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INVESTIGATIONS INTO THE SENTENTIAL CALCULUS
WITH IDENTITY

STEPHEN L. BLOOM and ROMAN SUSZKO

The sentential calculus with identity (SCI) is obtained from the classi-
cal sentential calculus by adding a new "identity connective" = and axioms
which say "p = q" means "p is identical to q". The second author was led
to a study of this calculus by a desire to formalize part of the Ontology of
Wittgenstein's Tracίatus (see [7], [8]).1 Aside from this somewhat uncom-
mon beginning, we think that there are independent reasons for studying the
SCI. Firstly, it seems to be as general as a sentential logic can get: both
classical and modal theories may bε developed in it and (by weakening an
axiom) intuitionist theories as well. Furthermore, the study of its inter-
pretations leads to interesting mathematical problems, (e.g. concerning
topological Boolean algebras) and sheds light on why the classical sentential
calculus is so well-behaved.

Some people, upon discovering that the identity connective was not
truth-functional, have thought that SCI is an intens tonal logic. We emphati-
cally deny this. The essence of intensionality is that the rule "equals may
be replaced by equals" fails. However, this rule does hold in the SCI (see
the remarks following 1.3).

The paper is divided into four sections. The first is a collection of
most of the basic definitions and theorems. The second and third sections
discuss the questions of decidability and adequacy. The last section pre-
sents a particular theory built in the logic of the SCI. We have omitted
most proofs in 1 to keep the size of the paper within reasonable bounds.

1. Definitions and Elementary Results. The formulas Fm of a language £
of the sentential calculus with identity are generated in the usual way from
an infinite set VAR of sentential variables by the standard connectives Ί
(negation) and -» (material implication) as well as the binary identity con-
nective =. Considered as an abstract algebra, 8 = (Fm, Ί , -% = ) is free in

1. The relationship between the SCI and papers on the identity connective by other
authors (M. J. Cresswell, H. Greniewski, A. N. Prior) is discussed in [8],
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the class of all algebras similar to 8; i.e. those algebras 51 = (A, Ί , '-*, =),
where A is a set, ή a unary function from A into A, and both -̂  and ^ are
binary functions from Ax A into A. Any algebra similar to 8 is called an
SC\-algebra, and 8 is called an SCI -language. An SCI-language (considered
as an algebra) is determined up to isomorphism by the cardinality of its set
of sentential variables. The other truth-functional connectives v (disjunc-
tion), Λ(conjunction), <->(material equivalence) are to be construed as the
usual abbreviations.2

Throughout this paper the letters φ, ψ> and θ (sometimes with sub-
scripts) will be used only to denote formulas of an SCI-language 8; the
letters Φ and Γ will always denote sets of formulas; "p" (sometimes with
subscripts) will denote a variable. (Of course, any variable is at the same
time a formula).

Any function F from the power set of Fm into itself having the proper-
ties Cl, C2 and C3 will be called a consequence operation on 8.
(See [9] and [3]).

Cl. Φ £^(Φ), allΦ QFm.
C2. If Φ c r, F(Φ) c F(T); all Φ, T^Fm.
C3. F(F(Φ)) = F(Φ), all Φ c Fm.

We shall be concerned with two kinds of consequence operations on 8: a
"syntactical" one (Cn) defined from axioms and a rule of inference, and a
semantical one, CM.

The logical axioms for 8 are defined from the two sets of schema TFA
(truth-functional axioms) and IDA (identity axioms) below. The axioms in
TFA are sufficient to derive (using just modus ponens) all truth-functional
tautologies. The axioms IDA say that = is a congruence on 8 at least as
strong as material equivalence.

1.1 Definition. TFA is the set of all formulas of 8 having the form (a), (b),
(c2) or (c2) below; IDA consists of those formulas of the form (d) - (h) be-
low.

(a) φ~> (Ψ -*φ)
(b) (φ-*(ψ -+θ))->((φ-ψ)-(φ- θ))
(cx) lφ->(φ->ψ)

(Ca) (φ-ψ)-*((-lφ->ψ)->ψ)
(ά) φ = φ
(e) φ = ψ -• lφ Ξ ~)ψ

(f) <Pi Ξ Ψi ~> (<p2

 Ξ Ψ 2 - * (<Pi -><P2) = (Ψi - * Ψ 2 ) )

(g) Ψl = Ψl - (<P2 Ξ Ψ2 -* (Ψl = Ψz) Ξ (Ψl Ξ Ψ2))
(h) φ=ψ -» (φ-*ψ).

2. It makes a difference which truth functional connectives are taken as primitive;
see footnote 6. We have chosen the two Ί and —- for ease of exposition only. The
reader will be able to see how to modify all of our subsequent definitions and
theorems to conform with any other choice of the primitive truth-functional
connectives.



INVESTIGATIONS 291

The only rule of inference is modus ponens (from φ and φ-*ψ infer ψ).
The consequence operation Cn is defined via the above axioms and rule as
follows.

1.2 Definition. Cn(Φ) is the smallest set of formulas closed under the rule
modus ponens, which contains TFA, IDA, and the set Φ.

1.3 Proposition. Cn has the properties C1-C3. Furthermore,

(a) φe Cn(ΦU{ψ})<=>ι// -> φe Cn(Φ).
(b) φe Cn(Φ)<=s>φe Cn(Γ), where Γ is some finite subset o/Φ.3

The members of Cn(0) (0 is the empty set) are called the logical
theorems. It may be easily checked that all formulas of the form

(RL) (φ = Ψ)-+(G(φ) = Gty))

are logical theorems, where G(φ) is any formula containing φ as a part, and
G(ψ) is the result of replacing some occurrences of φ by ψ in G(φ).

Since 8, considered as an algebra, is free, any function from VAR into
an SCI-algebra % may be extended uniquely to a homomorphism of Fm into
II. When % is the language 8 itself, such a homomorphism is called a
substitution on 8.

1.4 Definition. The set Φ of formulas is
(a) a theory if Cn(Φ) = Φ;
(b) consistent if Cn(Φ) /Fm .
(c) maximal consistent, (or complete) if Φ is consistent, but is not a

proper subset of any consistent set.
(d) invariant if h(φ) £ Φ, for every substitution /z on8.

