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AXIOMATIC INSCRIPTIONAL SYNTAX
PART II: THE SYNTAX OF PROTOTHETIC

V. FREDERICK RICKEY

PART T* of this paper presented an axiomatized theory of general
syntax, defined the usual notions of general syntax, and proved some typical
theorems of general syntax. We claimed that this system is strong enough
to precisely state the formative and deductive rules of formal languages.
In PART 1I we support this claim by formulating, in a very precise way, the
rule of procedure of LeSniewski’s Protothetic. Chapter III is an informal
introduction to Protothetic and its rule of procedure. Our metalogical
system is extended there to a theory MP which is concerned explicitly with
the syntax of Protothetic. This chapter is intended to motivate the
Terminological Explanations of Chapter IV which culminate in the state-
ment of the rule of Protothetic. In Chapier V we sketch a proof that our
formulation of the rule is equivalent to that given by Leéniewski in [18].
This proof shows that our system is strong enough to conduct certain
metalogical investigations.

There are several reasons why we chose Protothetic as a test case for
our syntactical system: 1) Since the rule of Protothetic is as complicated
as the deductive rule for any theory it provides a good test of the
usefulness of our system for formalizing theories. 2) Most papers on
Protothetic only discuss the deductive rule from an informal point of view.
It is hoped that our formulation of the rule, which is simpler than that given
by Lesdniewski [18], will serve to make this aspect of Leéniewski’s work
more accessible. 3) It was necessary, in order to make the comparisons
that we do in Chapter V, to use a theory whose deductive rule had previ-
ously been precisely stated. Protothetic is one of the few such theories
whose rule had been formulated without making excessive use of ordinary
language, set theory, or inductive techniques. And, as we stated in PART I,
it is our conviction that the formalization of a system should be done using
the weakest possible metalogic.

*PART I of this paper appeared in the Notre Dame Journal of Formal Logic,
vol, XIII (1972), pp. 1-33. The author would like to thank Professor Bolestaw
Sobocinski for considerable advice,
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CHAPTER III

1 History and Informal Descviption of Protothetic. In 1923 Stanistaw
Leéniewski developed a bivalued system of logic which he called Proto-
thetic. Besides including the full propositional calculus Protothetic con-
tains variables of all semantical categories which can be generated from
propositions. To explain, let us say that Protothetic is a type theory whose
lowest type is that of propositions:

bya, v, ...

These can be combined, using unary, binary, ..., functors, to form new
propositions:

F), glpq), hipgr),

Then we can form functors which take previously introduced types as
variables, for example:

olrpl, v<fgh>, ...

This process is continued indefinitely. After a constant functor with a given
number of arguments is introduced we can use variables of that type. This
will be explained more fully in section 3.

Protothetic can be based on the law of simplification

(1) [pql:p>.q>p

together with the principal of bivalency for each semantical category.
These are theses of the form

@) L[rp):.f0) 2:F (1) 2.1 (p)
(3)  [Ffli: F<N> .20 F<FI>. D0 FVr> O: F<As> D, F<f>

There are, however, very grave difficulties with stating the rule of
bivalency, for we must specify all the constants of a given semantical
category before we can state the law of bivalency for that semantical
category. This is not just a problem of specifying symbols for each of the
constants, rather we must also state how they are defined or at least know
that once the proper number have been defined that they are distinct. As
this problem is still unsolved we use a different approach.

Another way to formulate Protothetic is to accept simplification (1),
bivalency for propositions (2) and extensionality for every other semanti-
cal category.

The simplest form of extensionality is that for propositions

@) lpql:p=q.=[7]: /) = fla),

but this follows from (1) and (2). The theses of extensionality which are
essential are those for all of the other semantical categories. These theses
are of the form:

6 [fg]:.[o]:10)

= gp) = [FliF<f> = . F<g>
) [rel:.[pql: fpg) =

g ) = [FliF f>= F< g™
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Since we have a method of formulating the rule of extensionality' the
difficulty is overcome.

