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A MODAL SYSTEM PROPERLY INDEPENDENT OF BOTH THE
BROUWERIAN SYSTEM AND S4

G. N. GEORGACARAKOS

Although proper subsystems of S5, it is well-known that the Brouwerian
system (hereafter referred to as simply ‘B’) and S4 are independent of each
other. This independence, however, is of a peculiar nature: if the proper
axiom of either system is appended to the axiomatic basis of the other
system, a system deductively equivalent to S5 results. We might say, to
coin a new phrase, that these two systems are ‘‘properly independent of
each other with respect to S5.”” This rather unusual sense of independence
might perhaps lead us to speculate as to whether there exists another
system properly independent of both B and S4 with respect to S5; that is, a
system such that, if its proper axiom is appended to either the axiomatic
basis of B or S4, a system deductively equivalent to S5 results. That there
does indeed exist such a system will be shown in section 1. In section 2,
we shall examine the modal structure of this system. We shall show that
it, like S4, is characterized by possessing exactly fourteen distinct
modalities. Finally, in the last section, a Kripke-style semantic interpre-
tation for this system will be offered.

1 An elegant axiomatization of the Classical Propositional Calculus (PC) is
afforded by the following three axioms

Al CpCqp
A2 CCpCqrCCpqCpr
A3 CCNpNqCqp

together with the rules of uniform substitution and detachment. Of course
the formation rules and the usual definitions of the other PC connectives
are required, but they are familiar enough for them not to be explicitly
formulated here. Now if we go on further to append the following two
additional axioms

A4 CLCpqCLpLq
A5 CLpp
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along with the unrestricted rule of necessitation, viz.,
Rl +~a—+La,

and the usual modal definitions and formation rules, we obtain a Lemmon-
style axiomatization of modal system T. Three familiar derived rules of
inference of T are the following:

R2 +CaB—+CLaLB

R3 FCaB — +CMaMpB

R4 +CFaGa — +CG*aF*a, where F* and G* are duals respectively of F
and G (cf. [2], p. 164).

Some theorems of T which we shall employ in the subsequent discus-
sion are:

T1 ENMMNpLLp

T2 CAMpPMgMApq
T3 ENLMMNpMLLp
T4 ENLLNpMMp

T5 CKLpLqLKpq

T6 ENLpPpMND

T7 ENMLNpLMp

T8 ENMLNLMpLMLMp
T9 ENMpPLNp

T10 ENLMNpMLp
T11 ENMLNpLMp

Now if we append
Bl CMLpp

as an axiom to the axiomatic basis of T, we obtain modal system B. If, on
the other hand, we add

B2 CLpLLp
to the basis of T, modal system S4 results. Adding
B3 CMLpLp

to the basis of T, however, gives modal system S5. Clearly, in order to
show that modal systems B and S4 are properly independent of each other
with respect to S5, we need only demonstrate that Bl and B2 jointly entail
B3 in the field of T. Assume B1, B2 and the field of T, then

1 CMLpp B1
2 CLpLLp B2
3 CMLLpLp 1, p/Lp
4 CMLpPMLLp 2, R3
B3 CMLpLp 3, 4, Syllogism

The above result, however, is well-known. What we are primarily
concerned with is finding a modal system which is properly independent of
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both B and S4 with respect to S5. Such a system is axiomatized by simply
appending

C1

CMCMMpLMqCMMpLMgq

to the axiomatic basis of T. I call the resulting system, modal system X.
Now let us assume B1, C1 and the field of T:

-

—
O W00 I Ul i W

—

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
B3

CMLpp B1
CMCMMpLMqCMMpLMq c1
CMANMMpLMqANMMpLMq 2, Implication
CMANMMNpPLMqANMMNpPLMq 3, p/Np
ENMMNpLLp T1
CMALLpLMqALLpLMq 4, 5, Substitution of Equivalents
CAMpPMqMApq T2
CAMLLpMLMgMALLpLMq 7,p/LLp; q/LMq
CAMLLPMLMqALLpPLMgq 6, 8, Syllogism
CCApqrKCprCqr PC

