until the number
in question turns up in one of the lists.

As an example, let us show that for any set B, the set consisting of the
even numbers in B and the odd numbers not in B is r.e. in B. Construct the
PEFS (E) as follows: Add all special axioms for B (i.e., Pn if n e B and Qn if
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n 4 B.) Let E be a unary predicate different from P and Q. Add the axioms

£0
ExO.

Next, choose a new unary predicate D and add the axioms

D\
Dx\.

Finally, choose another new unary predicated and add the axioms

Ex ->Px -+Rx
Dx-*Qx->Rx.

It is really seen that E represents (in (E)) the even natural numbers, D repre-
sents (in (E)) the odd natural numbers, and R represents (in (£)) the even
numbers in B and the odd numbers not in B.

For illustration, we provide a proof in (E) that 4 (100 in binary) is an
element of the set represented by R:

P 100
E xO
E 100
E x->Px-+Rx
E 100-*iM00->i?100
P 100^^100
R 100.

The following will enable us to "combine" two PEFS:

Lemma / / A and B are sets which are representable in PEFS (E), (E')y

having special axioms for C, then they may both be represented in a common
PEFS (En) with special axioms for C.

Proof: Let (E) and (£') be PEFS with special axioms for C. Let P, Q be special
axiom predicates for (E) and R, S be those for (£'). Construct (E") as follows:
Let P, Q be special axiom predicates for C. Add the axioms Px -> Rx and
Qx -+Sx. (R, S are assumed to be distinct from P, Q.) If some predicate in (E)
also occurs in (£'), simply replace it by a predicate new to both (£), (£')• If
another predicate occurs in both systems, replace it by yet a different predicate
from any used. Then collect all axioms of (E) with all axioms of (£'), replacing
any common predicates. This new system (En) is seen to suffice to represent
both ,4 and B.

From now on, we will refer to this method as "rewriting predicates".
We now use common representability to exhibit a proof of the following

via PEFS:

If A is recursive in B and B is recursive in C, then A is recursive in C.

Proof: Since A is recursive in B, both A and A are r.e. in B\ hence each of A,
A is representable in pseudoelementary formal systems with special axioms for
B. By the above lemma, both A and A are representable in a single PEFS C£\)
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with special axioms for B. Let those special axioms be Pnxin e B, P'n if ft i B.
Let Q, Q' represent A, A, respectively, in (E). Similarly, both B and B are
representable (by S, Sf) in a PEFS (£2) with special axioms R, R' for C.

Form the PEFS (E3) with special axioms for C as follows: Rewriting
predicates, if necessary, take all axioms of (E2), all regular axioms of (2^), along
with the following axioms:

Sx ->Px
S'x^P'x.

It is clear that^4, A are representable in (E3) by Q, Q', respectively.

3 Equivalence of our definition of 'r.e. in A' and 'recursive in A' with a
standard formulation The formulations of 'r.e. in A' and 'recursive in A*
which we show ours equivalent to are the ones in Davis [ 1 ].

A function is partial recursive in A (partial A -recursive) if it can be ob-
tained by a finite number of applications of composition and minimalization,
beginning with the following functions:

(1) C4OO, the characteristic function of A
(2) S(x) = x + 1
(3) U?ixu . . ., *„) = */, n> 1, K / < w
(4) x+y
(5) x^-y
(6) x-y.

A total function f(x,yu .. .,yn) is called regular if (ixx)[fix, yu .. .,yn) - 0]
is total. A function is recursive in A (A -recursive) if it can be obtained from the
above list by a finite number of applications of composition and minimalization
of regular functions.

A set A is r.e. in B if either A = $ or A is the range of a function which is
recursive in B.

A set A is recursive in B if C4 (x) is a function which is recursive in B.
We shall need the following:

Lemma / / the relation fixu . . ., xn) - y is r.e. in B, then the relation
f(xu . . ., xn) = y is recursive in B (i.e., fis a B-recursive function).

