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EPISTEMIC LOGIC WITH IDENTIFIERS

JAMES McLELLAND

1 Introduction In this paper* we develop a system of quantificational
epistemic logic, which we designate as QKL. The sentential part, KL, is
interpreted in the usual Kripke-type structures. For the quantificational
part, we elaborate these structures by bringing in formal machinery for the
individuation (or cross-identification) of objects appearing in the domains
of the structure. This machinery consists of a family of partial functions
which map (parts of) domains into domains, and the system has been
designed to bring out the logical properties that follow from imposing
conditions on this family of identifiers.

An essential consideration for a system of epistemic logic is to
preserve the kind of logical distinction that exists intuitively between
statements of the forms:

1) It is known that some x is P

and

2) Some x is known to be P.

This distinction is related to somewhat controversial issues concerning
opaque modal contexts, logical identity, and individuation. The system QKL
reflects, in general, Hintikka's views (as expounded in [l], for example) as
to how these matters should be handled. Briefly, this means that we treat
the logic of opaque epistemic constructions, on the principle that quantifi-
cation into such a construction refers to those objects which can be
individuated throughout the set of possible states (worlds) that are relevant
to it. QKL is a technical elaboration of this principle. Moreover, although
1) and 2) are closely related in QKL—in fact, 2) is logically stronger than
1)—the distinction between them is preserved.
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A defect of Hintikka's use of cross-identification as a means of
elucidating the logic of opaquely construed modal contexts has seemed to be
that the only methods for making such identifications are contingent and
context dependent—so much so that no uniform description can be given for
them.1 This makes it look as if we should not expect to get any systematic
account of logic based on cross-identification, and may even be viewed as a
fulfillment of the prediction of Quine in [3] that we would not be able to
articulate the logic of quantification into opaque constructions (without
making highly questionable philosophical assumptions). We do not see that
these conclusions are warranted, and our work with QKL bears against
them. By positing a very minimal set of formal properties for identifiers,
we are able to treat the problems we are interested in—mainly, that of the
logical relationship between type 1) and type 2) statements—as specifically
logical (as opposed to episte mo logical or onto logical) ones.2

After setting up the semantics of QKL, we proceed to axiomatize it and
to show that our axiomatization is semantically complete.3 In order to
obtain a suitable modeling—one that does not collapse the distinction
between statements of types 1) and 2)—we modify the usual construction (as
found, for example, in [4]), by employing a certain auxiliary sentential
epistemic theory (cf. section 7). Out of this we get a canonical type of
model which is built around the system of natural numbers (as state
indices) with successor and has an intransitive alternative relation. We
find this interesting, because it suggests that we might well make use of
such canonical modeling when we make the intuitive distinction between
statements 1) and 2).

Another noteworthy feature of the modeling technique we use is that
our auxiliary theory violates Hintikka's axiom: KA —> KKA. This does not
mean that we could not model the axiom (the auxiliary language is kept
separate from the language being modeled), but we would be unable to do
our modeling if the axiom were accepted as a universal logical truth,
governing every epistemic language. (Hintikka would not now defend it as
such, anyway, as he makes clear in [5]).

2 Epistemic languages A (first order) epistemic predicate language has
symbols of the following types:

A. Logical Symbols

1) Parentheses: (, ).
2) Connective Symbols: —>, ~ .
3) The epistemic operator symbol: K.
4) A countably infinite set of variables.
5) The equality symbol: = .
6) For each n = 0, 1, 2, . . ., the n'th order individuating symbol: Qn.

B. Parameters

1) For each n = 0, 1, 2, . . . , a countable set of n -place predicate symbols.
2) A countable set of constant symbols.
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We shall suppose that the logical symbols are fixed for all such languages,
so that different languages are obtained by choosing different sets of
parameters. Further, we shall classify the equality symbol as a (special)
2-place predicate symbol and the Q-symbols as 1-place predicate symbols.
An epistemic predicate language will also be referred to as a QK language.

An epistemic sentential language is a language whose logical symbols
are just the parentheses, connective symbols, and the epistemic operator
symbol; and whose parameters are just a set of 0-place predicate
symbols—called sentence symbols. We will also refer to such a language
asa/f language.

Our notational conventions for handling the syntax of K and QK
languages—which is developed in the usual way—are given in the following
table:

Notation Used For

x, y, z, . . . variables
α, b, c, . . . constant symbols
r, s, t, . . . terms
P predicate symbols
A, B, C, . . . formulas
AvB ~A->B
A&B ~(A->~B)
A+-+B (A — B)&(B->A)
A-> B-> C A-> (B ~> C)
KnA; n = 0, 1, 2, . . . KK . . . KA (with n

occurrences of K)
JnA; n = 0, 1, 2, . . . ~Kn~A
3xA ~(#)~.A

A term r occurs bound in a formula A iff it occurs in A within the scope of
a quantifier on r. Occurrences of r other than bound ones are free
occurrences. (Note that any occurrence of a constant term is free, by this
definition.) The formula that results from substitution of t for all free
occurrences of r in A is designated Ar

t. If t is free for r in A) i.e., if the
substituted occurrences of t are free in Ar

t, we use Ar(t)—and sometimes
just A(*)-for Ar

t.

Atomic formulas that are not Q-formulas (i.e., not of the form Qnr)
will be called basic formulas. The K-profile, Prx(A)9 of A with respect to x
is defined recursively as follows:

1) PrxU) = 0, if A is basic.

I n, if x = r

0, otherwise.

3) Prx(~A) = Prx(A).
4) ?vx(A - B) = mαx( Prx(A), Prx(5)).

I ?χx{A) + 1, if x occurs free in A

Prx(A), otherwise.
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I Prx(A), if y ΦX

0, otherwise.

Prx(A) gives the maximum "depth" of modal contexts for free occurrences
of x in A.

3 K-structures A K-frame is a pair (/, ^), where /is a non-empty set and
^ is a reflexive binary relation on /. /is the set of state indices and ̂  is
the alternative relation of the frame. A K-structure for a QK language -C
over (/, ^) is a mapping 3W which assigns

1) a non-empty set M, to each £ e /;
2) to each n-place predicate symbol P of -C a function P^on / such that, for
each ie /, Pfϊ(= Pm(i)) is an rc-ary relation on Mt ;
3) to each constant symbol α of -C a partial function σm on / such that
αfe Mi9 for each ie domain am.

We take a 0-ary relation to be just one of a pair—say 0 and 1—of designated
truth-values. Thus, if «£ is a /f language, a K-structure for <£ over (/, ^)
simply assigns a truth-value Pf, for each i, to each sentence symbol P of £
(and no sets Λff need be specified). Mt is called the domain of 9W at z, P f i s
called the extension of P at e, and αf (when it exists) is called the
denotation of α at i. Note that, since α may fail to denote in any domain Mt ,
we have here a modeling of so-called free logic.

We shall now develop machinery for the interpretation of epistemic
languages in their K-structures. For a given frame (/, ^}, we define
relations ^n on /, for n ^ 0, by recursion as follows:

1) j ^ i iff j = i;
2) j ^n+1i iff for some kel, j ^nk and k ^ i.