CCAMLLpPMLMQALLPLMqKCMLLPpALLPpLMqCMLMqALLpLMgq
10, p/MLLp; q/MLMgq; v /ALLpLMq

KCMLLpALLPLMqCMLMgALLpLMq 9, 11, Detachment
CMLMgALLpLMq 12, Simplification
CMLMqCNLLpLMq 13, Implication
CMLMqCNLLNqLMgq 14, p/Nq
ENLLNgMMgq T4
CMLMqCMMgqLMq 15, 16, Substitution of Equivalents
CMMqCMLMqLMgq 17, Permutation
CLpp A5
CLMgMgq 19, p/Mq
CMLMgMMgq 20, R3
CMLMqCMLMqLMq 18, 21, Syllogism
CMLMpCMLMpLMp 22, q/p
CKMLMpMLMpLMp 23, Importation
CPKpp PC
CMLMpKMLMpMLMp 25, p/MLMp
CMLMpLMp 24, 26, Syllogism
CMLpLMLp 27, R4
CLMLpLp 1, R2
CMLpLp 28, 29, Syllogism

Clearly both B1 and C1 inferentially entail B3 in the field of T. Appending
C1 then to the axiomatic basis of B yields S5 and, conversely, adding B1 to
the basis of X also gives S5. Hence, modal systems B and X are properly
independent of each other with respect to S5.

1
2
3

Now let us assume B2, C1 and the field of T:

CLpLLp B2
CMCMMpLMqCMMpLMq c1
CMANMMPLMqANMMpLMq 2, Implication
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4 CMANMMNpLMgANMMNpLMq 3, p/Np
5 ENMMNDpLLp T1
6 CMALLpLMgALLpLMq 4, 5, Substitution of Equivalents
T CAMpPMqgMApq T2
8 CAMLLPMLMqMALLpLMq 7, p/LLp; q/LMq
9 CAMLLPMLM@ALLpLMq 6, 8, Syllogism
10 CCApqrKCprCqr PC
11 CCAMLLPMLMGALLPLMgKCMLLPALLPLMgqCMLMgALLpLMq
10, p/MLLp; q/MLMq; v/ALLpLMq
12 KCMLLpALLPLMqCMLMgALLpPpLMq 9, 11, Detachment
13 CMLLPALLpLMq 12, Simplification
14 CMLLPpALMqLLp 13, Commutation
15 CMLLpCNLMqLLp 14, Implication
16 CKMLLPNLMqLLp 15, Importation
17 CKMLLPNLMMNpLLp 16, q/MNp
18 ENLMMNpMLLp T3
19 CKMLLpPMLLpLLp 17, 18, Substitution of Equivalents
20 CpKpp PC
21  CMLLpKMLLpMLLpP 20, p/MLLp
22 CMLLpLLp 19, 21, Syllogism
23 CMMpLMMp 22, R4
24  CMMpMp 1, R4
25 CLMMpLMp 24, R2
26 CMMpLMp 23, 25, Syllogism
27 CLpp A5
28 CLLpLp 27, p/Lp
29  CMpMMp 28, R4
30 CMpLMp 26, 29, Syllogism
B3 CMLpLp 30, R4

Clearly, modal system X is also properly independent of S4 with respect
to S5.

It is easily demonstrated that modal system X is a subsystem of S5.
This is accomplished by showing that B3 inferentially entails C1 in the field
of T:

1 CMLpLp B3
2 CCpqCCrsCKprKqs PC
3 CCMLPLPCCMqLMqCKMLpMqKLpLMq

2, p/MLp; q/Lp; v/Mgq; s/LMq

4 CCMqLMqCKMLpMqKLpLMq 1, 3, Detachment
5 CMpLMp 1, R4
6 CMqLMq 5, p/q
7 CKMLpMgKLpLMq 4, 6, Detachment
8 CKLpLqLKpq T5
9 CKLpLMqLKpMq 8, q/Mq

10 CKMLpMqLKpMq 7, 9, Syllogism
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11 CNLKpMgNKMLpMq 10, Transposition
12 ENLpMNp T6
13 ENLKpMgMNKpMq 12, p/KpMq
14 CMNKpMgNKMLpMq 11, 13, Substitution of Equivalents
15 CMANPNMgANMLPNMq 14, DeMorgan
16 CMANMgNpANMgNMLp 15, Commutation
17 CMCMgNpCMgNM Lp 16, Implication
18 CMCMMpPNNLMqCMMpNMLNLMq 17, q/Mp; p/NLMq
19 CMCMMpLMqCMMpNMLNLMq 18, Double Negation
20 ENMLNLMqLMLMgq T8
21 CMCMMpPpLMqCMMpLMLMq 19, 20, Substitution of Equivalents
22 CMMqMLMgq 6, R3
23 CLpp A5
24  CpMp 23, R4
25 CMqMMgq 24, p/Mgq
26 CMgMLMgq 22, 25, Syllogism
27 CLMqLMLMq 26, R2
28 CLMLMqMLMq 23, p/MLMgq
29 CMLqLMLq 5, p/Lq
30 CMLMqgLMq 29, R4
31 CLMLMqLMgq 28, 30, Syllogism
32 ELMLMgqLMq 27, 31, Definition E
Cl CMCMMpLMqCMMpLMq 21, 32, Substitution of Equivalents