Proof: Let (E) be a PEFS with special axioms for B. Let/(x l5 . . ., xn) = y be
represented by Rxx, . . ., xn, y. It is simple to show that the relation x i= y is
r.e. in B. Let Dx, y represent x =hy in iE). Take a new predicate P and add the
axiom:

Rxl9 . . .,xn,y-*Dz,y-*Pxu . . .,xn, z.

P represents R in (E). Thus, f(xu . . ., xn) = y is recursive in B.

Theorem / / A is r.e. in B in the standard sense, then A is r.e. in B in the
sense of PEFS.

Proof: Case I. A - <f>. Construct the PEFS (E) with special axioms for B as
follows: Take all special axioms for B. Let R be a unary predicate not occurring
in the special axioms for B. Then R represents <f> in (E). Vacuously, n e $=>
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h ^ Rn. Since j ^ Rn for all n, \~^ Rn =» n e </>. Therefore n e <f> «=» \rj^ Rn.
Hence, <f> is r.e. in B.

Case II: A is the range of a function which is recursive in B. We proceed by
induction, showing these functions are recursive in the sense of PEFS.

(1) f(x) = CB(x).

Let Pn if n e B, Qn if n iB be the special axioms for B. To these, add the
axioms

Pn ->Cn,0
Qn->Cn, 1.

In the PEFS these axioms determine, Cx, y represents the relation
CJB(X) = y. Therefore, the function C#(x) is representable in this PEFS. Hence,
CB(X) is recursive in B by our lemma.

(2) f(x) = S(x).

The relation S(x) = y is represented by the predicate S in the EFS (E)
whose axioms are:

50,1
51, 10
SxO, xl
Sx,y->Sx\,yO.

Thus, S(x) is r.e. Therefore, S(x) is recursive in B.

(3) f(xl9 . . .,*„) = U?(xu . . .,*„) is represented by U in the EFS (E)
with the following axiom:

Uxi, . . ., xn, X{.

Thus, U?(xu . . ., xn) is r.e., therefore recursive in B.

(4) f(x,y)=x+y.

The relation x + j> = z is represented by P in the EFS (£") having the
following axioms:

Px, 0, x

Sy, z -* Px, y, w ~* Sw, v -> Px, z, y.

(Here, S represents the successor relation.)

(5) f(x,y)=x^y.

First define the function
(x-l i fx>0

d(x)=<
I 0 i f x = 0 .

The relation S(x) = ̂  is represented by D in the EFS (£) having the
following axioms:
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Z)0,0
Sx, y -> Dy, x.

The function x ~ y is given by

!

x -y if x >>>

0 ifx<y.

The relation x ~ y = z is represented by L in the EFS (E) having the
following axioms:

Lx, 0, x

Sy, z -> Lx, >>, w -• Dw, u -> Lx, z, y.

(Here, D represents the function 5(x) and S represents the successor relation.)

(6) f(x,y) = x>y.
The relation x- y - z is represented by M in the EFS (E) having the follow-

ing axioms:

Mx, 0, 0
Sy, z ->Mx, y, w -* Pw, x, v ->Mx, z, u.
(S, P are as above.)

Now suppose that/(x1 ? . . ., xn) = gQt^x^ . . . ,*„), . . .,hm(xu . . , x n ) ) ,
where /^(x^ . . ., xn){\ < / < m) and g(x1? . . ., xm) are recursive in B. Then
/zz-(x1} . . ., xn)(\ <i<m) is representable (as a relation) by #/ in the PEFS (E(),
andg(x l5 . . . ,xm ) is representable by G in some PEFS (E). Thus, /z/(l < / < m )
and g are all representable in a common PEFS (£') . Form the PEFS (E'f) by
adding to the axioms of (£') , the following axiom:

Hxxl9 . . .,x«, 3̂  ! - > . . . -+Hmxu . . .,xw, ^ -^Cyx, . . . ,^m , y -^Fx l 5 . . .,xw,.y.