We call j an nHh order alternative to i iff j ^n i. Note that, by the
reflexivity of ^, j ^n i implies j ^ w + 1 z . {j^ni holds whenever one can get
from i to j in n steps through the relation ^.) Further, we define the
accessibility relation, ^#, on / by taking

j ~Φ i iff for some n, j ^n i,

and we say that j is accessible from i whenever j "Φ i.
Now suppose that M is a K-structure over a frame </, ̂ ). We consider

mappings F defined on the relation ^ such that, whenever j ^ i,
Fjti(= F(j, i)) is a partial function mapping M̂  into My Given such an F,
we define the n'th order domain, Mf, at i, by setting

Mni = Π domain F, , .

JP will be called an individuating map for the structure M iff it satisfies the
following conditions:

1) Fiti{a) = α, all ae Mi (i.e., jpί#ί is the identity function on Mx ).
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2) Uj^k^i, then Fjti QFj§hoFk§i (i.e., Ffιi(a) = Ffιk (Fhi,(«)), all at
domain Fjj).

3 ) M f * ί Z > , f o r n = 0 , 1 , 2 , . . . .

We shall call F ; ,, the identifier function from i to j . Intuitively, Fjti{ά) = b
means that object b in M; has been identified as "the same" as object a in
M,-. Of course, not every object in Mt need be identified in My—α may not
"exist" in Λf; —so F ; ,, is in general just a partial function. In order for a
to get into Mf, it must be identifiable under F at all rc'th order alternatives
to i. We call such an a an n'th order individuated element—briefly, an n'th
order individual—oϊ Mi.

Our condition 1) on F says simply that each object of M, is identified
with itself. Condition 2) is designed to prohibit a certain kind of splitting of
individuals: it says that any identification from i to j will give the same
result as a chain of identifications (of the same object) consisting of an
identification from i to k ̂ z, followed by an identification from k to j .
Condition 3) is a kind of regularity condition on identifiers (and one we
could dispense with without affecting our main results). It simply says that
every domain we have to consider is non-empty—a usual convention in
logic.

Say a e M{. We will call the object a) = Fjti (a)—whenever it exists—the
image of a at j from i, and we call the set of images a] of a from i the
world line of a from i. Following Hintikka in [l], we may interpret the
world line of an object from a given state as the set of realizations of some
individual concept within the context of states accessible from the given
state. Since a eM? just in case its world line from % runs through all rc'th
order alternatives to i, it is appropriate to say that such an object has been
individuated in the context of this set of states.

An assignment to variables in a structure Wl over a frame (/, ̂ ) is a
function u on / which, for each iel, assigns a member of M, to each
variable; i.e.,

Ui(x) e Miy for all variables x.

If y is a fixed variable and aeMif we define a new assignment, u(y \a),
which agrees with u except that it assigns objects to y along the world line
of a from i. More explicitly,

I a), if x = y and a) exists

Uj(x), otherwise.

It will be convenient to extend any assignment u to terms of the language,
whenever they denote in Wl. We do this by taking

Ui(ά) = aψ whenever α̂ f exists.

The object wf (r)— whenever it exists—will be called the denotation of term r
at i under u. When we have an individuating map F for 5Pί we may use rj
for Fyf,-(«i(r))—whenever it exists—and call r* the image of r at j from i
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under u. The term r will be said to be n-rigid at i under u iff U{(r) e M*and
Uj(r) = r/, for all j ^ni. Further, r is n-rigid at i iff it is n-rigid at i under
all assignments u.

4 Satisfaction in K-structures The basic mechanism for interpreting a
language <£ in its structures is a satisfaction predicate, which will say, for
any basic formula Λy whether A is satisfied at state i in 9W under an
assignment u in 9W. Our notation for this will be: N^A[w]. The notion of
satisfaction in a structure is complicated by the fact that we allow
non-denoting terms in our languages, and there are various ways of
interpreting statements containing such terms. 4 We shall remain neutral
with respect to most of these possibilities by defining a generic notion of
satisfaction. In other words, we do not give a unique interpretation of
formulas in a given structure. Rather, we lay down general conditions
which allow a large number of particular interpretations. Roughly speaking,
what we require is that a satisfaction predicate in 3W respect the laws of
equality, respect 5SW itself, and respect assignments to variables in 9W. We
formulate these requirements as follows:

la) K r r = r[u\.
lb) If K v = t[u], then either both w, (r) and Ui(t) exist or neither do.
lc) If Ui(r) and m(t) exist, then \=fr = t[u] iff «/(r) = mit).
2a) lί^frp = tp[u]; p = 1, 2,. . ., n9 then \^Pr1 . . . rn[u] iff \-fpt,. . . tn[u].
2b) If iiiirp) exists; p = 1, 2, . . ., n, then \=fPrλ . . . rn iff (uiirj, . . .,

Ui(rn)) e p*.
3) If u and z; are assignments in 3DΪ which agree at i on all variables of A;
i.e., W/(ΛΓ) = #/(#), for all variables x which occur in A, then

\=fA[u] iff \=??A[v].

Conditions lb), lc), and 2b) make \=m behave well with respect to 9W; la) and
2a) give the usual logical requirements for equality; and 3) makes satisfac-
tion in 9W depend upon the values assigned to the relevant variables. Note
that lb) stipulates that we cannot satisfy an equality statement between a
denoting and a non-denoting term. Although it may eliminate some other-
wise quite desirable interpretations, nothing more than a few technicalities
hang on this condition.

If 9W is a K-structure and F is an individuating map for9W, we set
9W [F] = (9W, F), and call 9W [F] an individuated structure. Any satisfaction
predicate 1=^ in 9W can be extended to a satisfaction predicate, N w ί F , in
9W [F] by the following clauses:

4)>f [F]Qnr[u] iff r is rc-rigid at i under u.

5) \=γW~A[u] iff not-Hf [F]A]u].
6) NfM(A — £ ) [ M ] iff not-Mf [ F U[M] or \=f[F]B[u].
7) H^fFϊ/L4 [M] iff for all j > i, Hf [ F k [M].

8 ) μwlF]^)^ [M] iff for all α e M?, Nf [ F k [W(AΓ |«)].

Note that we immediately have the following:
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9) ^[F]KnA[u] iff for all j >ni, t*f[p]A[ύ\.
10) ϊfWjnA[u] iff for some j >ni, t=f[F]A[u].
11) \=MW3xA[u] iff for some anMn

h ϊ=ψF]A[u(x\a)].

Suppose S is a set of formulas of -C and Wl[F] is an individuated
structure for -£. Then S implies A at i in m[F]—notation: sMf[Fl4—iff for
all satisfaction predicates h^and all u in 9W,

h? [ F ] A|V] whenever \=?[F]B[u], all Be S.

Also, S implies A in 9W [^-notat ion: S\=m[F]A-iff S implies A at all i e I in
m [F]. Further, S logically implies A—notation: SNA—iff for every SW and
F, S implies A in 301 [F]. Finally, A is valid at i in m [F], valid in Wl [F], or
logically valid, according as N^^-U, N*1 k, or \=A. If A is a sentence (a
closed formula) we may use Ά is true' or ζA holds' in place of ζA is valid'.
When no ambiguity results, we may write N for N^^J or N9'1.