(5) and (6) are stated using only the constants of equivalence. (1) and
(2), however, use implication. It is highly desirable to base Protothetic on
a single primitive term. Tarski [49] showed that conjunction could be
defined in terms of equivalence and quantification®:

(M) [pglup.q =.0f].p = f(b) = f9)

Since negation is easily defined:

8) [pli.~p.=p .= [ul.u

we have all the connectives needed for the propositional calculus. This
allows Protothetic to be based on equivalence (as sole primitive). This has
the added advantage that definitions can be stated in the most natural form,?
i.e., as equivalences:

@) a=8

The successive simplification of the axiomatization of Protothetic was
a long and complicated process. The details of this work and their history
can be found in Leéniewski [18], [21], and Sobocinski [48]. The system of
Protothetic which we will be concerned with is based on Sobociriski’s 1945
axiom:

©)  _pa, Q) FL T8O (peusu) v, f(an) $(ap) "))

or, in the more familiar Peano-Russellian notation:
(10) [pql::p=q .= [fl:.f(OAPO)) .= [7]:f(qr) = q=p

This axiom is a dead object without some rules for deducing its
consequences. We hinted above that we shall have rules of extensionality
and definition. In addition we shall need rules of detachment, substitution,
and a rule for distributing quantifiers.

The precise statement of these rules occupies the whole of Chapter IV.
In order to make the Terminological Explanations of that chapter under-
standable we wish first to give an informal statement of the rule. But first
we must discuss semantical categories.

2 Semantical Categories. In the axiom of Protothetic [1, (9)] the basic unit
is the biconditional®

$(pq)

or in the Peano-Russellian notation

b =q

Intuitively, equivalence is a functor which forms a proposition out of the
two propositions which are its arguments. If we denote the semantical
category of propositions by 8 then, using the notation of Ajdukiewicz [1], we
denote the semantical category of ¢ by

S/SS.
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In general the symbol
C/C,C,...Cn

represents the semantical category of a functor with n arguments of
categories C;, C,, . . ., Cq respectively, which forms something of category
C. For example, in the category S/S the only constant functors are the
four unary predicates Vr, Fl, As, N; in the category S/SS we have the
16 binary functors. Semantically we want two functors to be in the same
semantical category if they can be interchanged in all contexts without
loss of meaning.® So for example, the functors in

vifl, elm]

should belong to the same category, but we cannot decide to which until the
categories of f and p are known. Similarily in

[F1:f (D) = *<f>

we want the two f’s to be in the same category, but we cannot say which one
until we know the category of p or *. All that we can say is that 7 belongs
to the category S/C and * to the category S/(S/C), where C is the category
of p.

Up to this point intersubstitutability has been the criteria for placing
two functors in the same semantical category. This method will not suffice
for our syniactical investigations for it uses the semantical notion of
meaning.

Lesniewski was able to define semantical categories syntactically by
letting the shape of the parentheses in which arguments are enclosed
reveal the semantical categories of the arguments and their functors. He
used the parentheses (--) to enclose two sentential variables. So when
we see

$(pq)

we know ¢ must be of the type S/SS since the parentheses tell us p and ¢
are both in the category S and that the functor is sentential.

For the purpose of formalizing Protothetic we cannot use any semanti-
cal notions. Thus it is absolutely necessary to replace the semantical
notion of a semantical category by some syntactical notion.

Following the methods of Lesniewski we shall let the parentheses
reveal the semantical categories of the arguments and functors involved.
We admit that the motivation is completely semantical, but still, our
presentation must be completely syntactical. Accordingly we shall speak in
the future only of syntactical categories. We are using the term ‘‘syntacti-
cal category’’ instead of ‘‘semantical category’’ at the suggestion of
Chomsky [6] and Bar-Hillel [45]. This notion is defined in Chapter IV by
purely syntactical means. But since our motivation is semantical it agrees
with the semantical categories presented above.

Because it is necessary, if one wishes to understand what follows, to
have a tentative notion of syntactical category we present the following
‘“‘definition”’:
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We shall say that two functors are in the same syntactical category if
they have the same number of arguments, corresponding arguments are of
the same syntactical categories, and the functors together with their
arguments form objects of the same syntactical category.

3 Informal Statement of the Rule of Protothetic. As mentioned previously,
the rule of procedure of Protothetic consists of five parts, viz., detach-
ment, distribution of quantifiers, extensionality, substitution and definition.
Let us consider them individually.

Detachment. 1f, at a given stage of development, Protothetic contains
the thesis

(1) $(AB)
and also the thesis
(2) A

then we can add to Protothetic a thesis equiform to B. This rule is well
enough known from other systems but we should remark that in (1) there is
no main general quantifier preceding the biconditional. If we had

(3) bq -, b(A(pg. . ) B(pg...)
as a thesis and also
(4) ba ..., "Alpg. . )

then we would have to distribute the quantifier in (3) before detaching.