F represents the relation/(x1? . . .,xw) =^ in (£"').
Finally, assume that f(xu . . ., xn) - (ny)[g(y, x l5 . . ., xn) = 0], where

g(y, Xj, . . ., xn) is regular and recursive in B. Let (E) be a PEFS in which
g(y, x1, . . ., xn) is represented by G. Let L represent the relation x <y and A/"
represent the relation x =£ 0. Then construct an extension of (E) by adding
axioms forL, N, and the following:

GO,*!, . . .,xw, 0->Fx l 5 . . . ,*„, 0

^ z - ^ G z , * ! , . . .,xn,0-+G09xu . . . ,*„, vQ-+Nv0^Gl,xu . . .,x«, i;x ->
Nv1-> . . . -^ Gĵ , x1? . . ., x^, vy ~* Nvy -+ Fx1, . . ., xn, z.

In this PEFS, F represents the relation / (x l 5 . . ., xn) = y. Thus, a function
recursive in B in the standard sense, is recursive in B via PEFS. Hence, if A is
r.e. in B in the standard sense, then A is r.e. in B in the sense of PEFS.

Now suppose that A is recursive in B in the standard sense; i.e., C^(x) is
recursive in B. This is equivalent to A r.e. in B and A r.e. in B (in the standard
sense). But this is equivalent to A r.e. in B and A r.e. in B in the sense of PEFS.
Hence, A is recursive in B in the sense of PEFS.
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We now show the converse, i.e., that A is r.e. ini? (A is recursive in B) in
the sense of PEFS implies A is r.e. in B {A is recursive in B) in the standard
sense. To accomplish this, we arithmetize PEFS (E) with special axioms for B.
Our method of arithmetization is similar to that of Mendelson [3].

Let (E) be a PEFS over SO, 1! with special axioms for B. Let P% be the
nth ra-place predicate letter. We assign Godel numbers to the symbols as
follows:

gn(0) = 3, gn(l) = 5,gn(-+) = 7,$w(,) = 9.
gn(Xi) =7 + 4/, i> 1.
gn(P%) = 9 + 4(2m-3n), m, n> 1.

Now let M be the expression axa2 . . . aw, where each «/ is a symbol. Let
ai, . . ., an be the corresponding Godel numbers of these symbols. Then we
define the Godel number of M as follows:

n

gn(M)=Y\Pra
k
k.

where Pr^ is the kth prime number, with Prx = 2.
Let Af1? . . ., Mw be a finite sequence of expressions. Then we define the

Godel number of this sequence as follows:

gn(Mu...,Mn)=f\P4niMk\

For the remainder of this section, we assume familiarity with basic
relations and functions which are recursive. The reader is referred to Mendelson
[3] or Davis [1] for detailed information.

We will need the following functions and relations. These are all recursive.

(i) x\y holds if and only if x divides >\
(ii) (*)„ = (fjiy)<x[Pry\x A -{Pr^l\x)}.
(iii) qt(x, y) is the quotient upon division of y by x.
(iv) L{y) is the number of nonzero exponents in the prime factorization

of x.
(v) GN(x) holds if and only if there exist positive integers a^, 1 ̂  k < n,

n

such that x = Y\ Prlk.
k= n a

(vi) Term (x, z) holds if and only if z = H Prtk for suitable a& > 0 and
k=i

x-cik for some k, 1 <k<n.

(yii)x*y=x U ^Stm-
If M, N are expressions, then gn{MN) = gn(M) * gn(N).

We now show the following functions and relations to be recursive
(recursive in B if followed by a subscript B).
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(1) V(x) holds iff x is the Godel number of an expression consisting of a
variable.

V(x) *=*(3y<x)(Ky AX = 21+^).

(2) Pred(x) holds iff x is the Godel number of an expression consisting of
a predicate letter.

Pred(x)*=>(3.y < x ) ( 3 z < x ) [ l <y A\<ZAX = 29+4(2^3Z>].

(3) Trm(x) holds iff x is the Godel number of a term.

Trm(x) *=> GN(x) A (Vy <x)[Term(.y, x)=*(y = 3vy = 5v
(3z<y)(y = 7 + 4z A I < Z ) ) ] .