5 Semantical results

Lemma 5.1 Suppose u and v are assignments to variables in some 9W such
that, for any variable x which occurs free in a given formula A, if
n = Prx(A) then

Uj{x) = Vj(x), allj^ni.

Then we have

\=iA [u] if and only if \={A [v].

Proof: This is just a generalization of condition 3) above, to cover all
formulas. It is easily established by induction on A—using clauses 4)-8)
for satisfaction predicates.

Lemma 5.2 If r is Prx(A)-rigid at i under uy then

^iAx{r) [u] if and only if h'A M#l Mr))].

Proof: Let a = ẑ  (r). Then, for j ^ni, where n = Prx(A), Uj(x\a)(x) = a] =
r] = Uj(r), since r is rc-rigid. Thus, u(x\a) assigns the same object to x at j
as u does to r . The lemma depends on just this fact, and a routine induction
on A can be given.

Lemma 5.3 If r is ?rx{A)-rigid at i under u, then

I=/3ΛA[W] whenever Nf A*(r)[w].

Proof: If h ' A * M M , then \=iA[u(x\ui(r))]9 by Lemma 5.2. Now u{{r) e M?,

where n = Prx(A), so we have N, 3XA[M].

Note that having Ui(r) e M? is not, by itself, sufficient to allow us to
generalize existentially on r in Ax(r). This is reasonable; we cannot infer

Some x is known to be P

from
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It is known that r is P,

even though r may name an object that can be individuated—because r may
fail to do the necessary individuating (i.e., may fail to be rigid).

Lemma 5.4 (Characterization of rigid terms)

ϊiQnr[u] if and only if t{3xKn(x = r) [u].

Note: We assume x is distinct from r .

Proof: If r is w-rigid at i under u, we can use Lemma 5.3 to generalize on
r in Kn(r = r )— which is a valid formula—to get \=i3xKn{x = r)[u]. Con-
versely, if \=iΞ\xKn{x = r) [u], we have some a e Mf with \=iKn(x = r) [u(x \a)].
From this we get \=jX = r [«(#!«)], all j ^ni, so Uj{r) exists (by condition lb)
on satisfaction predicates) andα7- = Uj(r), all j ^ni. Now

rj = Fjti (udr)) = Fjti (a) = a) = w; (r),

so r is rc-rigid at i under u.

Lemma 5.5 The formulas: Qn

r

+ι —* KQnr, for n = 0, 1, 2, . . ., are logically
valid.

Proof: Suppose K Q?+ 1M. Then r / = w ; (r), for all j ^ w + 1 z. S a y f c ^ i . If
j ^w&, then j ^ Λ + 1 ί and, by condition 2) for individuating maps F,

Uf(r) = rj = Fjtk{r{) = Fiιk(uk(r)) = rf.

Thus r is w-rigid at fe under w, for all k ^i. This gives us ^=iKQnr[u\.

As a corollary of Lemmas 5.4 and 5.5 we have that

3xKn+1(x = r) — ϋΓBtf/^ί* = r)

is logically valid. The antecedent of this formulates a statement of the
form

Some x is known to be P,

while the consequent has the form

It is known that some x is P.

We shall show that the converse is not valid. For this purpose we choose
states 0, 1, . . ., n + 1 with: n + 1 ̂ n ^ . . . ^ 1 ̂ 0 . We read this chain
intransitively—e.g., 2 ^ 0 . Then we select distinct objects a0, b°, a1, a2,...,
an+ι, where the superscript indicates the domain to which each object
belongs—e.g., Mo = {a0, b0} and Mt = {a1}. Now we define identifiers as
follows:

1) Fz i (a*) = a\ whenever 0 ^ i < j ^ n or 1 ̂  i ^ j ^ n + 1.
ίb°, if j = 0

2) Fjfo(b°) = \
[ α ;, otherwise.

Then F satisfies the conditions to be an individuating map. Note that the
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world line of a0 is {α°, . . ., an] and the world line of a1 is {a1, . . ., an+1}.

Thus, if we take a constant symbol α and set

Qi = a1; for i = 0, 1, . . ., n + 1

we will have K^Qwα and K*?Qwα, so N ^ Q w α . However, Qn+1a does not hold

at 0, because this would require α ^ = Fn+lι0(a°)9 and a%+1 = Fn+1 0(a°) does

not exist. Our model falsifies the formula

KQnr -> Qn+1r

when r is α. Notice that if we had the "converse" of condition 2) for F;

i.e., if we had

2') Fjtk o Fkί c F ; > / , whenever j ^ k ^ i

then, since F n + l i l (F l t 0 (β°)) = F^Λf l 1 ) = «w+\ we would have Fn+I>o(a°) = an+1.

One can readily show, in fact, that 2') suffices to make the above formula

valid (for any term r ) .

Lemma 5.6 The following are logically valid:

1) (x)A & Qnr-+Ax(r).

2) (x)(Q"x-+A)-> (x)A.

3) (x)(C —> A) —• C —* (Λ;)A, where n = Prx(A) αwί? # zs not free in C.

Proof: Part 1) involves a straightforward application of Lemma 5.2. The

proof of 2) uses the fact that, for each aeM", x is rc-rigid at i under

u(x I«)— whence K QΛ#DΦHΛ)L f o r a 1 1 ^ € M". Part 3) requires the use of
Lemma 5.1, but is easy.

6 An axiom system for QKL:

Axioms

For—: 1) A — JB — A

2) (A - 5) - (A - B - C) - (A - C)
For ~ : 1) ~ ~ A —» A

2) A - - - A
3) (A — B) — - 5 — ~A

F o r v : 1) (A-> C) — (B - C)-> A v £ - > C
2) A->AvB

3) J5-^Av5
For &: l ) A - ^ 5 - ^ A & 5

2) A & 5 -* A

3) A &B-> B

For K: 1) KA — A

2) ϋΓ(A — B) - XA — ϋCB

For =: 1) r = r

2) rx = tx & . . . & rn = tn — P n . . . rn -* P ^ . . . ίΛ

For <?: 1) Q°ΛΓ

2) 3xQnx\ n = 0, 1, 2, . . .

3) r = * -> Q°r -> Q°ί
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4) Qnr &Qnt & r = t-+ Kn(r = t); n = 0, 1, 2, . . .
5) Qn+1r-*KQnr;n = 0, 1, 2, . . .

For (x): 1) (x)A & Qnr - Ax(r)

2) {x){Qnx-A)-*(x)A
3) (ΛΓ)(C -> A) -> C -* (ΛΓ)A where w = Prx(A) and x i s not free in C

.Rwtes o/ Inference

Modus Ponens (MP): From A and A-> B infer J5
The K-rule: From A infer KA
Generalization (Gen): From A infer (x)A

As usual, a formula is a formal theorem of the system iff it follows
from axioms by inference rules. A sequence of formulas leading from
axioms to A via inference rules is a formal proof of A. A is deducible from
a set S of formulas iff there are formulas Al9 , . ., Am e S such that A can be
obtained from Al9 . . ., Am and theorems of QKL by use of the rules MP and
Gen, with the proviso that Gen may not be applied with respect to a
variable which occurs free in Al9 A2, . . .9Am. Note that A is deducible
from S just in case there is a sequence of formulas leading from formulas
Al9 . . ., Am of S, and logical axioms, to A via inference rules, and in which

1) the if-rule is applied only to theorems of QKL;
2) every application of Gen is either to a theorem of QKL or is on a
variable which does not occur free in Al9 . . ., Am.