Distribution of Quantifiers. If Protothetic contains a thesis (3) then we
can distribute the quantifiers and get

5)  $(pg...."Alpg...)' pg ...,"B(pg...)")

The rule is even stronger than this. It is stated so that we can distribute
not only all, but any of the variables in the main general quantifier (MGQ)
of (3). Thus we can also get

® q---,"9(p, Apg . ..) b, Blpg. ..)
r r ul r 1 \1

(M) ..., b( g, Apg . . ) g, B(pg . . ) _)I ]
r r

@) ... "%( pg,"Alpg . . )" pg,"Blpg . . .)")

Protothetic also makes no use of vacuous quantifiers so if A or B contains

no free occurrence of p then p is omitted from the quantifier immediately
preceding A or B after distribution of p. For example from

9) L par, %, Vr(p) s, W(pars)')
we can get, among others,
(10) a7 "3 b Ve (B) s, Y (pars)')’

(11) (.2 "Vr(p)  pars, "V (pgrs)")
(12) o, (0, Ve (D) Lars, W(pgrs)')'

Notice that the stronger statement of the rule of distribution permits the
simpler statement of the rule of detachment.

'I)'I
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The rule of quantification, as stated above, is strong enough so that we
can derive the usual rules of quantification such as distribution of
quantifiers through implication.

Extensionality. If the semantical categories

(13) S/C; Cy...Cn, S/(S/C,C;y...Cp)

have already been introduced into Protothetic by way of definition (see
below) then the rule of extensionality allows us to add the following as a
new thesis of Protothetic:

(14)  f2. " Hre . Xl QUL xad gty 0 ) W, W <>y <g>)T)

where the variables x;, ..., x, are of categories C;, ..., C, To give a
concrete example we state the law of extensionality for binary functors:

(15)  fe, $(.0a, $(f(bD)E (b)) FLYE<f > F<g>)')

The rule does not allow us to add extensionality for the semantical category
of propositions, since it is derivable from the axiom of Protothetic (Cf.
Sobocirniski [48]).

The rule of extensionality allows us to add a thesis of extensionality
for each semantical category (except for propositions), and not just those
indicated above. We can also add extensionality when functors involving
parameters (the so-called many link functors) are involved, e.g.,

Sz, T e, T DY @) gt ¥ (@) LFLTHEF < f>F Lg>)')!

Substitution. The notion of substitution is well enough known from
other systems of logic to need little comment here. The most important
thing about substitution in Protothetic is that we never use incomplete
symbols.® In other systems of logic if one had

(16) b, "e( (D)
and wanted to get
(17) L2, 24 (pp)

he would just say ‘‘substitute §(p-) for f.”” On semantical grounds this is
absurd, for f and § clearly belong to different semantical categories; so we
certainly cannot substitute ¢ for f. In Protothetic this substitution is
accomplished via a definition:

(18) b, (0D Ve (D)
First substitute Vr for f in (16) to get
(19) b, "e(Vr ()

This is clearly possible since f and Vr both belong to the category S/S.
Then, using the logical basis so far developed, derive

(20) b, " H@(Vr (D) B((pD)!
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Now distribute the quantifiers and detach (19) from (20) to get the
desired (17).

Definition. In Protothetic definitions are biconditionals or generaliza-
tions of biconditionals with the definiendum on the right. Moreover, the
definiendum is either a term (when we are defining a constant) or a function
(when we are defining a constant depending on several parameters). The
variables in the MGQ are precisely those occurring free in the definiens
and also in the definiendum. Hence definitions have the form

(21) g bW (pg ) * (g L))
The requirements imposed on definitions are similar to those in other
systems of logic: Y (pg ...) must be well formed, * is a new constant,

etc. We concentrate now on the choice of parentheses in the definiendum.
The axiom of Protothetic contains only two semantical categories, the
so-called basic semantic categories

S, S/8S.