(4) Argix): If x is the Godel number of a predicate letter P™, then
Arg(x) = m.

i4rg(x) = (^(4,x- i-9))1 .

(5) At Form (x) holds iff x is the Godel number of an atomic formula.
This holds if and only if there are terms tu . . ., tn and a predicate letter P%
such that x is the Godel number of P™tu . . ., tn. This holds if and only if there
is a sequence of expressions

pm.pmf . pmf f . . pmt f . pmf f f

This sequence of ̂ 2 + 1 expressions can be represented by its Godel number >>.
We have y <Prx

n+x<Prx
x. Also note that n = Arg{{x)^.

At Form (x) ^=^ (3y <Prx
x)[x = ( J / ) I ( J ; ) A Preddy),) A I(>^)= A r g a ^ ) + 1 A

(\fu <L(y))((u > 1 A u<Arg((x)l)) =>
(3i; <^)((^)M = (^)^i * 1; * 29 ATrm(i;)))].

(6) Form (x) holds iff x is the Godel number of a formula.

Form (x) <=> At Form (x) v (3y <x)(3z <x)[Form (>») A Form (z) A
x -y * 27 * z].

(7) MP(x, y, z) holds iff the formula with Godel number z is a direct
consequence of the formulas with Godel number x and Godel number y by
modus ponens.

MP{x, y, z) «=» At Form (x) A Form (y) A Form (z) A .y = x * 27 * z.

(8) Word (x) holds iff x is the Godel number of a word in K = SO, 1!.

Word(x)<=»x = 2 3 vx = 25v (3>> <x)[(Word (y) A (X =y * 23vx=>> * 25)].

(9) Sub(x, y, z, w) holds iff w is the Godel number of the expression
resulting from substituting the word in {0, 1! with Godel number z for all
occurrences of the variable with Godel number y in the formula with Godel
number x.
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Sub(x, y, z, w)*=* [AtForm(x)A Var(^)A Word(z) A (3n <x)(3u1<x) . . .
(3un <x)(x = u1* y * u2* y *....* y * un)A
(yfui)i<n{3vl<Ui)Ov2<Ui)(ui =ux * y * v2)/\
(w = U1*Z*U2*Z*...*Z* un)] v

[Var(y) A Word(z) A (3V <x)(lr <X)[X = u * 27 * r A
Form(i>) A Form(r) A (3S < w) Sub(i>, y, z, S)A
(3t<w)Sub(r, y, z , / ) A W = 5 * 2 7 n ] ] .

(10) RzgAx(x) holds iff x is the Godel number of a regular axiom. We
assume this relation to be recursive, i.e., we can effectively recognize whether
or not a given number is the Godel number of an axiom.

(11)B SpccAxftix) holds iff x is the Godel number of a special axiom for
the set B. We want to say that there are predicates P, Q such that X e B implies
PX is an axiom and X 4 B implies QX is an axiom. Let us suppose, for definite-
ness, that P is P\ and Q is P\.

Spec AxB(x) *=* (\fy < x)[Word(>>) =» [(CB(y) = 0 A X = 27+4(21"3l)• 3gn(y)) v
(CB(y) = 1 A x = 27+4<2l-32>-3«nW)]].

Note that there are an infinite number of special axioms for B\ one for each

(12)g ^4X(X) holds iff x is the Godel number of an axiom of (E).

Ax{x) <=• Reg^xO) v Spec^xU).

(13)B PEFS (X) holds iff x is the Godel number of a pseudoelementary
formal system.

PEFS (JC) *=* (\/y<L(x))(Ax((x)y)).

(14)B P/BM holds iff x is the Godel number of a proof in a PEFS (E)
with special axioms for B.

Pf(x) <=* PEFS(x) A (By < x)(x = 2y A Ax(y)) v
(3^ <x)(3z <y)(3w <x)[Sub(j;, z, w, x) A PfB (y)] v
( 3 ^ < X ) ( 3 Z < X ) [ M P ( ^ , Z , X ) A P / 5 ( J ) A P / 5 ( Z ) ] .