Such a sequence is a deduction of A from S and the formulas Al9 . . ., Am

are assumption formulas for the deduction. We write Si-A to mean: A is
deducible from S. Clearly, A is a theorem of QKL just in case \-A (i.e., A
is deducible from the empty set).

We have already shown that certain of our axioms are valid (Lemmas
5.5 and 5.6) and it is elementary to check the remaining ones. It is also
easy to see that our inference rules preserve logical validity. These facts
are used in proving

Theorem 6.1 (The Soundness Theorem) If S f-A then S \=A.

Proof; Say Bu . . ., Bn is a deduction of A from S with assumption formulas
Ai, . . ., Am. Then we can show A1? . . ., Am \=BP; p = 1, 2, . . ., n by induc-
tion on the given deduction. The only case of any consequence is when Bp is
(x)Bq, for some q < p. Suppose that Al9 . . ., Am are satisfied at i in some
structure 9W[F] under an assignment u. Since x cannot occur free in an
assumption formula, they will also be satisfied under u{x\a), for all a eM",
where n = ?xx{Bq). By induction hypothesis, so will Bq. This gives us the
satisfaction of (x)Bq at i under u.

Lemma 6.2 (The Deduction Theorem) If S, AhB then ShA -* B.

Proof: If Bl9 . . ., Bn is a deduction of B from S +A, then by a routine
induction on this deduction we get

ShA — Bp> for p = 1, 2, . . ., n.
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Corollary 6.3 If ShAlf . . ., S t-AnandAl9 . . ., An\-A, then Sv-A.

Proof: By the deduction theorem

(*) Ai-*A2-* . . .-*An-*A

is a theorem of QKL. When we combine a proof of (*) with deductions of

A i, . . ., An from S, we get a deduction of A from S.

Lemma 6.4 (Alphabetic Variant Lemma) If y does not occur free in A,

(x)Ah(y)Ax(y).

Proof: From axiom (x) 1) we get (x)A, Qny \-Ax(y), where n = Prx(A).

Hence (x)A ̂ Qny -* Ax(y). Since y is not free in A we can introduce (y) to

get (x)A ̂ -(y)(Qny -* Ax(y)). Now we use axiom (y) 2) to get (x)A \-(y)Ax(y).

Corollary 6.5 If y does not occur free in A, (y)Ax(y) \-(x)A.

Proof: Since x does not occur free in Ax(y), we can apply Lemma 6.4 to get

(y)Ax(y)h(x)(Ax(y))y(x). Now (Ax(y))y(x) = Ax

y

y

x = A, since y has no free

occurrence in A.

Lemma 6.6 (Generalization on Constants) If S\-Ax(a) then S \-(x)A, pro-

vided α does not occur in A or in any formula of S.

Proof: Let Bu . . ., Bn be a deduction of Ax(ά) from S, and let y be a

variable which does not occur in any Bp. For each p, take Bp to be {Bp)y.

Then B{, B'2, . . ., B'n is a deduction of (Ax(a))y = A™= Ax(y)—since a does

not occur in A—from S. Thus S\-Ax(y), with assumption formulas among

J5i, . . ., Bn. By our choice of y we can introduce (3;) to get S t-{y)Ax(y). If

y = x, we are done. Otherwise, y does not occur in A so we can apply

Corollary 6.5 to obtain S \-{x)A.

Lemma 6.7 If x does not occur free in S, and if ?τx{A) ^ Prx(I?), then

S\-A-> B implies S h(x)A -• (x)B.

Proof: Say m = Prx(A) and n = Prx(B). Since m ̂  n9 we have Qnx hQmx, by

Axioms Q5) and Kl). Now (x)A, Qmx h i , so (x)A, Qnx\-A. By assumption,

S, A hB, so we have S, (x)At Q
nx \-B\ whence S, (x)A \-Qnx -> B. Now ΛΓ is

not free in S, so we may introduce (x) here to get S, (Λ )A h(Λτ)(QwΛr—>£).

Then S, (ΛΓ)A I-(Λ:)^, by Axiom (x) 2).

Corollary 6.8 If x does not occur free in S, and if Prx(A) ^ Prx(B), then

S\-A-> B implies S h 3xA -• 3Λ:JB.

Proof: Apply Lemma 6.7 to S h~i? -^ ~A.

For our next result (the replacement theorem) we need to define the

K-profile, Pr(A), of a formula A. Pr(A) is just the depth of the modal

context for A, and is given by the following recursive clauses:

1) Pr(A) = 0, if A is basic.

2) Pr(Qnr) = n.

3) Pr(~A)= Pr(A).
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4) ?v(A - B) = mαx( Pr(A), Pr(B)).
5) Pr(KA) = Pr(A) + 1.
6) ?r((x)A) = ?r(A).

For a given formula C, we use C\ for the formula which results by
replacing a specified subformula of C by A.

Lemma 6.9 (Formula Replacement) Suppose A and B each have exactly
xl9 . . ., xm as free variables, and that

?rXp(A) = ?τXp(B)Jorp= 1, 2, . . ., m.

Then

Kn(x1)(x2) . . . (xm)(A<->B)hCA *^>CB

where n - Pr(C).

Proof: By induction on C. For the quantifier case, apply Lemma 6.7,
making use of the fact that

KXP(CA)= *XP(CB);P= 1, 2, . . .,tn.

Lemma 6.10 (Term Replacement) Kn(r = t) \-Ax(r)<->Ax(t), where n-

Pr,(A).

Proof: By induction on A. For the quantifier case A has the form (y)B.
Now r and t must be distinct from y; otherwise they would not be free for
x in A. Thus we can apply Lemma 6.7 to the induction hypothesis
Kn(r = t) \-Bx(r)<^>Bx(t), to get, Kn(r = t) μ (y)Bx(r) «->(y)£x(f).

Lemma 6.11 \-(x)(y)(x = y — A(x)<r^>A(y)).

Proof: By Lemma 6.10 and Axiom Q 4), Qnx, Qny, x = y t-A(x)<^>A(y),
where n = Prx(A(x)). From this we have

Qnx μ QW3> - x = y -* ΛM <-» A(y).

If we introduce (y) and use (y) 2) we get

Qnχ μ Cv)(* = y -* ^ M <->^Cy))

By repeating this procedure on x we get the lemma.

7 A sentential epistemic theory If we take some set X of sentences of a /("
or <2/C language as (non-logical) axioms for a theory in that language, we
are doing more than simply treating X as a fixed set of assumption
formulas. The reason is that, as axioms, the sentences of X are given the
status of logical validities and are subject to the application of all inference
rules; in particular, the #-rule. We can achieve this by taking, not X, but
the closure X# of X under the K-rule as the set of assumed formulas for
the theory. Then we define the theory based on axiom set X to be the set

MX) = {A:X#\-A}.