All other semantical categories must be introduced into Protothetic by
defining a constant of that category. Once a semantical category has been
introduced—and only then—does the rule of procedure allow us to use
variables of that category. To introduce the categories

S/S, S/SSS, S/(S/8)

we could use, for example, the following definitions:

(22) DTGB, uT) ~(p)]
(23) Lar,"o(p(p4(a ) $ (b g )
(24) ST~ (F) ~<f>)

These examples serve to indicate the freedom of the rule of definition.
Notice that we have used equiform parentheses in

$(pq), ~ (), $(pq7)

We did this—but we would not have had to—to show that these three functors
act on sentential variables. Also we chose the symbol ¢ in (23) since the
functor defined there has several properties in common with equivalence.
There is no chance to confuse the two for they have different numbers of
arguments.

In (24) we chose the symbolism ~<f> to show analogy with ~(p). But
here we could not have chosen the same kind of parentheses, for then we
would have f and p in the same category. We were forced to choose a new
kind of parentheses. Now if we wish to define Verum for one propositional
argument we are forced to use parentheses equiform to those in the
definiendum of (22):

(25) 0, (b(pp) Ve (D))

If we took different parentheses in the definiendum—say £-3—then Vr and
~ would be in different categories; something we know is not true seman-
tically, so we preclude it syntactically via the rule.
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At first glance one might think our analogous constants and paren-
theses would cause the semantical categories to coalesce. For example, if
we define

(26) _fg, "6 ( pa, f(pa) Loar_"gpar)’) * <fg>)

and then substitute ¢ from the Axiom for f, and ¢ from (23) for g we would
get:

@7)  $(( g, bpa) par, blpgr)’) * <p$>)

It might be supposed that *<¢$> contains two occurrences of the same
constant, but that is false. To see this we look at the categories of the
symbols in (27). By looking at the definiens of (26) and then back to our
Axiom and (23) we see f is of type S/SS, g of type S/SSS, and hence * is of
type S/(S/SS, S/SSS). Thus the two $’s, although equiform, are not
equisignificant.

Once a semantical category is introduced by an axiom or definition a
type of parentheses is forever assigned to it. The axiom assigns the
parentheses (--) to the category S/SS. The definitions (22), (23), (24), (26)
dictate that a functor in the category

S/S is always followed by parentheses of the type (-)

S/SSS is always followed by parentheses of the type (---)

S/(8/8) is always followed by parentheses of the type <->

S/(S/SS, S/SSS) is always followed by parentheses of the type <-->.

In the future if we are defining a functor of one of these categories we must
use parentheses of the indicated type. If a functor of a different type is
being defined we must use different parentheses if the number of arguments
are the same as one of those above.

For the purposes of substitution it does not always suffice to choose
just one pair of parentheses in the definiendum. If we wanted to substitute in

(28) f ()

to get

(29) ?(pq)

where ¢ represents conjunction, then a definition is necessary:

(30) b4, "b(o(0a) 9ta¥ @)

Then we could substitute ¢€g¥ for f (they are both of type S/S) in (28) to get
31) 9ta¥ ()

Then distribute the quantifier in (30), commute, and detach (31) to get the
desired (29). This definition introduces a new category:

(s/9)/8

i.e., ? is a functor of one sentential variable that forms a sentence forming
functor of one sentential variable. Functors like ¢ in (31) are called
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many -link~functors. Many of the complications in stating the rule of
definition arise from many-link-functors. We only remark here that a
many-link-functor never has two sets of parentheses which are equiform,
i.e., the links are enclosed in different shaped parentheses.

These informal remarks have brought out how interconnected the five
parts of the rule are. Before detaching we usually distribute quantifiers;
before stating a thesis of extensionality we have to give several definitions;
before making a substitution we sometimes have to give a definition, and
then use distribution, detachment and sometimes extensionality before
obtaining the desired result. This indicates why we speak of ‘‘the »ule of
Protothetic’’ rather than ‘‘the rules of Protothetic’’.

The rule of Protothetic is formulated so that it automatically adjusts
to the last thesis of the system. In any theory with definitions it is
necessary to examine all previous definitions before adding a new one to
make sure the constant has not been used before in that syntactical category.

4 The System MP. Chapters I and II dealt with general syntax, whereas the
next chapter is concerned with the syntax of Protothetic. Consequently we
must augment system M with terms applicable specifically to Protothetic.

Since the rule of Protothetic allows us to add (under certain conditions)
a new thesis A immediately after thesis B, which is the last thesis of
Protothetic, and because the rule refers to some of the theses before B we
need a syntactical term to express this. The term

A € thp(B)

which is read ‘“A is a thesis of Protothetic with respect to thesis B,’’ shall
be used for this purpose. The general name thp(B) denotes those theses
which have been derived before B. We use ‘‘before’ here in the weak sense
of ‘“‘before or equal.”” This convention will save cumbersome phraseology
later. Using this notion it is easy to define ‘‘thesis of Protothetic.”’