In order to prove that modal system X is not only a subsystem of S5
but also a proper subsystem of S5, we employ the following matrix:

P1  L(*12345678) = 18887888

This matrix verifies the entire axiomatic basis of modal system X, but
rejects B3 for p/5: CML5L5 = CM'1T = C17 =17. (We, of course, assume that
the reader is familiar with the usual eight-valued Boolean matrices for C
and N.) Note, incidentally, as we would expect, this matrix also falsifies B2
for p/5: CL5SLL5 = CTLT = C78 = 2; and B1 for p/5: CML55= CM75 =
C15 = 5, Clearly then, modal system X is a proper extension of T, properly
independent of both B and S4 with respect to S5, and a proper subsystem
of S5.

Let us now derive some interesting theorems of X:

D1 CMCMMpLMqCMMpLMq C1
D2 CMANMMpLMqANMMpPLMq D1, Implication
D3 CMANMMNpPLMqANMMNpPLMq D2, p/Np
D4 ENMMNDLLp T1
D5 CMALLPLMgALLpLMq D3, D4, Substitution of Equivalents
D6 CNALLpLMgNMALLpLMq D5, Transposition
D7 ENMpLNp T9
D8 ENMALLpPLMqLNALLpLMq D7, p/ALLpLMq

D9 CNALLpPpLMqLNALLpLMgq D6, D8, Substitution of Equivalents
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D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20

D21
D22
D23
D24

D25

D26
D27
D28
D29
D30
D31
D32
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CKNLLPNLMqLKNLLpNLMq D9, De Morgan
CKNLLNpNLMNqLKNLLNpNLMNq D10, p/Np; q/Nq
ENLLNpMMp T4
CKMMpPNLMNqLKMMpPNLMNqg D11, D12, Substitution of Equivalents
ENLMNgMLq T10
CKMMpMLgqLKMMpMLq D13, D14, Substitution of Equivalents
CAMpPMgMApq T2
CAMLLpMLMgMALLpLMq D16, p/LLp; g/LMgq
CAMLLpMLMgALLpPLMq D5, D17, Syllogism
CCApqvKCprCqr PC

CCAMLLPMLMgALLPLMgKCMLLPALLPLMqCMLMgALLpLMq
D19, p/MLLp; q/MLMgq; v/ALLpLMq
KCMLLpPALLPLMqCMLMqALLpPpLMq D18, D20, Detachment

CMLLpALLpLMq D21, Simplification
CMLLpALMqgLLp D22, Commutation
CMLLpCNLMqgLLp D23, Implication
CKMLLpPNLMqLLp D24, Importation
CKMLLPNLMMNpLLp D25, g/ MNp
ENLMMNpMLLp T3
CKMLLpPMLLpPLLD D26, D27, Substitution of Equivalents
CPKpp PC
CMLLpKMLLpPMLLp D29, p/MLLp
CMLLpLLp D28, D30, Syllogism
CMMpLMMp D31, R4

Being independent of both B and S4, we would naturally expect that there
are formulae provable in X which are neither theses of B nor S4. Two such

interesting formulae are D31 and D32.