1.5 Proposition.
(a) Ara y consistent set is contained in a maximal consistent set.
(b) Any maximal consistent set is a theory.
(c) If φftCn(Φ), there is a maximal consistent superset Γ ofΦ which does

not contain φ.
(d) If φe Cn(Φ) then h(φ) e Cn(h(Φ))for any substitution h on fi.4

We will interpret 8 using the "matrix method" of Tarski [4]. The idea
is to specify a set A{^φ) over which the variables range, and to interpret
each connective as an operation on A. This involves an SCI-algebra %. We
then pick a subset of A to be thought of as the " t rue" or "designated" ele-
ments. This idea will be clarified by the definitions below.

1.6 Definition. Let 91 = (A, Ί, -^ Ξ) be an SCI-algebra, and let Bbe a sub-
set of A.

3. Both "iff" and "<=>" are abbreviations of 'if, and only i f . We also use "=>" as
an abbreviation of "implies". The symbol "=>" should not be confused with the
symbol "•—" which denotes a connective of 8.

4. A consequence operation having this property was called structural in [3],
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(a) a valuation of U is a homomorphism h from 8 into $1 (i.e., h(lφ) =Ίh (φ)9

h(φ^ψ) = (k(φ) ±h{ψ)), etc.)
(b) B is closed if, for each a, be A, whenever a and a ^b are in 5, so is b.
(c) £ is proper iί B ^ A.
(d) 5 is admissible if, for every valuation h of 31, and every φ in 7ΈA or

(e) B is prime if <2e£ or iaeB, for all αeA.
(f) 5 is normal ifa^beB<=>a=b9 for all α, δeA.
(g) B is & filter if 5 is proper, closed and admissible.

An SC\-matrix M is a pair (II, B) consisting of an SCI-algebra li and a
filter B in II. An important example of an SCI-matrix (a canonical SCI-
matrix) is (g, Cn(Φ)>, where Φ is any consistent set of formulas. If B is a
prime, normal filter, then (II, B) is called a model. The interpretations of
8 are the SCI-matrices (see definition 1.7), and the intended interpretations
are the models, since in any model the interpretation of the logical connec-
tives is the desired one: if <lί, B) is a model and/z is a valuation of K, then

h(lφ)eB<=^k(φ)/B;
h(φ ->ψ)eB<=^>h(φ)fίB or h(ψ) eB
h{φ= ψ) eB<=>h{φ) =h(ψ).

1.7 Definition. Let (II, B) be an SCI-matrix and let/? be a valuation of 51.

(a) k satisfies φ in (51, B) (in symbols, φe Sat A (lί, B))<=>h(φ) e B;
(b) <ρfs £m? W2 (lί, 5) (in symbols, ^€ TR(lί, B))Φ=> φeSaϊh(%9

 B \ for every
valuation k of H.

(c) <ρ zs z α/M m II <=> </?e TR (ll, 5), for every filter 5 in II.
(d) φis valid <==>φ is valid in II, for every SCI-algebra II.

For example, every formula in TFAΌIDA is valid, as maybe easily
verified. This fact is a special case of theorem 1.9 below. Any SCI-matrix
M = (II, B) determines a consequence operation CM on 2 as follows:5

1.8 Definition, φ e C M (Φ) <==> for all valuations k of lί, if /z(Φ) £ 5, then

It may be easily verified that CM satisfies Cl - C3 above. Note that
TR(K, B) is CM(0). Hence a formula φ is valid iff (^eCM(0) for every M. The
relation between the syntactic consequence Cn and the semantic conse-
quence operations CM is given by the following completeness theorem. It
may be proved using proposition 1.5(c) and 1.12, 1.13 below.

5. This semantic consequence operation was first studied in [3]. In most applica-
tions of the "matrix method", especially in [6], it proved sufficient to restrict
the set of designated elements (here, the filters) to be a unit set. In interpreta-
tions of the SCI this is impossible, since, for example/) -*• p and p = p must both
be true and Ί ((P ~* P) = {p Ξ P)) is consistent.



INVESTIGATIONS 293

1.9 Theorem (Completeness Theorem).

(a) Φ is consistent<=>there is a model M = (%,B) and a valuation h of %
such that Φ ^ / z " 1 ^ ) .

(b) φeCn(Φ)<£=>for every SC\-matrix M^φeC^iΦ)
(c) φeCn(Φ)<^>for every model M, φeCM(Φ)
(d) φ is valid<=s>φ is a logical theorem.

1.10 Remark. Two important observations follow from 1.9. Firstly, by
constructing an appropriate model, (see 4.6) one can show that the formula

(Fr) (/>! - p2) - [(p2 - P i ) -> (Pi = p2)]

is not valid, and thus not a logical theorem. If the formula (Fr) were prov-
able, then the identity connective = would be only another notation for <->
(material equivalence). Hence we may justly say that the sentential calcu-
lus with identity is a refinement of the classical sentential calculus (SC).
SC is obtainable from SCI by adding all substitution instances of (Fr) above
as axioms. In [8] (Fr) was called the "Fregean axiom".

Secondly, it can now be seen that if Cn°is the consequence operation
defined from the rule modus ponens and the axioms TFA only, and ϊiφ, Φ do
not contain an occurrence of the identity connective, then ^eCn(Φ)<=^
φe Cn°(Φ). So in this sense, the SCI is a conservative extension of SC.6

In 3, the question of whether there is a fixed matrix or model M° such
that CM°=Cn is answered affirmatively. Any matrix having this property
is called adequate for Cn. If M has only the weaker property that CM(0) =
Cn(0), then M is called weakly-adequate for Cn. (This notion of adequacy
corresponds to that given in [3]). Note that Bo = <{0, l}, {l}> is adequate for
the classical sentential calculus consequence, where {0, 1} is the two ele-
ment Boolean algebra, and {1} is the prime filter. The following proposi-
tions deal with the question of when CM = CM>, for different SCI-matrices
M,M'.

1.11 Definition. Let M= <«, B) and M' = {%\B') be SCI matrices. A
function k: 9Ii—>$l' is a matrix-homomorphism {matrix-isomorphism) from
M into Mr if h is an algebraic homomorphism (isomorphism) from % into 9Γ
andh'\Br) = B.