D3.4.1 [A]:.Aethp .=: [3B].Acthp(B):AcA

It is important to understand that thp is a growing name.” At the
beginning the Axiom is the only thesis. The rule then allows us to add
another expression (actually it is one of many possible) as a new thesis
immediately after the axiom. Then thp denotes the axiom and this new
thesis. At this stage the rule allows us to add a new thesis. The number of
inscriptions denoted by thp is always finite, but unbounded. In effect then a
thesis of Protothetic is either the axiom or something added in accordance
with the rule. But the rule cannot be stated without the term thp(B) and so
we take it as primitive in our system MP. The axioms which this term
satisfies will be stated later in this section.

As seen in the previous sections Protothetic makes heavy use of
parentheses to indicate syntactical categories. Since the number of
categories is unlimited we will need more than a fixed number of paren-
theses. Consequently we need a term to denote parentheses. One way would
be to accept the general name
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prnt
as a denoter of parentheses. We shall say each of

(? [! <’ :é’}

is a parenthesis. We are not too concerned about the shape of parentheses
and can use most any symbol as a parenthesis. For example we could write

péq

instead of the more customary

(8)

but then ‘p’ and ‘q’ could never be used as variables. We are more
concerned with availability, for (some) new syntactical categories require
new kinds of parentheses.

The term prnt does not suffice however, for we must be able to mate
parentheses. Since the smallest things our syntax can refer to are words it
is not capable of distinguishing left from right parentheses,® nor is it
possible to say that two parentheses are symmetric. We say that the
parenthesis ( is symmetric to the parenthesis ), but not to any of the
parentheses

<’{’ (’ d:,')'

Each of the following pairs of parentheses are symmetric:

Gy LE<S >t 1

so symmetry does not mean that the first is a left parenthesis and the
second a right. Hence we shall take as primitive the term

A € prntsym(B)

which we shall read ‘‘A is a parenthesis symmetric to parenthesis B.”’
Intuitively this means that A is a parenthesis and B is its mirror image.
One easily sees that prnt can be defined in terms of prntsym:

D3.4.2 [A]:.Aepmt .=: [3B].A epmisym(B):AcA

Hence we can just take prntsym as primitive; and we do, even though it is
less intuitive.

Besides using these two primitive terms we will need to make explicit
reference to the axiom of Protothetic. We give that axiom here and call it
by the name Ar:

b4, " (0a) S TS (B ou,"u ) v LT (ar) bap))')!

This axiom is an expression consisting of 54 words. In the next chapter we
shall refer to the 1st, 4th, 5th, 9th, 10th, 11th, 12th and last of them.
Moreover we need to know that the 9th and 12th words are symmetrical
parentheses and that certain words in the axiom are not equiform.
Statements @7-Q11 use vocabulary which is not defined until the next
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chapter, but we prefer to state them here. Our assumptions about the
axiom—which could either be called axioms or empirical statements—can
be summarized as follows:

QI  Axreexpr

Q2 9vrb(Ur) € prtsym (12vrb(Uz))

Q3 [3B].BeUvrb(dr). Be54vrb(Ar)

Q4 1vrb(3z) e ~ [enf(4vrb(z)))

Q5 5vrb(dr)e ~ [enf(lvrb(ur)))

Q6  5Svrb(r) € ~ fenf(dvrb(dr)))

Q7 6vrb(Ur) e trm

Q8 10vrb(¥Ur) € trm

Q9  11lvrb(¥Ur) € trm

QI0 Cmpl(9vrb(¥r) U 10vrb(Ar) U 11vrb(Ar) U 12vrb(Ar)) € prntm
Q11 10vrb(z) e arg(Cmpl(9vrb(Az) U 10vrb(Uz) U 11vrb(Az) U 12vrb(Uz)))

We now state the axioms which our primitive terms thp, and, prntsym
satisfy:

PI Ar € thp(Az)

P2 [B]:Bethp(dr) .O. B= Uz

P33 [A]:Aethp(A) .O. Ur ethp(A)

P4 [AB]:Acthp(B) .DO. Acthp(A)