(15)B PfB (y, x) holds iff y is the Godel number of a proof of the expres-
sion with Godel number*, in a PEFS (E) with special axioms forB.

PfB (y,*)^ PfB (3^)AX = (y)L(yy

Suppose now that A is representable in the PEFS (E) with special axioms
for B. Then for some predicate letter, say P}, \jj^ P} n <=* n e A, where n is n in
binary notation (3c is recursive). Thus

xeA^Y^Plx*** &y) PfB{y, 29+4(21 •3/) * gn(x)).

Therefore, A is r.e. in B in the standard sense. We have now shown the
following:

Theorem A is r.e. in B in the sense of PEFS implies A is r.e. in B in the
standard sense.
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Corollary A is recursive in B in the sense of PEFS implies A is recursive in
B in the standard sense.

Thus the notions of 'r.e. in' and 'recursive in' as defined via PEFS are
equivalent to the standard notions. Similar results follow for relations and
functions.

4 Basic theorems of relative recursion theory In this section, we show how
to prove some basic recursion theorems in the setting of PEFS.

We first note that in referring to the Godel number of a PEFS (E) with
special axioms for B, we don't have to include the special axioms in theg/7. e.
Since all such systems have the same special axioms, it is superfluous. Besides,
they form an infinite set.

Let the PEFS (E) consist of the sequence of a x i o m s ^ , . . .,An such that
An is of the form Pni - » . . . - » Pnk. The predicate letter PnR is called the
principal predicate of (£). The reason we use principal predicates is that in a
given PEFS, more than one relation may be representable. Given the Godel
number of a PEFS, we want to be able to determine which relation is signified.
This may be done by looking at the principal predicate.

(16)B Ded#(z, y) iff z is the Godel number of a PEFS (E) with special
axioms for B, and y is the Godel number of a proof from (E).

DzdB(z, y) *=* PEFS(z) A (VX < L(y))[(3w <L(z))((z)w =
(z)x) v (3u<x)(3v<x)MP((z)u, (z)y, (z)x) v
Gu <x)Ov<x)Ow<x) Sub((z)tt, (z)v, (z)w, (z)x)].

(17)B S*(z,xu . . .,xn,y) iff z is the Godel number of a binary PEFS (E)
with special axioms for B, having P" as its principal predicate and y is the
Godel number of a proof in (E) of Pf3c1} . . ., xn, where 3c is x in binary
notation.

S%(z, xu . . .,*„, y) <=> Ded5(z, y) A Arg((O)z,(;;))i) = n A ((y)L(y))i =
(((2)l(z))l((z)I(z)))l A (3w <y)[(y)L(y) =

29+4^-3H;) *gn(xl) * 29 *gn(x2) *29 * . . . * 29*gn(xn)].

(18) £/(x) = ( ^ <x)[5^ = ((x)L(x))z((x)L(x))].

If x is the Godel number of a proof of Pf3cl5 . . ., x^, then U(x) = x^.
Now suppose that / 5 (x 1 ? . . ., x«) is an /7-ary ^-partial recursive function.

Then/^Ocj, . . ., xn) = x is an (/?+l)-ary ^-partial recursive relation. For this
relation to be representable in a PEFS {E) with special axioms for B, there must
be a_predicate letter Pf+1 of (E) such that fB(ku ...,kn) = k*=* t^P-1*1 *i, • • -,
^ , k for all natural numbers ku . . .,kn,k.