1.12 Proposition. If h is a matrix homomorphism from M into M' which
maps % onto %'9 then CM = CM>.

A standard application of 1.12 is in the formation of "quotient-ma-
trices". If M = (51, B) is any SCI-matrix, define the binary relation ~β on

6. The completeness theorem may be used to show that if v (disjunction) is included
in the set of primitive connectives then e.g. Ί{p v q = ~\p -— q) is consistent.
Hence to construe p v q as an abbreviation of Ίp — q is, in effect, to adopt
p v q = Ίp ~+ q SLS an axiom. Similar remarks may be made about any abbrevia-
tion.
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31 by

a *B b<s=s>a Ξδeδ, for alia, b eSl.

(When the filter B in question is clear from context, we will write ~ instead
of ~β). From definitions 1.1 and 1.6 it follows that -is a congruence on II.
Let \a\ denote the congruence class of the elements. Then 3l/~, the set of
congruence classes of elements of II, becomes an SCI-algebra with the
following definitions:

i | α | = | ή β I ; \ a \ ± \b\ = \ a ^ b \ ; \ a \ = \b\ = \ a = b \ .

Let B/* be the set {\b \ :b e B}. Clearly B/* is a filter in 3l/~, so that
M/χ = <«/«, BM is an SCI-matrix.

1.13 Proposition. B/~ is a normal filter in U/~, and B/~ is prime iff B is
prime in It. Furthermore% the natural map a \->\a\ is a matrix homo-
morphism of M onto M/~, SO that CM = CM/~.

Those SCI-matrices (31, B) in which B is a normal filter are charac-
terized by 1.14.

1.14 Proposition. Suppose B is a normal filter in SI. Then there is an
SCI -language 80> Q> consistent set Φ of formulas of 8 0

 and a matrix iso-
morphism from <8/~, Cn(Φ)/~> onto (31, B) (where -is ~φ).

Proof: Let V be any set having the same cardinality as SI, and let So be the
SCI-language having VAR = V. Let h be any 1-1 function from VAR onto SI
and extend H o a homomorphism of 8 0 onto SI. Let Φ beh^iB) (i.e., Φ =
Sαt̂  (31, B)). Then Cn(Φ) = Φ and by the completeness theorem Φ is consis-
tent. The normality of B implies that h is well-defined in So/-, and is both
1-1 and onto.

We end this section by giving a useful description of prime normal
filters.

1.15 Proposition. Let SI = (A, ί, A , Ξ?) be an $C\-algebra and suppose
B £ A. B is a prime filter in SI iff (a), (b) and (c) below hold; B is a prime,,
normal filter iff (d) holds as well. For all a, b in A,

(a) a -^b fίB<=>a eB and b^B
(b) a^B<=>ia eB
(c) «β is a congruence on K,where a ~&b<=>a ^b eB.
(d) «β is the identity i.e., a «βδ<=>a =b.

2 Finite models and the decidability of Cn(0). A finite model M = (K, B)
is a model in which the number of elements in the SCI-algebra It is finite.
We let \M\ denote this number. For each pair of natural numbers («,<£)
where 2 ^n, 1 ^t <n, one may construct a finite model M= <lί, B) such
that \M\ =n and \B\, the number of elements of B, is t. Indeed, let A =
U, 2 , . . . , w}, B = {2,..., t). Using 1.15, we see there may be many ways to
define the operations V , = , o n A ; the only restriction is that the "multi-
plication tables" have the following form:
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ή -^ b a k b a

b a' b b1 a' b br a"
a b' a b" bιn a a' b"

where a,a',a" are in A - B, and b, b', b", btn are in B. That is, (to r e -
peat 1.15) for any c, d in A: ic /B iff ceB; c^d(B iff ceB and d/B;
c = d /B iff c ^d. These observations may be extended to prove the follow-
ing.

2.1 Theorem. For any positive integer n, there is a finite SCI -algebra % =
(A, ή, ̂  9 Ξ) containing n prime,, normal filters Bl9..., Bn such that when

i ?j , TR (31, Bι) f TR(5ί, Bj),and hence C{^Bi) ^ C{%yBj).

Proof: Let Ao = {0, 1}", the set of rc-tuples of O's and l ' s , and define A as
the union of Ao and the n(n -l)/2 elements <0, 2 , 0 , . . . , 0>; <0, 0, 2, 0 , . . . , 0),
<0, 0, 3, 0 , . . . , 0 ) ; . . . < 0 , . . . , 0, 2>, <0, . . . 0, 3 > , . . . , ( 0 , . . . , 0, n). For a in

A, (a)i will denote the ith -coordinate of a. The functions ή, A and = are de-
fined as follows:

11 otherwise

(α-> b) = ( ° i f ^ ^ O a n d ( ^ = 0 ^1 \ 1 otherwise

a = b = { < 0 > ° > > 0 ) i f a ^ b

\ ( 1 , 1 , . . . , 1) otherwise.

The subsets Bl9... , ^ are defined by:

Bi = {aeA:(a)i ί 0}

From 1.15 and the above definitions it follows that each set B{ is a prime,
normal filter in A. In order to show TRftl, J5, ) ϊ TR (H, Bj) when i ί j notice
that \BX\ < \B2\ < ... < \Bn\. (This was the purpose of adding the addi-
tional elements to Ao). Hi < j and IA - Bj\ = r, then the formula

[ "l(/>l =/>2> Λ l(p! = pz) A... A Ί ( £ r Ξ £ r + 1 ) ] ->[£, V p2 v . . . v/> r + 1]

is in TR («, β ; ) but not in TR(m, B, ). This concludes the proof.

As was remarked in 1, the two element Boolean algebra (with unit

filter) is adequate for the classical sentential calculus. In contrast, we

have the following result.

2.2 Theorem. There is no finite model weakly adequate for Cn, and hence
no adequate finite model.

Proof: Let M be any finite model, and let n = | M | . Then the "Gδdel

formula" φ, where φ is

Pi = P2 v pi = pz v . . . v pn = pn+ι

is true in M but is not true in any model M', with \M* \>n. It follows from
1.9 (d) thatcp is not in Cn(0). Hence TR(M') f Cn(0).
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The next theorem shows that Cn has the "finite model property". It is
used to prove the recursive decidability of Cn(0). For any formula φ, let
DES(^) be the number of subformulas of φ.