P5 [ABC]:Acthp(B). Bethp(C) .O. Aethp(C)

P6 [AB]:Acthp(A). Bethp(B) . Acpred(B) .O. Acthp(B)
P7  [A):Acthp(A) .O. Acexpr

P8 [A]:Aethp(A) .D. Fin{thp(A)}

P10 [AB]:.Acg thp(B) .DO: Aeprcd(B).v.A= B
P11 [AB]:.Acpmtsym(B) .=: Agvrb . Bepmtsym(A) . ~ (A ecnf(B)) :
[C]: Bepmisym(C) .O. Aeenf(C)

[
[
P9 [AB]:Aethp(B) .DO. Bethp(B)
(
(

The system MP consists of system M augmented by the terms
thp(B)  prntsym(B)

and the axioms PI-P11, QI-Q11° stated above. It is within this system
that we formulate the rule of procedure of Protothetic in the next chapter.

We now make several remarks about the axioms. The denotation of
thp(B) cannot be axiomatically prescribed as this term has its precise
meaning only after statement of the rule. The axioms stated here are all of
the properties of thp(B) which will be used in Chapter V. From P11 we can
derive the following theorems

T3.4.1 [A]: Aepmt .D. Asvrb [D3.4.2, P11]
T3.4.2 [AB]: Agpmtsym(B) .O. Agprt.B g prnt [D3.4.2, P11]
T3.4.3 [AB]:Aeprtsym(B) .O. A # B [P11, T2.2.18]
T3.4.4 [ABC): Agprtsym(B) . Bepmtsym(C) .D. Aecnf(C) [P11]
T3.4.5 [AB]: A€ prmtsym(B) .D, B ¢ pratsym(A) [p11]
T3.4.6 [AB]:A¢€prmtsym(B) .DO. ~ (A ccnf(B)) [P11]
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T3.4.6 is the only one of these requirements on parentheses which is
really useful. It prohibits symbols like

=5 +9 6’¢

from being used as parentheses. The other theses are all satisfied by any
non-self-symmetric symbol, where for a symmetric parenthesis we take
the mirror image. It should be remarked that if we take P11 too seriously
then variables and constants could only be self-symmetric symbols like

AV, T, + =, U.

Since we do not wish to observe this requirement in practice, we shall use
as parentheses only those symbols which one normally calls parentheses.

CHAPTER 1V

To formalize a deductive theory is to stipulate directives for deriva-
tion of its theorems in purely syntactical terms. To do this it is necessary
to give precise explanations (definitions) of the metalinguistic terms used
in these directives.

In this chapter we give, in the most precise way that we know, a
formulation of the rule of procedure of Protothetic. The rule itself can be
stated quite succinctly (Cf. 6 below), but the explanation of the terms used
there will require a long sequence of Terminological Explanations (T.E.’S).

Our Terminological Explanations are nothing more than definitions of
metalinguistic terms which apply expressly to Protothetic, and as such
shall use, besides the terms of system M, only those primitive terms which
are peculiar to Protothetic, viz., thp(B) and prntsym(B), which were explained
in Chapter 111, 4.

In order to make the T.E.’s more perspicuous we shall include brief
(and approximate!) renderings into English and shall give some of the
semantical motivation behind these definitions. Finally, we shall prove
several consequences of the T.E.’s which are either interesting in them-
selves or useful later. This material is intended to explain and supplement
the T.E.’s, but only what is in the T.E.’s is necessary for the statement of
the rule.

The general methodology of the T.E.’s is to delimit the possible
senseful expressions by excluding certain undesirable expressions from
consideration, rather than to use inductive techniques similar to those
commonly used in propositional and functional calculi to build up senseful
expressions (wffs). Since we wish to construct a language as free and rich
as possible, all non-essential choices are left open to the individual.
Accordingly, we shall not use specific variables or constants which are
prescribed ahead of time.

1 Quantifiers and Variables (TEI-12). Most theses of Protothetic are
generalizations, i.e., expressions of the form

1) ba - Wipg. )
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which we customarily read ‘““for all p,q, ..., ¥(pg . ..).”” The first part
of (1), viz., the part equiform to
(2) qu ce g

is called a (general) quantifier (more precisely, the quantifier of general-
ization (1)), and the remainder, viz., the part equiform to

®3) "Wipg .. )

is called a subquantifier (more precise.ly, the subquantifier of generaliza-
tion (1)). The words in the quantifier are called binders of the words
equiform to them in the subquantifier which are called variables. Without
further ado we give precise definitions of these, and some related,
syntactical notions.