Further, we take
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S \-xA iff S + Th (X) h A

and say that A is deducible from S in Th(X) whenever S\-XA. Also, we say
that A is a theorem of Th(X) whenever κ x A. Note that

1) S \-xA if and only if S + X# \-A;
2) A e Th(X) if and only if h x A.

Also note that Th(X) is closed under Gen, MP, and the if-rule. On the basis
of this we are able to " t r a n s f e r " all of the results for \- obtained in
section 6, to the deducibility relation h-χ induced by lh(X).

Suppose l\n(X) is a theory in language -C A structure 9W[F] for ^ is a
model of ThpΓ) iff every axiom of Th(X)—i.e., every sentence in X— is valid
in m[F]. A set S of formulas of -C implies A in Th(X)—notation: SNXA—iff
S implies A in every model of lh(X).

Lemma 7.1 St=xA if and only if S + X# \=A.

Proof: Say S + X^ \=A and WI[F] is a model of Th(X). Suppose S is satisfied
at i under u in 9W[F]. Since X% is valid in 301 [ F ] , A will also be satisfied at
i under u. Thus St=xA.

Say St=xA and S + X^ is satisfied at i under w in a structure 9M[F]. We
form the substructure W[F'] of m[F] by choosing /' = {je I: j 'Φ i}. Since
X# is closed under the K-rule, m'[Fr] will be a model of Th(X). Clearly S
is satisfied at i under uf in Wlr[Fr] and so A is also. But then A is likewise
satisfied at i under zt in Wl [F], SO S + X# N A.

Corollary 7.2 ij^Si-xA ί/ẑ w SNXA.

Proof: By the soundness theorem plus Lemma 7.1.

If we confine ourselves to K languages, we are not involved with the
complications of individuation, and we can invoke

Theorem 7.3 (The Completeness Theorem for K*C)5 If S is a set of
formulas of a K language,

S\=A implies S\-A.

Corollary 7.4 If S and X are sets of formulas of a K language,

S f=xA implies S \-xA.

Proof: By the completeness theorem plus Lemma 7.1.

A set S is consistent in a theory Ίh(X) iff for no formula A do we have
SI-XA & ~A. S is {simply) consistent iff it is consistent in Th(Jδ), the empty
theory. S is complete in Ίh(X) iff for each formula A of the language -C,
either S \-xA or S \-x~A.

We now specify a certain /f-language -Co, whose sentence symbols are :
Po> Pι> - •• We shall study a theory Ίh(X0) in ^0> whose axiom set Xo

consists of the following sentences:

Xol) Pn++KPn+ι,
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X02) JKPn -*KPn,

X0Z) JPn -+Pn,

for n = 0, 1, 2, . . ..

Also, we adopt the notation that h 0 and No stand for hχ0 and hχ0, respec-
tively.

Lemma 7.5 Pn & J ~ Pnis consistent in lh(X0),for n = 0, 1, 2, . . ..

Proof: We construct a model 3WΌ for ThCX )̂—which we call the canonical
model—and show that Pn &J ~ Pn is satisfiable in 9W0, for all n. We start
with a set 70 = {z0, *'i> •} of distinct state indices and we stipulate that

in^im Hi n = m or n = m + 1.

This gives us a sentential frame {Io, ^) . To obtain Wo we specify that

Pn is " t r u e " at im iff m ^n.6

Thus, for fixed n, Pn holds at states in, in+i, - . •> and Pn fails at all previous
states. This gives us, for each n, |=fβ°P8 & J ~ P w . Also, we have

hfw°/ί:Pw+;w, all m ^ 1, and N ^ 0 ^ ~ POT, all m < n.

From these facts it can be readily seen that 9W0 is a model of Th(X0).

Lemma 7.6 1) Pn & J ~ Pn \-0K
mPn+m , /or αZZ m,

2) Pn&J~Pnh0~Km~+1Pn+m,forallm.

Proof: By induction on m. For m = 0 this is trivial. Assume both 1) and
2) for given m. Since

^~oK Pn+m—*K Pn+m+ί and \-0K Pn+m+1 —* 1£ -P«+w

both by Xol), we readily get 1) and 2) for m + 1.

If $R is a structure for -Co>
 t h e (atomic) diagram of 9W at a state z is the

set of atomic sentences and negations of atomic sentences of -Co which hold
at i. If m is a model of Th (Xo) and Pn & J ~ Pn holds at ί, then the diagram
of 5W at i is just

~ P 0 , ~ - P i , , ~Pn-l> Pn, Pn+l, . . . .

For, by Lemma 7.6, P w , Pw + 1, . . . all hold at i and, by Xol)> J ~ Pn ~* ~Pn-i>
J ~ P«-i -+ ~P«-2, etc. are all valid in m.

Now, f has some alternative state i(+) at which ~Pn holds. By
Lemma 7.6, Pn+1 will hold at i(+) and, by Xol), J ~ Pn+ι also holds at z(+).
By the same reasoning we used on i, the diagram of i(+) must be

~Pθ> ~-Pl> •> ~Pn> Pn+lί Pn+2> ••

We call z'(+) a £&*s alternative to z. Clearly, we can generate a whole
sequence

i, i ( + ) , i ( + , + ) , i ( + , + , + ) , . . .
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of plus alternatives starting from i. An alternative to i which is not a plus
alternative will be called a star alternative, and we denote such a state by
i(*). Any star alternative to i will have the same diagram as i. For, since
z(*) is not a plus alternative, Pn must hold at £(*). Also, J ~ Pn -* KJ ~ Pn

is valid in Wl, by X02), so J ~ Pn holds at ϊ(*) as well. As we saw above,
these two sentences determine the diagram.

If Pn & J ~ Pn holds at a state i of a model m of Th(X0), we define the
index, n(i), of i in 5W to be just n. Our above work shows that n{i) is
uniquely determined and that, when n(i) exists we have n(i(+)) = n(i) + 1 and
n(i(*)) = n(i), for all plus and star alternatives to i.

Lemma 7.7 If n(i) = n(j), then \=™A if and only if μfA.

Proof: By induction on A. It is true for atomic A since, if n(i) = n(j), then i
and j have the same diagram. Suppose it holds for A and B. Then it
obviously holds also for ~A and for A—> B. For the K"-case, note that KA
holds at i just in case A holds at ί, at all e(+) and at all i(*). By induction
hypothesis, this is equivalent to A holding at j , at all j(+) and at all j(*);
i.e., to KA holding at j .

Suppose in is a state of some model W\ of Th(X0)> having index n. We
define states in+1, in+2, . . . of 9W by taking zw+1 = im(+), for m = n, n + 1, . . ..
The submodel 9WW of 9W obtained by setting In = {in, in+1, . . .} will be called
a prime submodel of $H with index n. It is easy to see that there is, up to
isomorphism, only one prime model of Th(X0) with index n. This leads us
to expect the following result:

Lemma 7.8 If 3W and 91 are models of ΊU(X0) containing, respectively,
states in and j n , both with index nythen

^FimA if and only if ^=j^A, all m^n.