2.3 Theorem. If ψ is satis}table in some model, then φ is satisfiable in a
finite model M with \M I ^ DES (φ) + 1.

Proof: Suppose φ is satisfiable in the model .ΛΓ = <5ί, B) by the valuation h.
Suppose U = (A, i , ^, ^), and let φlf φ2,... 9φn = φ be all subformulas of φ
(so n = DES {φ)). Let Co be the set [h\φx)9... ,k (φn)}. Note that k {φά = h(φ) e B,

since h satisfies φ by hypothesis. If Co contains an element of A - B, let
C = Co. Otherwise, let C = C0u{θ}, where 0 is any element of A - B. De-
note /z(̂ «) by 1. We let Z> = CPiB, and we will so define the operations Ί, -•,
Ξ on C such that D becomes a prime, normal filter in C. For α, b in C, de-
fine (where # is ~* or =):

I la if la eC;

1 ifiaeB- C;

O otherwise

(a ib if aΰbeC;

a l b = ll if a 4 b eB -C;

I O otherwise

ThatZ) is a prime, normal filter in the SCI-algebra <£ = <C, Ί, ^ , => follows
from the facts that AT is a model (i.e. B is a prime, normal filter in $0 αrcd
(fora, beC)

2\aeD<=>iaeB;
a ^ beD<=>a A b eB;
a Ξ= beD<=>a Ξ δe B.

Hence M = <β, D> is a finite model, and I Λfl ^ 1 + DES (^).
Finally, let h' be the valuation of (£ defined by

h'itϊϊ - ί^t^ **P ̂ s a s^bformula of φ
KP) " ( i otherwise

From the way the functions in <£ are defined, it is easily checked that/z'(<^)
= h(φ) =1, so that/z' satisfies < în M, q.e.d..

Trivially this estimate is best possible since the smallest model in
which the formula consisting of a single variable p is satisfiable has two
elements; i.e. 1 + OES(p) elements. But this does not tell the whole story:
e.g. if φ contains no negation signs, then φ is satisfiable in the two element
model. We do not discuss these matters further here. Clearly from 2.3,
we have:

2.4 Corollary. There is an effective procedure to determine,, given a
formula φ, whether φ is a logical theorem.

The decidability of the classical sentential calculus may be proved
using the so-called truth table method, which may be considered as an
application of the following well-known theorem:
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For every mapping f:VAR H> {O, 1} there exists a unique classical com-
plete set of truth functional formulas Φ such that the characteristic function
of Φ is an extension of f.

This theorem can be generalized to the SCI. Consequently, there is a
generalization of the truth table method for SCI formulas which may also be
used to prove the decidability of Cn(0).

2.5 Definition. A mapping t:Fm ι->{0, 1} is called a truth valuation of the
SCI formulas if t is the characteristic function of some maximal consistent
theory.

Using the two operations i, A on the set {0, 1} : (il) = 0, (iθ) = 1,
χ ^y = Q\ίίx=l and y = 0, one easily proves the following.

2.6 Proposition. A mapping t : Fm ι->{0, 1} is a truth valuation iff the fol-
lowing conditions hold for all φ9 ψ, a, βeFm:

(a) t(lφ) = lt(φ)

(b) t(φ-*ψ) = t(φ) - t(ψ)
(c) t(φ = φ) = 1;
(d) if t(φ Ξ ψ) = 1, then t(φ) = t(ψ)
(e) if t(φ=ψ) = l,tken t(lφ = lψ) = 1
(f) if t(φ =ψ) = t(a=β) = l then t((φ - a) = (ψ -> j3» = f((<? Ξ α) = ̂  =

j3)) = 1.

Let Eq be the set of all equations. We define the formulas and equa-
tions of degree at most& = 0, 1, 2, . . . .

2.7 Definition.

(ax) Fm0 = VAR
(di2)Fmk+1 =FmkΌ{lφ, φ-* ψ, φ=ψ:φ,ψ eFmk}.
(b) Eq0 = 0 and Eqk+1 =Eq Π (FmΛ + 1 - Fm^)

2.8 Definition. Every mapping / : FAR U E ^ ι-> {0, 1} is called elementary
truth-valuation if it satisfies the following conditions for i9 j > k = 1, 2 , . . . :

(a) f(pk=Pύ = l
(b) if/(/>^/>; ) = l then f(pi)=f(pj)
(c) if/(ft ^ fo) =/(/>,- s p j = i then APi^Pj) = 1.

The restriction f to FAi? U ^ of any truth valuation t clearly is an
elementary truth valuation. Conversely, we have the following.

2.9 Theorem. Every elementary truth valuation can be extended to a truth
valuation.

Before giving the proof, let us first discuss some properties of (ele-
mentary) truth valuations. Observe that every elementary truth valuation/
is a unique union hug of two disjoint zero-one valued functions h, g such
that VAR = Fm0 = domain of h and Eqx = domain of g. Moreover, g is the
characteristic function of an equivalence relation I—Ion VAR, satisfying the
condition
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(*) ifpί\—\pj then h{Pi) = h(pj)

Hence, elementary truth valuations may be considered as pairs (h, I—I)
where h is any mapping of VAR into {0,1} and I—I is any equivalence relation
on VAR such that (*) holds. We are going to show that the (full) truth-valu-
ations may be represented in an analogous manner.

2.10 Definition. An infinite sequence of pairs {(hk, \-f\)}keNis called a se-
quence of partial truth valuations if the following conditions are satisfied
for each k = 0, 1, . . .

(a) hk maps Fmk into {0, l}.
(b) hk+i(φ) = hk{φ), if φeFmk', i.e. hk+i is an extension of hk;
(c) kk+1(iφ) = ΐhk(φ) if φeFmk,
(d) hk+1(φ-+ψ) = hk(φ) ^ hk(ψ) if φ, ψ eFmk;
(e) \-j-\ is an equivalence relation on Fnik,

( f) ^fejΨ<=> ^ ^ Ψ iϊφ, ψ e Fmk; i.e. y is an extension of \-y\,
(g) if φYj\ψ then kk(φ) = hk(ψ);
(h) hk+1{φ= ψ) = l^φh^ψ, \iφ, ψeFmk;

(1) iίφhγ\ψ and αh^/3 then Ί ^ y i ψ , (φ -α)fej)(Ψ -/3) and(^=α)l^l

(Ψ=J3).

2.11 Proposition. (1) If t is a truth valuation and tk(ψ) = t(φ) and

ψVΎλΨ^ tk(φ= Ψ) = 1 /or allφ,ψeFmk, k = 0, 1 , . . . tfzen {<ίΛ f~H)} is α

sequence of partial truth valuations; obviously ί = y 4

(2) Qw #z£ other hand% if {(hk9 \~jD} is a sequence of partial truth valua-

tions then the union t - \^hk is a truth valuation such that {04, hfe~^ z 5 ^us^
k

the corresponding sequence of partial truth valuations; i.e. h^ = 4 andYηΛ^

hfr for all k = 0 , 1 , . . . .