TEI' [A]:Agtm .=,
Agvrb.
Aewn [prnt] .
Aenw [cnf(lvrb(?l:))] .
Ae ~ [enf(4vrb(Ur))) .
Ae n~ [enf(5vrb(%r1))] .
Ae ~ (enf(Uvrb(dr)))

A term is any word which is not a parenthesis or corner, where by
corner we mean any word equiform to one of the following words:

A
Loy Jdy ’

It should be clear that corners are not parentheses, for otherwise the last
four conjuncts'' of TEI would not be necessary.

TE2 [A]:Aeqntf .=
1vrb(A) ecnf(lvrb(Ur)) .
Uvrb(A) e enf(4vrb(ir)) .
Int(A) e Cmpl(trm N int(4)).
A g non-rep

A quantifier is a string of non-equiform terms enclosed in lower
cgrners. Thus

Lp_l’ Lpfw_l’ quf{)_n

are examples of quantifiers, but the following are not:

_np_n’ La? Lp(q_l’ quJ'

By TE2.3 Int(4) is an individual and hence any quantifier contains at least
three words. Note that the terms in a quantifier are neither repeated or
separated by commas, as there is no need to do so. Variables of different
syntactical categories may be in the same quantifier, thus eliminating the
need of adjacent quantifiers. Later T.E.’s will prevent constants like o and
¢ from occurring in quantifiers.
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When we say quantifier we always mean general quantifier. The
particular quantifier is not definable in Protothetic.

T4.1.1 [A]:Agqgntf .. [3B]. Beint(4)

Hyp(1) .2
2. Int(A) e Kl(int(A)) . [TE2, D14]
[3B]. Beint(A) [2,T2.3.4]
T4.1.2 [AB]:Aeqntf. Beint(4) .O. Betrm
Hyp(2) .D.
3. Int(4) e Cmpl(irm N int(A)) . [1, TE2]
4, Bevrb(int(4)) . [T2.3.9, 2,D13, T2.2.9, D14]
5. trm N int(4) € vrb. [TE1]
Betm [r2.5.10, 5, 4, 3, T2.5.7]
T4.1.3 [A]: Acqgntf .DO. Acexpr [TE2, T2.5.15)

The next few lemmas are used to prove that overlapping quantifiers
are identical.

T4.1.4 [ABCD]:. Acqntf. Beqntf .D epr(1vrb(B)).D evrb(A) .
Cevrb(A) Nvrb(B): 1vrb(B) e pr(C) .v. lvrb(B) = C: D. D e vrb(B)

Hyp(6) .>.
7. Acgexpr. (1, T4.1.3]
8.  1vrb(B)svrb(A). [7,D4, 4,5, 3, 6]
9. tvrb(B) e ~ [lvrb(4)]. (T2.1.33, 3,4]
10. 1vrb(B) € int(A) U Uvrb(A) . D13, 8,17, 9]
11. Tvrb(B) £ enf(lvrb(Ur)) . [2, TE2]
12. lvrb(B) e ~ [trm]. [11, TE1]
13. vrb(B) e Uvrb(A) . [T4.1.2, 1,10, 12]
14. Uvrb(A) £ enf(dvrb(z)) . [1, TE2]
15. 1vrb(Uz) scnf(4vrb(Uz)) . [11, 13, 14, T2.2.20, T2.2.21]
Devrb(B) (15, Q4]

In the proof of this theorem the use of @4 is essential. It states that
the words . and - are not equiform.

T4.1.5 [ABCD}: Aeqntf .Beqntf .Depr(C).D evrb(A).C evrb(A) Nvrb(B) .D.