D33
D34
D35
D36
D37
D38
D39
D40
D41
D42
D43
D44
D45

D46
D47
D48

CMLMgqALLpLMgq D21, Simplification
CMLMqCNLLpLMq D33, Implication
CMLMpCNLLNpLMp D34, q/p; p/Np
CMLMpCMMpLMp D12, D35, Substitution of Equivalents
CMMpCMLMpPLMp D36, Permutation
CLpp A5
CLMpMp D38, p/Mp
CMLMpMMp D39, R3
CMLMpCMLMpLMp D37, D40, Syllogism
CMLMpKMLMpMLMp D29, p/MLMp
CKMLMpMLMpLMp D41, Importation
CMLMpLMp D42, D43, Syllogism
CMLpLMLp D44, R4
D44 and D45 are also theses of X provable in neither B nor S4.
CLLLpLLp D38, p/LLp
CpMp D38, R4
CMpMMp D47, p/Mp
CLpMLp D41, p/Lp

D49
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D50 CMMpMMMp D417, p/MMp
D51 CLLMpLMp D38, p/LMp
D52 CLMpMLMp D47, p/LMp
D53 CLLpMLLp D47, p/LLp
D54 CLMMpMMp D38, p/MMp
D55 CLMLpMLp D38, p/MLp
D56 CLMLLpPLLLp D31, R2
D57 CMLLpLMLLp D45, p/Lp
D58 CMLLpLLLp D56, D57, Syllogism
D59 CLLpLLLp D53, D58, Syllogism
D60 CMMMpMMp D59, R4
D59 and D60 are both provable in S4, but not in B.
D61 CMLpMML)p D51, R4
D62 CLMLMpLLMp D44, R2
D63 CMLMpLMLMp D45, p/Mp
D64 CMLMpLLMp D62, D63, Syllogism

D65 CLMpLLMp D52, D64, Syllogism

D66 CMMLpMLp D65, R4
D65 and D66 are also theses of S4 not provable in B.

D67 CLLpLp D38, p/Lp
D68 CMLpMp D38, R3
D69 CLMLpLMp D68, R2

D70 CMLpLMp
D71 CMLLpLp

D45, D69, Syllogism
D31, D67, Syllogism

Finally, notice that D70 and D71 are provable in B, but not in S4.

There are several alternative ways for axiomatizing modal system X.
We have already proved that

D5 CMALLpPLMgALLpLMgq
and
D15 CKMMpMLgqLKMMpMLq

are theses of X. Actually either one of these two formulae may replace C1
in axiomatizing system X. In order to prove this, we need only show that
D5 and D15 each entail C1 in the field of T. First, let us assume D5 and
the field of T:

1 CMALLpLMqALLpLMq D5
2 CMCNLLpLMqCNLLpLMgq 1, Implication
3 CMCNLLNpLMqCNLLNpLMq 2, p/Np
4 ENLLNpMMp T4
Cl CMCMMpLMqCMMpLMq 3, 4, Substitution of Equivalents

Now in order to show that D15 may also replace C1 in axiomatizing X, it
will suffice to prove that D15 inferentially entails D5 (and hence C1) in the
field of T:
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CKMMpMLqLKMMpMLq D15
CNLKMMpMLgGNKMMpMLq 1, Transposition
ENLpMNp T6
ENLKMMpMLgMNKMMpMLq 3, p/KMMpPMLq
CMNKMMpMLgNKMMpMLq 2, 4, Substitution of Equivalents
CMANMMpPNMLGANMMpPNMLq 5, De Morgan
CMANMMNpPNMLNgANMMNpPNMLNq 6, p/Nb; q/Nq
ENMMNpLLp T1
CMALLpPNMLNGQALLPNMLNgq 7, 8, Substitution of Equivalents
ENMLNqLMq T11
CMALLpPLMqALLpLMq 9, 10, Substitution of Equivalents

Still another way of axiomatizing system X is by simply appending both

D32 CMMpLMMp

and

D45 CMLpLMLp

to the axiomatic basis of T. This is easily demonstrated by merely proving
that both D32 and D45 inferentially entail D15 in the field of T:

1 CMMqLMMgq D32
2 CMLpLMLp D45
3 CCpqCCrsCKprKqs PC
4 CCMLPLMLPCCMMqLMMqCKMLPMMqKLMLpLMMq
3, o/MLp; q/LMLp; v/MMgq; s/LMMq
5 CCMMqLMMqCKMLpMMgKLMLpLMMgq 2, 4, Detachment
6 CKMLpPMMgqKLMLpLMMq 1, 5, Detachment
7 CKLpLqLKpq T5
8 CKLMLpLMMqLKMLpMMq 7, p/MLp; q/ MMq
9  CKMLpMMqLKMLpMMq 6, 8, Syllogism
10  CKMLGMMpLKMLqMMp 9, v/q; a/p
D15 CKMMpMLqLEKMMpMLq 10, Commutation

2 Modal system X has fourteen distinct irreducible modalities; they are
the following and their negations:

(a) a
(b) La
(c) Ma
(d) LLa
(e) MMa
(f) MLa
() LMa

The entailment relations which hold among these modalities are exhibited
by the following diagram:
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LLa La

MLa

LMa

MMa Ma

That these entailment relations among the modalities are as summarized in
the above diagram are justified by the considerations that D38, D39, D47,
D48, D49, D67, and D70 are all theses of X. An analogous diagram for the
negative cases can be obtained by simply negating all of the formulae and
reversing the direction of the arrows.