Remark. According to the last proposition there is a one-one correspon-
dence between truth valuations and sequences of partial truth valuations
{(fyfe*l"χl)} Observe that the mapping hk assigns a truth value 0 or 1 to
every formula in Fmk On the other hand, the equivalence relation\-γ\de-
ter mines, according to definition 2.10(h), the truth value of all equations in
Eqk+1, that is, all "new" equations in Fmk+1. The truth values of all other
formulas in Fmk+ί - Fmk are uniquely determined (according to (c) and (d)
in definition 2.10) by the truth values of formulas in Fmk.

Proof of 2.9: Suppose now/ is an elementary truth valuation represented
by (k, M>. Define:

(a) ho =h and hjH= \—\,
(b) hλ(Pi=Pj) = 1 mpi\-τ\pj

(c) hk+i(<P = Ψ) = 0 and non φhγ\ψ9 iff φ9 ψeFmk and distinct,
(d) hk+i(lcP) =ΐhk (φ), if φeFmk,
(e) hk+i(φ -*Ψ) = hk(φ) A h(ψ)9 if <jρ, ψ eFmk.



INVESTIGATIONS 299

One may easily see that {0z&, h r ^ e N i s a sequence of partial truth val-

uations and the truth valuation t = U hk is an extension of /. Thus, the-

orem 2.9 is proved.

Remark. Ίί we replace the condition (c) by the following two:

(c?) hk+i(φ Ξ Ψ ) = l < ^ hk(φ) = h(Ψ), if <?, ψe Fmk

(c*) φh^iψ <=> hk(φ) = hk(ψ), if φ, ψ e Fmk

then the above procedure defines another truth valuation t* which also is an
extension of /. According to t all non-trivial equations are false. On
the other hand the truth valuation t* makes all equations behave like bi-
conditionals.

2.12 Corollary. The set of those variables and elementary equations
which are true under any elementary truth valuation,, is consistent.

Remark. Truth valuations provide another proof of 2.4:
Proof. Let Fm£ be the set of all those formulas in Fmk which contain at
most the variables pu ...,/>„. The restrictions of (elementary) truth valua-
tions to Fm£ may be called (elementary) n/k-truth-valuations. Since the
set Fm£ is finite, there are finitely many elementary n/k -truth -valuations
and finitely many n/k-truth-valuations. Each of them may be effectively
presented as a zero-one-valued assignment table for all formulas in Fml .
Moreover, given an elementary n/k-truth-valuation /there is an effective
although not univocal p r o c e d u r e of step wise e x t e n d i n g / over
Fmf\...,Fm£ to any n/k -truth -valuation which is an extension of /.
Since, in general, φeCn(φ) iff t(φ) = 1 for every truth valuation t, it follows
that for any φ in Fnίf:

<peCn(0) iff t(φ) = 1 for every n/k -truth-valuation t.

Thus, given any formula^, one has to find the smallest set Fml containing
φ. Then, by inspection of all n/k -truth-valuations, one may tell whether or
not<peCn($6).

2.13 Corollary. An equation φ=ψ is in Cn(0) if and only if it is trivial,
i.e. φandψ are the same.

3. Adequacy. In 2 it was shown that no finite matrix is adequate for Cn. In
this section we show that there are at least two ways of constructing infi-
nite adequate matrices. For certain natural extensions, however, no
adequate matrix exists.

We first define the direct-sum of a collection of models. Suppose that
for each member i of an index set /,M, = <«f , J5, > is a model, and let 31* =
(%i, li9 -*,-, =i). We further suppose that Ai and Aj are disjoint when i / j ,
(i, jel). (When this is the case, we say M, and Mj are disjoint). The model
M= <S, β>, 31 = <A % "S >̂ is defined as follows. Let

A=[)Ah and B = U ^ '
i'iϊ i el
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The operations will be defined so that B is a prime normal filter in II.
First select some member of B9 say i , and some member of A - B, say O.

We denote members of the set A{ by the letters α, and bi(iel). Now de-
fine i , -1>, Ξ by:

i(ai) = litti

I di -+i bi if i = j ;

O if α, e£, but 6;/5, ;
1 otherwise.

a{ = b- = \ai^{ bi ** i = 7#ί

7 { O otherwise.

It is quite easy to check the following facts.
tti A bj (B <==>cii eB and 6/ {B

di /B<=^>iai e B
a{ = bj /#<=> di ί bj.

Hence B is indeed a prime, normal filter in A, so that M is a model. We
call M the direct sum of the models Mi. We use the direct-sum construc-
tion in the proofs of 3.4 and 3.6.

3.3 Definition. Let Φ be a set of formulas. The support of Φ, in symbols,
sΦ, is the set consisting of those variables which occur in at least one
formula in Φ.

3.4 Theorem. Let S be any SC\-language, and let Φx and Φ2 be sets of
formulas of 8. If both Φx and Φ2 are consistent and sΦiΠsΦ2 =0, then
ΦiUΦs is also consistent.

Proof: By 1.9, there are models Mx andM2, and valuations v x andf2 such
thSitVi satisfies Φ; in M, , i = 1, 2. We may clearly suppose M1 and M2 dis-
joint. Let M be the direct sum of Mx and M2. Let υ be any valuation of M
satisfying the condition that for any variable p in sΦ* , v(p) = £>*(/>). At least
one such valuation υ exists since sΦ1Γ\ sΦ2 =0. v satisfies ΦχUΦ2 in M
since the operations in M agree with the operations in Mt (for arguments
belonging to M, ) and #t satisfies Φt in Me-. Thus, again by 1.9 Φj^Φg is
consistent.

3.5 Remark. We note that the following conditions are equivalent for sets
of formulas Φu Φ2 with disjoint supports.

(a) if Φi and Φ2 are separately consistent, so is ΦiUΦ 2.
(b) if <^eCn(Φ1UΦ2) and sM(ΊsΦ 2 =φ then either ^eCn(Φi) or Φ2 is incon-
sistent.

Any consequence operation satisfying condition (b) was called uniform in
[3]. ((a) and (b) are equivalent for any consequence operation C on a sen-
tential language having a unary connective # such that αeC(Γ) iff C(Γ, #α) =
all formulas.)
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3.6 Theorem. Cn has an adequate model?