Proof: An easy induction on A.

Lemma 7.9 If 9W has a prime submodel 9WW, then, for all m^ n,

\=ZΛ if and only if^A.

Proof: By induction on A. We shall do the if-case. KA holds at im in 9W
just in case A holds at im at all im(+) and at all im{*). By Lemma 7.7, this
is equivalent to A holding at im and at im+1 in Wl which, by induction
hypothesis, is equivalent to A holding at these states in 9Wrt; i.e., to KA
holding at im in Wln.

an

Theorem 7.10 Pn & J ~ Pn N0A if and only if\=in°A.

Proof: If Pn & J ~ Pn t=(A then \=Tn°A because Pn & J - Pn holds at in in the
canonical model Wl0. Suppose hf«0 A but that Pn & J ~ Pn does not imply A
in Th(X0) Then there will be a model 91 of Th(X0) which has a state j w with
index n, but in which A fails at j w . By Lemma 7.9, ^J"~A; whence, by
Lemma 7.8, I=^W~A. But then Lemma 7.9 applies again to give ush;w°~A,
contrary to assumption.
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Corollary 7.11 Pn & J ~ Pn\-0A if and only if\=Tn°A.

Proof: By Corollaries 7.2 and 7.4—the soundness and completeness
theorems for QK.

Corollary 7.12 Pn & J ~ Pnis complete in Th(X0).

Proof: ^fn°A or h?w° ~A, for all A.

Corollary 7.13 If Pn & J ~ Pn \-0KA, then Pn+ι & J ~ Pn+ι \-0A.

Proof: If \=HI°KA then h*°+ 1A.

8 Completeness of the axiom system for QKL Let S be a set of formulas
of some QK language j£. We say that S is maximal in £ iff for all formulas
A of -£, either AeS or ~A e S. We say that S is Q-saturated in £ iff for
every formula A of ^, (x)A e S whenever Ax(r) e S for all terms r of -C such
that QnreS, where n = Prx(Λ).7

Lemma 8.1 Suppose S is maximal and consistent in j£. Then S is Q-
saturated in J£ if and only if for every formula A of J£, if 3xA e S there is
some term r of £ such that Ax (r) e S and Qnr e S, where n = Prx(A).

Proof: We prove the sufficiency of the given condition for Q-saturation.
Suppose we have a formula A and Ax(r) e S, for all r with Qnr e S. If (x)A /S,
then 3x ~A e S, by the maximal consistency of S. By the given condition
there is some term r with ~AX (r) e S and Qnr e S. Then we have both Ax (r)
and ~Ax(r) in S, in contradiction to the consistency of S. Thus, we must
have (x)A e S.

We shall now work with a fixed language <£ which has an infinite
number of constant symbols. For any set Δ of constant symbols of <£, we
shall use ̂ (Δ) for the sublanguage of -C whose parameters are the predicate
parameters of -C plus the constant symbols in Δ. We denote the set of
constant symbols not in Δ (i.e., the complement of Δ) by Δ. For any set S
of formulas, we use Δ(S) for the set of constant symbols of S, i.e., that
occur in formulas of S. We call S a regular set iff Δ(S) is infinite, and we
call S a model set iff it is regular, maximal, consistent, and Q-saturated in
-C(Δ(S)).8

Lemma 8.2 (The Extension Lemma) If S is regular consistent in JQ, there
is a model set S1 extending S, i.e., such that S c s f .

Proof:9 Since Δ(S) is infinite, we can partition it into two infinite sets, Δx

and Δ2. Take Δf = Δ(S) U Δx. Now let

(A i, %l), (^2> -̂ 2/>

be an enumerat ion of al l p a i r s (A, x), where A is a formula of .C(Δf) and x

is a var iab le . We define a sequence Bl9 B2, . . . of formulas by taking Bm to

be

3xmAm — (Am)x

a& Q w α,
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where α is the first constant symbol in Ax—under some fixed well-
ordering—which does not occur in Am or in any Bk, for k < m, and where
n= ?τXm(Am).

Now we take So = S + {Bl9 B2, . . .}. We claim that So is consistent. If
not, there will be a smallest m ^0 such that S, Bly . . ., Bm i—Bm + ί. Say
Bm+ί is 3ΛΓA — Ax(α) & Qnσ. Then we will have both S, 5 ^ . . ., Bm\-3xA
and S, Bl9 . . ., Bm\-Qna —» ~Ax(a). By the choice of a, it does not occur in
S, in Bu . . ., Bm or in Qnx —> ~A. This allows us to apply Lemma 6.6 and
generalize on α to get S, Bu . . ., Bm \- (x)(Qnx -* ~A). By Axiom (x)2) we
then have S, Bu . . ., Bm \-{x)~A and so S, Bl9 . . ., Bm \-~3xA. But this
makes S +{Bl9 . . ., Bm} inconsistent, in violation of the condition by which
m was chosen. We conclude that So is consistent.

Now let Cl9 C2, . . . be an enumeration of the formulas of -C(Δ'). We
define sets Si, S2, . . . by recursion as follows:

I Sn + Cn+i, if Sn + Cn+i is consistent

Sn + ~ CΛ+1, otherwise.

These sets are all consistent. For, suppose that Sn is consistent but Sn+1 is
not, where n ^ 0. Then Sn+1 = Sn + ~Cn+1 and SnhCn+1. But we also have
Sn\- ~CW+1, since Sn + Cw+i must be inconsistent. Thus, Sn is inconsistent, in
contradiction to our assumptions.

Finally, we take Sr = U Sn. Sr is regular because Δ(Sf) = Δ2, and S' is

clearly consistent and maximal. Suppose 3xAeSr. Then, for some m, ^ w

is the formula 3xA -* Ax(α) & Qwα, for some αe Δ'—with n = Prx(Λ). Since
BmeS', we have both Ax(a)€Sf and QnaeS'. By Lemma 8.1, S' is Q-
saturated in«ί(Δf).

If we were to follow the usual completeness constructions, we would
now build a K-structure using model sets as state indices (cf. [4], for
example), and define an alternative relation on them by taking

T > S iff A e T whenever KAeS.

However, this relation is much too rich for our purposes, because we must
also produce an individuating map F for the K-structure we build, and this
does not seem to be possible with the usual alternative relation. We shall
employ the theory Th(X0) of section 7 to "thin out" this relation and
remove the obstacles to using the "natural" map F (cf. our definition
below).

We shall now use i, j , k, . . . to stand for natural numbers. We call the
language -Co of section 7 the auxiliary language and we define, for i =
0 , 1 , 2 , . . . , the auxiliary set Hi by taking

Hi ^ {A: Pi &J ~P{ \-0A},

i.e., Hi is the deductive closure of P, & J ~PX in 1U(XO). By our results in
section 7, we know that Hi is maximal consistent in £0. Also we have, by
Corollary 7.13,
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Lemma 8.3 If KAe H{ then A e Hi+1.

For each model set S, we define the indexed model sets, S(i); i =
0, 1, 2, . . . by setting S(i) = S U Him S(i) has index i. Then we take our set
/ of state indices to be the set of all indexed model sets. We specify a
relation ^ on / as follows:

T(j) > S(i) iff 1) A e T whenever KA e S,
2) j = i or j = ί + 1,
3) if T ΦS then j = i + 1.