Before showing that there are no more than fourteen distinct mod-
alities in X, we first take notice of some of the reduction laws provable
in X:

D72 ELMMpMMp D32, D54, Definition E
D73 EMLLpPLLp D31, D53, Definition E
D74 ELLLpLLp D46, D59, Definition E
D75 EMMMpMMp D50, D60, Definition E
D76 ELMLpPpMLp D45, D55, Definition E
D77 EMLMpLMp D44, D52, Definition E
D78 ELLMpLMp D51, D65, Definition E
D79 EMMLpMLp D61, D66, Definition E

We are now prepared to proceed with the proof.

If we add an L to (a) we obtain a modality equivalent to (b); adding an M
to (a) gives a modality equivalent to (c). If we add an L to (b), a modality
equivalent to (d) results; adding an M to (b) gives a modality equivalent to
(f). If we add an L to (c), we obtain a modality equivalent to (g); adding an
M to (c) results in a modality equivalent to (e). If we add an L to (d), then,
in view of D74, we obtain a modality equivalent to (d) itself; adding an M to
(d) again results in a modality equivalent to (d) itself because of D73. D72
assures us that adding an L to (e) results in a modality equivalent to (e)
itself; if instead we add an M to (e), we again obtain a modality equivalent
to (e) itself because of D75. Adding an L to (f), because of D76, results in a
modality equivalent to (f) itself; adding an M to (f) still gives rise to a
modality equivalent to (f) itself because of D79. Adding an L to (g) results
in a modality equivalent to (g) itself because of D78; adding an M, on the
other hand, still results in a modality equivalent to (g) itself because
of D71.

Clearly the negative cases can be dealt with analogously; consequently,
there are at most fourteen distinct modalities in X. Note, incidentally, that
the above proof also entials that every iterated modality in X is reducible
to an iterated modality containing no more than two modal operators; more
specifically, to the two innermost modal operators.
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In order to demonstrate that there are no fewer than fourteen distinct
modalities in X, we will make use of matrix Pl of section 1.

(1) a fails to entail La and LLa for a/2, 3, 4, 5, 6, and 7; MLa for a/2, 3, 4,
6, and 7; LMa for a/4.

(2) La fails to entail LLa for a/5.

(3) MLa fails to entail @, La, and LLa for a/5.

(4) LMa fails to entail a, MLa, La, and LLa for /2, 3, 5, 6, and 7.

(5) Ma fails to entail a, La, and LLa for a/2, 3, 4, 5, 6, and 7; LMa for
a/4; MLa for a/2, 3, 4, 6, and 7.

(6) MMa fails to entail Ma and LMa for a/4; MLa for a/2, 3, 4, 6, and 7; a,
La, and LLa for a/2, 3,4, 5, 6, and 7.

Again it is obvious that the negative cases can be dealt with in the same
fashion; hence, we also conclude that there are no fewer than fourteen
distinct modalities in X.

Modal system X then is similar to S4 in possessing exactly fourteen
distinct modalities; however, four of the modalities are different. In S4,
LLa, MMa, and their negations are not irreducible whereas LMLa, MLMa,
and their negations are. In X, on the other hand, the latter are reducible
whereas the former are not.

3 In offering a semantic interpretation for modal system X, we shall
employ the terminology, techniques, and lemmata of Hughes and Cresswell
in [1]. Hughes and Cresswell define a semantic model for T as an ordered
triple (W, R, V) where W is a set of objects (worlds), R is a reflexive
relation defined over the members of W, and V is a value-assignment
satisfying the conditions specified in [1], p. 73.