Proof\ Let {Φ;};£/ be the collection of all maximal consistent theories in 8.
By 1.9, for each i in / there is a model Miy and a valuation V{ such that v{

satisfies Φ; in M/. Without loss of generality, we suppose the models M,
are mutually disjoint. Let M = (H, 5) be the direct sum of the models M, .
We will show CM - Cn. By 1.9 Cn c CM for any model M. Hence we need
only prove CM £L Cn. Suppose φ/Cn(τ) for some formulae, and some set of
formulas Γ. By 2.1 there is a maximal consistent set, say, Φt 0 containing Γ
but not containing φ. Let h be the valuation of M defined by h(p) = V{0(p) for
each variable p. That is, h is υio considered as a valuation of M. Since the
image of any formula under viQ is in A{Q it follows by the same argument as
that in 3.4 that

Φ^dh'HB), i.e. Φ, o c Sofh(M).

But since B is a prime filter, h~ι{B) is a maximal consistent set. Since Φ*o

itself is maximal, it follows that Φ;o =h~1(B); i.e. Φ*o = SαJ /^M). Now since
φeΦi0, φi Sat/,(M). But this shows φ/Csί(Φio) and hence <p^CM(r). Thus
CM c Cn, and the proof is complete.

3.7 Corollary. The model M (constructed in the proof of 3.6) has the fol-
lowing property: Φ is a maximal consistent theory if and only if there is a
valuation h of M such that Φ = Sαt^M).

Call any model (or matrix) having the property given in 3.7 special.
The idea of the proof of 3.6 was to construct a special model and then point
out that any special model is adequate. It may be asked whether any matrix
M such that CM = Cn will be special. From the next theorem it follows that
the answer is negative, since the inverse image of a filter which is not
prime will not be a maximal consistent theory.

3.8 Theorem. There is a matrix M = (U, B) such that CM = Cn and B is
not a prime filter in II.

Proof: (Π of 3.6) Let {Φ̂  :ύ/} be the collection of all Cn-consistent the-
ories (not just the maximal theories). If 8 is generated from the set of
variables {pk:keK} let 8* be the SCI language generated from the set of
variables {/>*&: ΰ i , keK). Cn* is the consequence operation on8* (defined
by modus ponens and the same axiom schemata 1.1 that defines Cn on 8
only extended to the language 8*). Let e{:2 h^8* be the unique mono-
morphism taking/^ onto p\.

3.9 Lemma.

(a) For any formula φ of 8, any set of formulas Φ of 8 and any i, (̂ eCn(Φ)

7. This theorem is a corollary of the main theorem of [3]. However our proof I is
totally different from the one given there. Proof II (3.8) is a minor modification
of the £os-Suszko proof. We give it in order to get Corollary 3.10.
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(b) Φ is Cn -consistent iff £, (Φ) is Cn*-consistent
(c) Let Bo = ( J ^ (Φ, ). Then Bois Cn*-consistent.

iel

Proof of 3.9: (a) is easy, and is omitted, (b) follows immediately from (a).
In order to prove (c), assume Bo is not Cn*-consistent. Since proofs are
finite, for some iλ,..., in in /,

eφ$ U . . . U ein(Φin),

is Cn*-inconsistent. But each set e;(Φz ) is separately consistent by (b).
Hence, by 3.4 (which applies to any SCI language) so is any finite union of
these sets, contradicting the assumption. Thus Bo is Cn*-consistent.

We now define the matrix Mas the pair (8*, Cn*(J50)). Before proving
CM = Cn we show that B = Cn*(£0) is not a prime filter in £*. Indeed, let
Φ/o be any non-maximal Cn-theory, and let φ be a formula such that neither
φ nor iφ belong to Cn(Φ, 0 ) . From 3.9 (a) it follows that neither βio(φ) nor
eio(lφ) = ieiQ(φ) are in Cn*(ef o(Φio)). If eφ)e Cn*(£0) = Cn*fef o(Φ ί o)u U

e, (Φ; )), then, by 3.4 and 3.5, either 0io(φ)eCn*(eίo(Φ, o)) or U e;-(Φ; ) is Cn*-

inconsistent. But b o t h alternatives have been shown false. Hence

et-0(/>)/Cn*(#0). Similarly Ίeio(φ)ffCn*(Bo). Thus B is not prime.
Cn c cM by 1.9. In order to show CM <Ξ Cn, suppose that^?/Cn(Φ). Let

Φf 0 = Cn(ΦUh^}). Φ/o is a Cn-consistent theory. Thus e*0(Φ, 0) ^ B. We
show eio(φ) /B. For if eiQ(φ) e B, then ei(j{φ) e Cn*(^0(Φ) U j j e/(Φ, )). By the

argument given two paragraphs above it follows that ^z 0(^)eCn*(β/0(Φί0)) and
hence ^eCn(Φz 0). But then Φ/o is Cn-inconsistent, a contradiction. Hence e ί 0

is a valuation of 8* such that βί0(Φ) c B, but eio(φ)/ B. This shows <ρ/CM(Φ)
and completes the proof.

3.10 Corollary. There are two matrices

M = <.*,£> andM' = <*', SO

swc/ί //zαί 5 zs « prime filter in %, B' is not a prime filter in 51', but

CM = CM'

Proof: Let Mbe the model constructed in the proof of 3.7 and let M' be the
matrix of 3.8. CM = CM' = Cn.

We give two examples of consequence operations having no adequate
matrices. In the first example, the language is extended but the conse-
quence operation remains "the same." Let fi+ be the language obtained
from 8 by the addition of some sentential constants, say tc,-},̂ /, and perhaps
some connectives. The notion of an "8 + -matrix", M+, must be modified so
that an "8 + -algebra" contains constants {cj i e / and functions corresponding
to the new connectives. Every valuation of M+ must take cf onto ~δu Cn+ is
defined from the same axiom schemata that define Cn. We show Cn+ can
have no adequate matrix. Let c be any sentential constant of 8+, and let φc

be the formula (c -* c) = (c= c). Then, by constructing appropriate 8 + -
models, it may be easily seen that both φc andΊ^ c are Cn+-consistent. Now
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let M+ = (%, B)be any β+-matrix. K c i s the constant of M"1" corresponding
to c, let d be (c A c) s (c Ξ"C). Either de £ or d / £ . If de S, then φc is true
in M+; if h is any valuation of A+, k(φc) = de B. Thus iφc is CM+-contradic-
tory: i.e. C M + ̂  Cn+. Similarly, if d/ B, then φc is C M + contradictory, and
hence C#+ / Cn in this case too. ThusM+ is not adequate for Cn, conclud-
ing the proof.