Normal Form Theorem There exists a recursive function U and a B-recursive
function S% such that iffB(xu . . .,xn) is a partial B-recursive function, which,
as a relation, is representable in the PEFS (E) having special axioms for B and
Godel number e, then for all xi, . . ., xn in N,

f{xx, . . .,*„) - U(Qiw) S*{e, xlt . . .,xn, w)).
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Proof: fB(ku . ..,kn) = k*=* ^WjP-1*1 *i> • • •> h> k> w h e r e FP+1 i s t h e principal
predicate letter of (E). Now fB(ku . . ., kn) is defined <==> (3x)(3j>) S;f+1(e,
A:l9 . . ., *„, x, ^) «=* (3w) S*+1(e, fcls . . ., kn, (w)0, (w)0. Define S*(e, &l5 . . .,
*n» w ) = Sf+1(e, fci> • • - , * « , O ) 0 , (W)I). Therefore, /5(/c l5 . . ., fcn) is defined
<=* (3w) SB(e, ku . . ., kn, w). If f(ku . . ., kn) is defined, then «juw) S,fO,
A:1? . . ., kn, w))i is the Godel number of a proof in (E) ((E) has special axioms
for B) of Pf+1 £1? _. ., kn, k. Therefore, U(((fiw) S*(e,Jcu . . ., kn> w))1) =
fB(ku . . ., kn). Let U(x) =_£/(«!)• Thus/5(x l 5 . .^xn) - U(0iw)S*(e, xl9 . . .,
xw, w)). It is obvious that Sf! is recursive in B and U is recursive.

Lemma If R(xl, . . ., *„, >>) is a relation which is recursive in B, then for
somee, (3y)R(xu . . .,xn, y)*=* (3y) S*(e, xu . . .,xn,y).

Proof: Let CR(XU . . ., xn, y) be the characteristic function of the i?-recursive
relation R(xu . . ., xn, y). Then C^(xj, . . ., xn, y) is recursive in B. Thus the
function (jJiy)(CR(xl,. . .,xn, y) = 0) is partial recursive in B. Let e be the Godel
number of a PEFS (E) in which (//.yXC/fCKij • • ->xn> ^) = 0) = z is representable.
Now, (3y)R(xu . . .,xn,y) *=* biy)(CR(xl9 . . .,xn,y) = 0) is defined. There-
fore, (3>0 R(xu . . ., xn, y) ^=> (3z)(3w) S*+X(e, xu . . ., xn, z, w) <=^
(3i;) SB

+1(e, * ! , . . . , xn, (i;)0, (^)i) ^ ^ (3v) SB(e, xu . . ., xn, i;).

Lemma yl relation R(xu . . ., xn) is r.e. in B <=» (xl5 . . ., xn) e R is express-
ible in the form (3j>) PCx^ . . ., xn, y), where P is recursive in B.

Proof: Suppose R(xx, . . .,xn) is r.e. in B. Then for some PEFS (E) with Godel
number e, and some predicate Pf, R(mu . . ., mn) <=* ](JE)P? ~m\, . . .9Tnn «=>
Oy)S^e,ml9 . . .,/wWf y).

Conversely, suppose that (xu . . ., xn) e R is expressible in the form
(3>0 /*(>!, . . ., xn, y), where P is recursive in B. Let P represent P in some
PEFS (E) with special axioms for B. Let T be a predicate letter not occurring in
(£). Add the following axiom to (£), obtaining (£'):

P*!, . . .,xn,y ~*Txu . . .,xn.

Then 71 represents /^(x!, . . ., xn) in (£'). Hence, /? is r.e. in B.

Corollary A set A is r.e. in B <=*xeA is expressible in the form (3y) P(x, v),
where P is recursive in B.

By the second lemma, if R(xx, . . ., xn) is r.e. in B, then R{xx, . . ., xn) «=^
(3>0 P(xu . . ., xn, y), wheje P is recursive in B. By the first lemma (3>0
P(X!,_. . ., xn, y) =̂=> (3^) S%{e, xl9 . . ., xn, y). Thus R(xu . . ., xn)_ *=>
(3>0 ^C^, x1? . . ., xn, y) for some e. On the other hand, for each e, (By) SB(e,
*i, • • -,xn, y) is an n-place relation which is r.e. in B. This implies the following:

Theorem The n-ary relations which are r.e. in B are precisely those which
are of the form (3>0 SB(e, xu . . .,xn, y) for e e N.