In constructing models for modal systems properly containing T, it
quite often proves fruitful to impose additional requirements on the
accessibility relation in a T-model. Hence, for example, a model for S4
results by imposing the additional requirement of transitivity, for B the
additional requirement of symmetry, and for S5 both transitivity and
symmetry. In constructing a model for X, however, we shall not proceed in
this fashion. Rather than impose an additional requirement on the
accessibility relation, we shall impose a stipulation upon the set W in a
T-model. This stipulation will take the form of what I shall call, for the
lack of a more imaginative phrase, the ‘‘iterated modality requirement.”
This requirement stipulates that if an iterated modality is true (or false) in
any world in the model, then it is true (or false) in every world in the
model.

More formally then we define an X-model as an ordered triple
(W, R, V) where W is a set of objects (worlds) possessing the iterated
modality requirement, R is a reflexive relation holding over the members
of W, and V is a value-assignment satisfying the conditions specified in [1],
p- 73. We now say that a wff, a, is X-logically true iff in every X-model
(W, R, V) and for every w; ¢ W, V(a, w;) = 1.
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In section 1, we proved that modal system X may alternatively be
axiomatized by appending both

D32 CMMpLMMp
and
D45 CMLpPLMLp

to the axiomatic basis of T. Thus, in order to prove the soundness theorem
for X, we need only show that both D32 and D45 are X-logically true. Let
us begin with D32. Assume for the sake of reductio that D32 is not
X-logically true; i.e., that V(CMMpLMMp, w;) = 0. Clearly it follows that
both

1 V(MMp, w;) = 1
and
2 V(LMMP, w,') =0,

From 2 it follows that

3 V(MMp, wj) = 0.

Hence, in view of the iterated modality requirement, it follows from 1 that
4 V(MMp, w;) =1

which contradicts 3. Consequently, V(CMMpLMMp, w;) = 1.

Now let us consider D45. Assume for the sake of reductio that
V(CMLpLMLp, w;) = 0. Obviously we have

1 V(MLp, w;) = 1
and
2 V(LMLp, w;) = 0.

Thus it follows from 2 that

3 V(MLp, w;) = 0.

But because of the iterated modality requirement it follows from 1 that

4 V(MLp, w;) = 1

which is, of course, inconsistent with 3. Therefore, V(CMLpLMLD, w;) = 1.

In order to prove the completeness theorem for X, we must show that
the iterated modality requirement holds among maximal consistent sets.
Let T be a whole system of such sets and let every I ¢ I' be maximal
consistent with respect to modal system X. Let 8 also be any wff which is
an iterated modality. Clearly what we must show is that if there exists a
T; e T' such that Be I';, then B is in every I'; e I'. ‘But I'; may possess either
one of two characteristics; it may be such that (a) it has subordinates or
subordinatesy to it (cf. [1], pp. 157 and 158 for definitions of ‘subordinate’
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and ‘subordinate,’) or (b) it is itself a subordinate or subordinate, of any
I';. Let us begin with (a) first.

(a) Clearly what we must show here is that if 8 is in I'j, then $ is not only
in every subordinate of I';, but also in every subordinate, of I';. Let I'; be
a subordinate of I'; and I'; a subordinate of I',. More specifically then, we
must show that if BeT';, then Be I, and Be I';. Now in section 2 we proved
that every iterated modality in X is reducible to an iterated modality
containing no more than two modal operators. But this means that every
iterated modality is equivalent to any one of LL, MM, ML, or LM since
these are the only irreducible iterated modalities in X. Consequently, if 8
is an iterated modality, it must be equivalent to any one of the following:
LLy, MMy, MLy, or LMy. Now in order to prove (a) it will be required
that we demonstrate that

(i) if LLyeTj, then LLyeTyand LLyeT;
(ii) if MMyeT;, then MMye Trand MMye T'j;
(iii) if MLy€eT;, then MLye Tyand MLy€eTj;
(iv) if LMyeT;, then LMyeT,and LMye T,

At this point we remind the reader that the lemmata employed are taken
from Hughes and Cresswell in [1], pp. 152-154.

(i) If LLyeT;, then since CLLyLLLy is a thesis of X (D59), we have
CLLyLLLyeT; and so (by Lemma 3) LLLye T;. Thus (by construction of
I,) LLyeTy. But CLLyLLLvye T} also, hence (again by Lemma 3) LLLy€
T, and so LLy € I'; (by construction of I';). Now by induction on subordina-
tion, the result holds for any subordinatey of I';.