In the second example, we keep β fixed and extend the consequence
operation Cn. If Γ is any set of formulas of S, CnΓ is the consequence
operation defined by CnΓ(Φ) = Cn(ΓuΦ). It seemed natural to suppose that if
Γ is an invariant (consistent) set of formulas (see 1.4), then Cnp would have
an adequate matrix. However, for some consistent invariant Γ, CnΓ has no
adequate matrix. In order to prove this we first prove:8

3,11 Lemma. If M = (&, B) is any matrix, andΦu Φ2 are each CM-consis-
tent sets with disjoint supports, then Φ 1 uΦ 2 is CM-consistent.

Proof: We note first that any set Φ of formulas is CM-consistent iff there
is some valuation k of M such that h(Φ) <Ξ B. Since Φx and Φ2 are separ-
ately Qrconsistent, there are valuations h 1} h 2 such that /Zf(Φ* ) QB9i = 1,2.
Since sΦiΠ sΦ2 = φ, we may define a valuation k by

h(ϋ)= {M/>>, PesΦi
\h2(p), otherwise

Then ft agrees with hλ on Φλ and with h2 on Φ 2. Hence h(Φ1UΦ2) c B, and by
the first remark, Φ1UΦ2 is CM-consistent.

Now let Γ be the set of all formulas in 2 of the form (a) or (b):

(a) (φ -+ φ) = (ψ -» ψ)
(b) (φ = φ) = (ψ = ψ)

Γ is clearly invariant and Cn-consistent. We claim CnΓ has no adequate
matrix. Indeed, if φ0 and ψ 0 are the formulas

Ψo = (PI-*PI) = (Pi =Pi)

Ψθ = ~l((ί2^/>2)Ξ(AΞ/>2))

then φ0 and ψ 0 clearly have disjoint supports and each is separately Cn Γ -
consistent. However φ0 Λ ψ0 is CnΓ-inconsistent, as may be easily verified.
By 3.11 then, for no M is CnΓ = CM, which completes the proof.

4. A Particular SCI theory. We will not study here the intuitionist version
of the SCI which is obtained by changing our axiom (c2) to the following
weaker form: (φ-*ψ) ~* {{φ-> Iψ) -* lφ). Instead we will consider a particu-
lar theory Λ based on our (classical) version of SCI and study the relation
of A to contemporary modal logic.

4.1 Definition. Let A= Cn(A0), where Ao is the set of all equations of the

forms

8. Using remark 3.5 it may be seen that a theorem equivalent to 3.11 was stated
without proof in [3].
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(a0) φ = Ψ, all φ,ψe Cn(0), the set of logical theorems.
(a2) (φ = lψ) = (lφ=ψ)
(a2) ((φ->ψ) = ty -+φ)) = (φ=ψ).

A is clearly an invariant theory9, and in view of (a0), we let 1 be an
abbreviation for some member of Cn(jί), say p v Ίp, and let 0 be an abbrev-
iation of p A Ί p. Hence

( v φ =1 eΛ if φtCn{<jb), and
i a 3 ' φ=OeA ίίlφeCniφ).

Note t h a t 1 and (φ = φ)=l a r e in Λ . Also (a 4) - (aio) a r e i n Λ .

(aj llφ = φ
(as) (φ = l)^φ
(a6) (φ = ψ)<^((φ=ψ)sl)
(a7) ((<? -*Ψ) = 1 -» ((ψ -> φ) = i) -* φ = ψ
(a8) All "Boolean" equations: e.g.

(φ-+ψ) = Oφvψ)
φ A (ψ v Θ) = (φ Λ ψ) v (φ A Θ)
l(φv ψ) Ξi^ΛΊψ

(a9) ((<pAψ) = !)<->((</?= i) Λ (ι// Ξ ] ) )

(a10) ((^i//)Ξi)-((^Ξ])-(i//Ei))

Proof (sketch): (aj follows from (ax). By (a3) and (RL) (in 1) one obtains
(ag) and (a6). (a7) follows from (a2). All formulas in (a8) follow from (a3)
and (a7). (a9) may be derived from (a0) and (RL); (a10) from (a0), (RL) and
(a,).

4.3 Proposition. The theory A has the following property (which we call
property N): φeA iff φ = 1 eΛ.

Proof: If φ is a logical axiom (TFA or IDA) or an axiom of Λ, then φ = IeΛ
by (a0) and (a6). By (a10) this property is preserved under modus ponens.
The converse is trivial.

We may now verify that the following formulas are also in Λ:

(an) (φ = l) = 1 if φeA
(a 1 2 ) ((<pΛψ)si)s(fa = i) A (ψ si))
(a 1 3 ) ((<psi)si)sfo> = i)

(a 1 4 ) {(φ = l)-φ)=l

Our aim is to show that Λ is the set of all formulas of 8 which are
valid in every topological Boolean algebra.

A topological Boolean algebra (T.B.A.) S3 is a Boolean algebra (with
respect to the usual operations -, Π,u, having maximal and minimal ele-
ments 1 and 0 respectively) together with an interior operator I on S3 which
satisfies the following conditions:

9. (ai) is redundant. All Boolean equations, e.g. ~\~\φ = φ and (φ = *1Ψ)—-(~l<ρ Ξ Ψ)
follow from (a0) and (a2). (ai) follows from (a7) and Proposition 4.3.
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\(aΠb) = \{a)n\(b); I \a = la; \a ̂ a = II = 1

where a -̂  b = -aΌb. Now define the operations ^ and C by: C# = -l(-α) and
α Ξ b = l((α -̂  δ) Π(δ -̂  α)). Then lα = α M and Ca = -(a Ξ 0); also a ^ = i
iff β = δ. It is now easy to show that the SCI-algebra S3 = {B, -, A , => has
the property that the SCI-filters (definition 1.6) are precisely the proper
Boolean filters of B. (Our notation is not consistent: we should write ή for
the operation - in the Boolean algebra.) Consequently, one may consider
the formulas which are true in the (topological) matrix (SB, F) where F is
any SCI (i.e. proper-Boolean) filter in S3, and the formulas which are valid
in S3. Since the intersection of any collection of filters is a filter, a formula
is valid in S3 iff it is true in (S3, {l}>.