Note that ^ is reflexive. Also, we can use Lemma 8.3 to extend the
condition 1) over T(j) and S(i). That is, we have

Lemma 8.4 If T(j) ^ S(i), then A e T(j) whenever KA e S(i).

Note: We are assuming that j£ and -Co have no parameters in common.

Lemma 8.5 (The Counter-example Lemma) If KA jίS(i), then there exists
some alternative T(j) ̂ S(i) such that ~A e T(j).

Proof: If ~A € S(i) we may take T(j) = S(i). Otherwise, A e S(i).

Case 1 AeS. We set S° = {B: KBeS} and observe that S° + ~A is con-
sistent. If it were not, we would have S°\-A and this would give us S\-KA,
contrary to assumption. Since S° + ~A is also regular, we can apply the
extension lemma to get a model set T extending it. Then T(i + 1) serves
as the required T(j).

Case 2 Aefy. We claim that ~AeHi+ί. If not, P{+1 & J ~Pi+1 \-0A, so
Pi+u A i-oJ ~JP, +i. Now Pi+1eHj and (by assumption) AeHi, so Hj\-0J ~P{+1.
But Hi hKPi+1 (cf. Lemma 7.6), so we have a contradiction. We can now
take S(i + 1) as the required T(j).

Corollary 8.6 KnA e S(i) if and only if for all T(j) >nS(i), A e T(j).

Proof: By induction on n.

Suppose that T(j) ^ S(i). We define the rank, rank(T(j)/S(i)), of T(j)
over S(i) to be the least n such that T(j) ^n S(i).

Lemma 8.7 // ϋ(k) Φ S(i) and T(j) Φ ϋ(k) > S(i), then rank{T{j)/S{i)) =

rαnk(TθVϋW) + 1.

Proof: Let rank(Γ(j)/£/(£)) = m. Clearly, T(j) >m+1S(i). Suppose T(j) >nS(ί).
Then we want to show that n ^ m + 1. By the choice of m, one has to use m
indexed model sets to get from U(k) to T(j). From the definition of ^, we
see that we therefore have j = k+m. Since U(k)ΦS(i), we also have
k = i + 1. Hence j = i + m + 1. From Lemma 7.6 we have KmPi+meS(i).
Now, if n^ m we would also have KnPi+meS(i) and thus, by Corollary 8.6,
Pi+me T(j). Then KPj e T(j), by Axiom Xoΐ). This contradicts J ~ P ; e T(j).

It follows from Lemma 8.7 that all paths (without repetitions) from S(i)
to T(j), through the relation ^, are of equal length; namely of length



EPISTEMIC LOGIC WITH IDENTIFIERS 339

rαnk(T(j)/S(i)). In particular, > never "loops back" on itself—it is strictly
intransitive.

We now construct a K-structure 9W over the frame (/, ^). For any
term r and model set S of , we define the connotation of r at S to be

[r]s ={t:r = teS}.

We shall use Π(S) for the set of terms appearing in S. It is easy to see that
Ms = Φ if and only if r /Π(S) and that, when r, t e Π(S) we have [r]s = [t]s if
and only if r = t e S. We define the domain Ms at S by taking

M, ={[r]5:Q°reS}.

Note that Ms Φ0, since Q°xeS, for all variables ΛΓ. We shall u s e r 5 for
[r]s when Q°r e 5. For any constant symbol α of £ we define the denotation
of a at S to be αf*= α s , whenever α5 exists. Also, if P is an n-place
predicate parameter of «£, we define the extension of P at S to be the rc-ary
relation Pf\ defined on Ms by

(rf, . . ^rDePfiffPr,. . . r w eS.

To see that pf1 is well-defined, suppose that r£ = tp, for/> = 1, 2, . . ., n.
Since r^, ί?e Π(S), we have rp= tpeS, for p = 1, 2, . . ., n. By an equality
axiom we get Prλ . . . rneS if and only if Ptx . . . tneS.

Now for each S(£) e/, we set Ms^) = Λf5 , <xS(ί) ~ as (whenever it exists),
and P ^ ) = Pψ. This defines a If-structure 9W over (/, ̂ ).

In order to interpret £ in SPl we need to produce a satisfaction
predicate. Supposes is an assignment to variables in Wl. For each S, we
extend us(=us^) to a function w* defined on all terms of £, by simply
taking u^(a) = [α]5, for all α. Then, for each term r there will be some
term r* such that u*(r) = [r*]s. Note that us(r) exists just in case Q°r* e S.

We define satisfaction for equality formulas by taking

N&)r = Φ ] iff uf(r)=uffl.

We need to check that this definition meets the requirements of condition
1), section 4, on satisfaction predicates. We shall do so for lb). Suppose
l=s(f)r = *M Then[r*] s =[t*]s. If Q°r*eS, then [r*] 5 ^ 0 so r*, t*eU(S)
and we have r* = t*eS. By one of our Q-axioms, Q°t*eS. Thus, if %(r)
exists, so does %(ί). Parts la) and lc) are immediate.

We define satisfaction for atomic parameter formulas of J£ by taking

^ P r , . . . rn[u] iff Pr* ...r*eS.

It is easy enough to see that this is a proper definition. In so doing, one
also verifies condition 2a), section 4, for 1=*". Part 2b) is immediate from
the definition of Pfl Since our definition "extracts" from u just the values
assigned to the free variables of whatever (basic) formula is being
interpreted, condition 3) is also met.

We next define the identifiers -Fτ(/).s(ι)> w h e n ^0') ^ S(i). We take

Fτφ,sv)(rs) = r r ,
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whenever QnreS9 where n = rank(τ(j)/S(i)). There are certain things to
check in order to see that this definition is proper. For one thing, we want
to know that rτ exists when T(j) ̂ nS(i) and QnreS. By a Q-axiom we get
KnQ°reS from the latter; whence Q°reT, by the former. We must also
check that the value r τ is uniquely determined. Suppose rs = ts with
Qnr, Qnt e S. Then r = t eS and we can apply a Q-axiom to get Kn(r = t) eS.
If T(j) >nS(i), we then have r = t e T, as required.

Lemma 8.8 Mi = {rs: Qnr eS}.

Proof: Suppose QnreS. Then, if T(j) ^nS(i), rs e domain FτφtSy)9 by defini-
tion. Thus rseMs.

Suppose rs eMf. Then, for each T(j) ̂  S(i), we have QmreS, where
m = rαπk(T(j)/s(i)). We take

m0 = mαx{rαnk(Γ(j)/SθO): T(j) ^ S(*)}.

We want to show that m0 = n. From our choice of ra0 we have

T(j) ^° S(i), whenever T(j) >nS(i).

It follows by Corollary 8.6 that

(*) KnA e S(i), whenever Km°A e S(i),

for all formulas A (of -C or -Co). By Lemma 7.6, Km°Pi+moe S(i) and
~/fm°+1P/+OT()eS(£). From this we see that we cannot have n > m0, because
KnPi+mo 6 S(z), by (*). Thus mo = n and we have Qwr e S.