(ii) If MMyeT;, then since CMMyLMMy is a thesis of X (D32), we have
CMMyLMMyeT; and so (by Lemma 3) LMMye T;. Thus (by construction
of I;) MMyeT,. But CMMyLMMyeT, also, hence (again by Lemma 3)
LMMvyeT, and so MMye T, (by construction of I';). Now by induction on
subordination, the result holds for any subordinate, of I’;.

Quite obviously steps (iii) and (iv) will proceed similarly using
D45 CML+yLMLYy
and
D65 CLMyLLMy
respectively. Consequently, we leave proof of these steps to the reader.

(b) Taking I itself to be either a subordinate or a subordinatey, we
proceed as follows: let I'; be either I, or T; also let I', be subordinate to
T; and T', subordinate to I',. Where B is again any iterated modality of X,
what we have to show is that if either 8¢ I', or Be I',, then B¢ I';. We prove
this by showing that if 8¢ I';, then both 8¢ T, and B¢ I',. Now for the same
reason given above, 8 is of any of the four forms: LLy, MMy, MLy, or
LMy. Hence what we now must show is
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(i) if LLy£T;, thenboth LLy ¢ T, and LLy ¢ I'y;
(ii) if MMy £ T';, then both MMy £ T, and MMy ¢ Ty;
(iii) if MLy ¢ T';, then both ML y ¢ T'y, and ML y ¢ Ty;
(iv) if LMy ¢ T;, then both LMy ¢ T, and LMy £ Th.

(i) Suppose that LLy ¢ T';. Then (by Lemma 2) NLLye T';, and hence, since
CNLLyLNLLy is a thesis of X (from D31 and transposition), we have (by
Lemma 3) LNLLyeT;. Thus (by construction of I,) it follows that
NLLyeT, and so (by Lemmal) LLy ¢ I'y,. But again because CNLL yLNLL y
is a thesis of X, we have CNLLyLNLLyeT, and so (by Lemma 3)
LNLLyeT,. Hence (by construction of I',) we have NLLyeT, and so
LLy¢T,(by Lemma 1).

(ii) Assume that MM yeT';. Then (by Lemma 2) NMMyeT;, and hence,
since CNMM yLNMMy is a thesis of X (from D60 and transposition), we
have (by Lemma 3) LNMMyeT;. Now (by construction of I',) we have
NMMyeT, and so (by Lemma 1) MMy¢T,. But again because
CNMM yLNMM y is a thesis of X, we have CNMM yLNMM y € T}, and, con-
sequently, LNMMyeT, (by Lemma 3). Thus (by construction of I,) we
have NMMy € T, and so (by Lemma 1) MMy ¢ Tp.

Quite obviously steps (iii) and (iv) will proceed similarly using

D80 CNMLyLNML y (from D66 and transposition)
and
D81 CNLMyLNLM vy (from D44 and transposition)

respectively. Consequently, we consider the completeness theorem proved.

4 Before concluding this paper, we raise two open questions. First, do
there exist other modal systems which are properly independent of both B
and S4 with respect to S5? One way of answering this question affirmatively
would be to determine that there are systems properly between X and S5;
that is, that there exist extensions of X properly contained in S5. I must
confess that I have been unable to determine this. In any event, it is clear
that there do not exist non-Lewis extensions of X in the sense that there
are non-Lewis extensions of S4; at least none which are axiomatized by
appending

K1  CLMpMLp

to the axiomatic basis of X or any of its Lewis extensions (if there are
any). To show this, assume K1 and the field of X:

1 CLMpMLp K1
2 CMLLpLLp D31
3 CMLpLMLp D45
4 CLpp A5
5 CLLpLp 4, p/Lp
6 CLMLpMLLp 1, p/Lp



114 G. N. GEORGACARAKOS

7  CLMLpLLp 2, 6, Syllogism
8 CLMLpLp 5, 7, Syllogism
9 CMLpLD 3, 8, Syllogism
10 CMpLMp 9, R4
11 CLMpLp 1, 9, Syllogism
12 CMpLp 10, 11, Syllogism
13 CpMp 4, R4
14 CpLp 12, 13, Syllogism

Clearly, appending K1 as an axiom to the basis of X collapses it into the
Classical Propositional Calculus.

Finally, the next question I would like to raise is this: does there
exist a system which is properly independent of B, S4, and X with respect
to S5?
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