A filter F in S3 is topological if laeF whenever aeF. It is easily
checked that the prime (SCI) filters in S3 are precisely the prime Boolean
filters and the normal (SCI) filters are those filters F such that the only
topological filter contained in F is {l}, the unit filter.

4.4 Lemma. Every formula in A is valid in any topological Boolean alge-
bra, {Hence Λ is consistent).

Proof: One need only check that all formulas (a0), (ax) and (a2) are valid in
any T.B.A. and note that validity is preserved by modus ponens.

Consider the canonical matrix (8, Λ) and the corresponding quotient
matrix M^ - (8/~, Λ/~>, where ~ is the congruence defined by the filter Λ:
(see remarks following 1.12).

4.5 Lemma. ft/~ is a topological Boolean algebra,, and Λ/v is the unit
filter in δ/~.

Proof: The operations -, A , Ξ are defined on S/~ as indicated after 1.12.
The additional operations I, Π, and the elements 0 and 1 are defined by:

l M = \ φ = l \ ; \φ\d\ψ\ = \ φ * ψ \ ;
1 = \ l \ ( = \p-+p\), 0 = \θ\(= \ p * ( i p ) \ )

where \φ\ is the congruence class of the formula^. By (a8) 8 A* is a
Boolean algebra. Since Λ has the property Nf we see that Λ/~ is the unit
filter. Finally, from (an) - (a14), it follows that I is an interior operator on
8/-.

Remark. Since Λ is invariant and consistent it follows that |/>, I Φ \p^\ if
i φ j . On the other hand, the family VAR/~ of all cosets \pj\ clearly gen-
erates the whole algebra 8/~. Moreover, using the techniques of universal
algebra we are able to show that 8/~ is freely generated by VAR/^ in both
following versions: (1) every mapping of VAR/~ into 8/^ can be extended
to an endomorphism of δ/~ and (2) every mapping of VΆR/~ into any topo-
logical algebra % can be extended to an homomorphism of 8/~ into H.

4.6 Theorem. The theory Λ is the set of all formulas of 8 which are valid
in every topological Boolean algebra.
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Proof: It suffices, in view of lemma 4.4 to show that for every formula φ
which is not in Λ there exists a topological matrix M = (S3, F) and a valua-
tion of which does not satisfy φ in M The matrix M\ and the natural homo-
morphism of 8 onto β/~ will do. If φeA then there exists a complete
superset Φ of Λ so that φ(Φ. It follows that |<p|/Φ/~. But Φ/~ is a prime
filter in 8/~. Hence, \φ\ φ 1. Thus φ is not valid in M\.

The last theorem shows that Λ is the set of all theorems of the system
S4 of the modal logic introduced by C. I. Lewis. See [2] and [5]. To see
this more distinctly the reader may enlarge the language by adding new
connectives Q, 0, and supplement the set Λo by two definitional formulas of
the form: Dφ = (φ = l) and Oφ s l(φ = 0). The theory Λ so enlarged will
then contain formulas of the form (φ = ψ) = Π(φ<->ψ).

One might conclude that S4 modal logic simply is the SCI supplemented
by additional logical axioms like (a0), (ax), (a2) or, in other words, that the
modal theories based on S4 simply are extensions of Λ, i.e. those theories
in our sense which include Λ. However, we think this is not so. The crucial
point is the Godel rule:

From φ infer Πφ, i.e. φ = 1.

There exist axiomatizations of the system S4 which do not use the
Gδdel rule, [5]. However, many papers on modal logic do make essential
use of this rule. (Compare [6], Ch. 11, and the collection of papers in [1].)
We conjecture that simplicity is not the only reason for the use of the Godel
rule in modal theories. We think that the very meaning of the necessity
connective D which underlies modal logic and which we dare to consider
intensional, forces the modal consequence and modal theories to be closed
under the Gίδdel rule. To clarify the relation of SCI to the modal logic let
us introduce some precise definitions.

4.7 Definition. CίJ(Φ) is the smallest set of formulas of 8, closed under
the rule modus ponens and the Godel rule which contains TFA,IDA, (a0),
(ax), (a2) and the set Φ. A set of formulas Φ is called an S4 modal theory if
C*(Φ) = Φ.

4.8 Proposition. The operation CjJ, called S4 modal consequence, has the
properties Cl - C3. Moreover Φ is a S4 modal theory if and only if Φ is an
extension of A which has the property N9 i.e. φeΦ if and only if (φ=l)e Φ.
In particular\ Λ is the smallest S4 modal theory, A = Cjjj(0)

The difference between S4 modal theories and extensions of Λ is re-
flected in the Lindenbaum-Tarski algebra 8/~.

4.9 Proposition. The mapping Φ ι->Φ/~ is a one to one correspondence
(l) between consistent extensions of A and proper Boolean filters in β/~
and (2) between consistent S4 modal theories and proper topological filters
in 8/~.
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4.10 Corollary. There exist consistent extensions of A which are not S4

modal theories. In particular, there exist consistent extensions of A which,
for some φ, contain φ and l(φ= l), while any S4 modal theory which, for
some φ9 contains φand l(φ = l), obviously is inconsistent.

The Gδdel rule is essential for the modal consequence and theories in
the sense that it cannot be replaced by any set of axioms.

4.11 Proposition. There exists no set of formulas Φo such that for every Φ,
C*(Φ) = Cn(ΛUΦ0UΦ)

Proof: Suppose to the contrary, that Φo is such a set. Since C*(φ) = Λ =
Cn(ΛUΦo) we infer that Φ 0 ^Λ. Hence, C*(Φ) = Cn(ΛUΦ) for all ΦζFm.
This is, however, not possible because Cn(ΛU{/>i, l(px = 1)}) ί Fm but
CJίtA, π(Λ= l)})=Fm.

Remark. The relation noted above, of the SCI to the modal theory S4, may
be extended to the case of Lewis' system S5. To this end, one has to replace
the theory Λ by a stronger one, say Λ*, which is defined as Cn(Λ*) where
Λ * arises from Λo by the addition of all formulas of the following form:

Here, instead of arbitrary topological algebras one has to consider the
class of "self-dual" topological Boolean algebras (i.e. those in which every
open element is closed) whose elements satisfy

(a = b) = 0 = i(α = δ).
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