Corollary The sets which are r.e. in B are precisely those which are of the
form (3y)Sf(e,x,y)foreeN.
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Enumeration Theorem For each n > 1 we can enumerate the n-place
relations which are r.e. in B in such a manner so that the relation Xmx, . . ., mn)
satisfies the j t h relation which is r.e. in B' is itself r.e. in B.

Proof: The «-ary relations which are recursive in B are of the form (3y)
S%(e, x1? . . ., xn, y). As e runs through the natural numbers, we get all such
relations. This relation itself is r.e. in B.

Corollary We can enumerate the sets which are r.e. in B in such a manner
so that the relation 7 is an element of the j t h set which is r.e. in B'is itself r.e.
inB.

From now on, we will refer to the zth ft-place relation which is r.e. in B by
Rf'n(xu . . . ,*„). Note that Rf'n(xu . . ., xn) = {(xl5 . . ., xn)\(3y) S*(xu . . .,
xn,y)\.

Iteration Theorem There is a recursive function f(zu . . ., zn) such that for
any set B, and any B-r.e. relation Rfn+m(zl9 . . ., zn, xu . . ., xm), and any
*i, • • •> in* /O'IJ • • •> h) is an index ofRfn+m(iu . . ., in, xu . . ., xm) as a relation
which is r.e. inB. [R?n+m(iu . . ., in, xl9 . . .,xm) = Rfg^^.Jx^ . . .,*„).]

Proof: That Rfn+m(iu . . ., in, xu . . ., xm) is r.e. in B is seen as follows: Let
(E) be the PEFS with special axioms for B and Godel number e% in which
Rfn+m(zl9 . . ., zn, xu . . ., xm) is represented by Pzu . . ., zn, x1? . . ., xm. Take
a new predicate Q and add the following axiom to (E) to get (£'):

Pii, . . ., z'n, x1 ? . . ., xm ~+ Qxi) . . ., xm.

Then Q represents Rfn+m(ili . . ., in, xu . . ., xm) in this new system. Thus,
R B

e ' n + m { i u . . . , / „ , * ! , ...,xm)isr.t. i n B .
Let p, q be the Godel numbers of P, Q and let vu . . ., vm be the Godel

numbers of xx, . . ., xm. Let ~n = gn(n), c, a be the Godel numbers of, and ->.
Then /( / l 5 . . ., in) = e * p * ix * c * . . . * c * in * c * vx * c * . . . * un * a * q *
Ui * c * . . . * vm. / ( / l 5 . . ., in) is recursive and is the Godel number of (£'),
which serves to represent R^>n+m(il, . . ., in, xl9 . . ., xm).

The reader has probably noticed that elementary formal systems provide a
particularly elegant framework for recursion theoretic arguments. One reason
they work more smoothly than, say, Turing machines in certain contexts is that
elementary formal systems are nondeterministic. A systematic proof procedure
can be specified, once and for all, independent of any particular choice of
elementary formal system axiom set, which, if followed, will cause anything
derivable eventually to be derived. But this is not part of the elementary formal
system machinery. The elementary formal system rules are permissible, not
mandatory. Thus much of the step-by-step detail work inherent in a deter-
ministic approach is bypassed.

Another reason is that an elementary formal system is more in the spirit
of a high-level programming language, as opposed to, say, Turing machines,
which act more on the level of an assembly language. A few axioms of a simple
elementary formal system would correspond to a large amount of code required
of a Turing machine. In a high-level language, an instruction may be seen as an
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algebraic operation or as a powerful string-manipulation procedure. However,
in an assembly language it is necessary painstakingly to specify on a very
primitive level, working with small pieces of data at any time, just how that
operation or procedure is to be carried out. This is, of course, subject to certain
limitations, as certain fundamental operations and procedures are part of a real
computer's hardware, and are implicit in the assembly language (and also in a
high-level language).1

NOTE

1. For the interested reader, it is worth pointing out that Melvin Fitting, in his forthcoming
book Fundamentals of Generalized Recursion Theory, uses elementary formal systems to
provide an abstract framework for studying computational structures.
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