We are now in a position to show that the map F satisfies the condi-
tions l)-3) of section 3, to be an individuating map for 9W. Fsa),sti)(rS) = r 5 >
since Q°reS, for all rseMs. Also, M%φφ, because 3xQnxeS, by a
Q-axiom. Thus there is some α with Qwα€S—-since S is Q-saturated. By
Lemma 8.8, α 5 e M". For condition 2), suppose T(j) ̂  U(k) ̂  S(i). Let
ft = rαnk(Γ(j)/S(0) and suppose QnreS. If m = rαnk(Tθ')/^)) and /? =
rank(U(k)/S(i)), we need to show that Qmr e U and QpreS. Obviously, £ = 0
or /> = 1. If /> = 0, then m = n and we are done. If p = 1, then £/(&) *
S(i) and, by Lemma 8.7, n = m + 1. Then Qm+1r e S, so Q w r e C/" and Q1reS,
as required.

For a given model set S, we can readily obtain a constant symbol
α ^Π(S). Then α = α holds at S(i) in 9W[F], but α = α fίS. This shows that the
converse of what we call the Basic Lemma—Lemma 8.11, below—fails for
9W[F], Thus, we do not have an equivalence between membership in S and
satisfaction in 9W [F], Because of this we shall have to use an unusual kind
of induction—we call it semantical induction—in proving Lemma 8.II. 1 0

A set W of formulas of -C is semantically inductive iff

1) A and ~A belong to W, for all atomic A.
2) If ~A and B belong to W, then so does A -* B.
3) If A and ~B belong to W, then so does ~(A -* B).
4) If A belongs to W, then so do KA and JA.
5) If Ax(r) belongs to W, for all terms r of -C? then so do (x)A and 3xA.
6) If \rA <-> B, then A belongs to W if and only if B does.
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Let W* be the smallest inductive set, i.e., the intersection of all inductive
sets. Note that if, for instance, ~(A —* B) e W*, then we must have
A, ~Be W*9 since the only way ~(A —» B) can get into W* is via condition
2). Analogous considerations apply to each of the other conditions.

Lemma 8.9 A e W* if and only if ~A e W*.

Proof: By induction on the length of A, where length is taken as the number
of occurrences of logical symbols. For atomic A, we have the lemma by
condition 1), above. Suppose it holds for A and B. Since A is logically
equivalent to A, it will then hold for ~A by condition 6). Since A -> Be W*
is equivalent to ~A, Be W* and ~(A -• B) e W* is equivalent to A, ~JBe W*,
it also holds for A —» B. Also, KA e W* is equivalent to A e W* and ~KA e
W* is equivalent—by condition 6)—to J ~Ae W*. Since the latter is
equivalent to ~A e W*, we have the lemma for KA. Finally, suppose the
lemma holds for all "instances" Ax(r) of A. (x)Ae W* just in case all
these instances belong to PF*. Also, ~(#)Ae W* just in case 3x ~Ae W*,
and the latter holds just in case ~Ax(r) e W*, for all r. From this we see
that the lemma holds for (ΛΓ)A.

Corollary 8.10 W* contains all formulas of £.

Proof: By a routine induction on the length of formulas.

Let u° be the assignment to variables in 9W defined by taking u°s{x) = xs\
for all variables x. We call u° the canonical assignment in 9W. Note that
us(r) = rs, whenever rs exists. Moreover, if Qnre S then r is n-rigid under
u° at S(i). For we have rs e M%, by Lemma 8.8, and for T(j) >n S(i),

rSτ = Fni)tSU)(u°s(r)) = Fτ{j)>sU)(rs) = r τ = u°τ(r).

Lemma 8.11 (The Basic Lemma) IfAeS then \=m

s[^A[u0].

Proof: By semantical induction. We let W be the set of formulas A such
that the lemma holds for A and all S. Then we show that W is semantically
inductive. If A is atomic then A and ~A belong to W, by the definition of
N9". Suppose ~A, BeW. If A -» Be S then ~AeS or 5e S, by the maximal
consistency of S. Then |=S(t )~A [u°] or !=$(,•)-£?[w°]> by induction assumption,
so hs(f )(A -> JB)[M0]. Thus A-+ BeW and we have condition 2) for W. The
other sentential conditions are similar.

Suppose Ax(r) e W, for all r. If (x)A e S then Ax(r) e S whenever Qnre S,
where n- Prx(A). By induction hypothesis, \FS(i)Ax(r)[u0], for all r with
QnreS. Since every such r is n-rigid at S(z) under u°, we can apply
Lemma 5.2 to get

\=s(i)A[u°(x\rs)l for all rseM?

which gives us hs^)(x)A[u0]. In the case where BxAeS, we have Ax(r) e S
for some r with Qnre S. By an argument similar to the one just given, we
get £sU)3xA[u0].

Lemma 8.12 (The Satisfaction Lemma) If S is a consistent set of formulas
in any QK-language £\ then S is satisftable.
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Proof: If we form a language £ from -C' by adjoining infinitely many new
constant symbols, then it is routine to check that S will still be consistent
in £. Moreover, it is regular in £ so we can apply the extension lemma to
obtain a model set S* extending it. By the basic lemma, Sf is satisfiable at
any S'(i) under u°, so S is also.

Theorem 8.13 (The Completeness Theorem) If S 1= A then S \-A.

Proof: If S\-A fails, then S + ~A is consistent and, so, satisfiable.
Consequently, S\=A fails.

NOTES

1. In [2] Hintikka describes two general types of cross-identification—perceptual
and physical. He has not, however, paid much attention to the formal properties
that might be extracted from either of these.

2. In this connection, we emphasize that our conditions on identifiers are formal,
generic ones, and are not meant to be descriptive of any methods of individu-
ation.

3. We employ set-theoretical semantics, not the descriptive semantics of model
systems used by Hintikka. We do not see any important theoretical advantage in
using descriptive semantics, and we find it technically unwieldy.

4. We could, for instance, stipulate that no (basic) formula is to be satisfiable if it
contains a non-denoting term. This particular interpretation is used in [6].

5. The completeness of JC^can be obtained by the usual modeling techniques—as
in [4], for example—in modal logic. Since our modeling in section 8 will be an
elaboration of these techniques, one can readily extract a completeness proof
for KJl from our work there.

6. To be correct, we should frame the definition as follows:

^ [ 1, if m ^ n

(P.)t° =
\ 0, otherwise.

Note that there is only one satisfaction predicate for «C0 in 9W0, and that we have

\=Tm°Pn iff m^n.
7. In this section we shall take Ax(r) to be the result of making free substitutions

of r for x in A. That is, we use an alphabetic variant of A in place of A, where
necessary in order to ensure that r is free for x. By our results (6.4 and 6.5)
on alphabetic variants, we can do this modulo logical equivalence.

8. Our use of the term 'model set* differs from Hintikka's (in [7], for example) in
that Hintikka does not require his model sets to be maximal.

9. Our proof of the extension lemma is a straightforward adaptation of the one for
ordinary first-order logic in [8].

10. A similar kind of induction is used in [4], for the same reason.
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