D evrb(B)
Hyp(5) .2
6. Beexpr . [1, 74.1.3]
7. 1vrb(B) £ tvrb(B). [2,T2.2.27, T2.2.30]
8. ~(Cepr(lvrb(B))): (D3, 5, 7]
9. 1vrb(B) e pr(C) .v. lvrb(B) = C: [T2.2.16, 8,5, 7, T2.2.9]

10. Tvrb(B) e pr(D) .v.D e pr(lvrb(B)).v.D = 1vrb(B):
[T2.2.16, 7, 4, D3, T2.2.9]

D evrb(B) (10, 6, D7, 3,5, T4.1.4, 1,2, 4,5, 9, D3]
T4.1.6 [ABCD]: Aeqntf. Beqntf .C epr(D).D evrb(A).
Cevrb(A4) Nvrb(B) .D. D evrb(B) [Sim., T4.1.5]

T4.1.7 [ABCD]:Agagntf. Be qntf.C evrb(A) N vrb(B) .D gvrb(A) .D. D g vrb(B)
[T2.2.16, T4.1.5, T4.1.6, T2.2.9]
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T4.1.8 [ABC):Agqntf. Beqgntf. Cevrb(A) Nvrb(B).DO. A = B [T4.1.7, T2.2.2]
TE3 [A]:.A g sbantf .=:

A gexpr-w-int:

[C]: Cehd(A) .2. CeMtch(Uvrb(¥r) Svrb(Az)) :

[C]: Cetl(A) .. CeMtch(Svrb(Ur) Uvrb(Ar))

A subquantifier is an expression enclosed by upper corners such that
upper corners occurring in it are properly paired. TE3.2 stipulates that
any initial segment of a subquantifier contains more left upper corners
than right upper corners. Thus

7 "), T
are subquantifiers, while

rH re, e "

s b b4

are not. Notice that there is no requirement about parentheses being
matched.

T4.1.9 [A]: A€ sbgntf .. A cexpr [TE3, T2.5.13]

Now we shall prove the first (last) word of a subquantifier is a left
(right) upper corner and that a subquantifier contains the same number of
left and right upper corners.

T4.1.10 [A]:A € sbgntf .D. 1vrb(A) e cnf(Svrb(Az))

Hyp(1) .=
2. Acexpr. [T4.1.9, 1]
3. Ae w~ [vrb]. (TE3, 1, D15, T2.5.18)
4. 1vrb(A) ehd(4) . [T2.5.50, 2, 3]
5. (virb(lvrb(4)) N enf(Uvrb(Ar))) < (vrb(lvrb(A)) N cnf(Svrb(AUz))) .

[TE3, 1,4, D20]

6. (1vrb(A) Nenf(Uvrb(%Az))) < (Tvrb(A) Nenf(Svrb(Ur))) .
(5, T2.2.10, T2.2.30, D3]
7. — (1vrb(A) N enf(Svrb(Ar))). [ont. 9, 4]
8. 1vrb(A) Nenf(Svrb(YAz)) eV . [Ont. 10, 1, 6]
1vrb(A) ecnf(Svrb(z)) . [Ont. 11, 4, 8]
T4.1.11 [A]: A€ sbgntf .D. Uvrb(A4) ecnf(Urvb(dr)) [Sim., T4.1.10]

T4.1.12 [A]: A€ sbgntf 2. (vrb(A) N enf(Svrb(Uz))) ©(vrb(A) N cnf(Uvrb(Az)))
Hyp(1) .2

2. A gexpr. [14.1.9, 1]

3. Uvrb(A) e enf(Uvrb(%r)) . [r4.1.11, 1]
[3B].

4. Beint(4). [TE3, 1, T2.5.12]

5. Bevrb(A). [4, D13]

6. B epr(Uvrb(4)). [T2.2.36, 5, 4, D13]
[3C].

7. C e Kl(vrb(A4) N pr(Uvrb(A))) . [T2.1.1, 5, 6]

8. Uvrb(4) e ~ [vrb(C)] . (7, T2.3.10, T2.2.13, T2.2.9, 3]
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9. C s expr. [12.5.47, 2, 17]
10. C e Cmpl(vrb(A) N pr(Uvrb(4))) .
[D12,7,9,T2.2.9, T2.4.2, T2.5.2)
11. Cehd(4). [T2.5.49, 10, 2, 3]
12. vrb(C) N enf(Uvrb(%z)) < vrb(C) N cnf(Svrb(Yr)) .
[TE3, 1, 11,D20]
13. (vrb(C) U Uvrb(A))ovrb(A) . 7, D1, D5, T2.2.7, T2.2.36]
14. Uvrb(A) U (vrb(C) N enf(Uvrb(Ur))) < Uvrb(Ur) U (vib(C) N
cnf(5vrb(Uz))) . (12, 8, Ont. 12]
15. (Uvrb(A) U vrb(C)) N (Uvrb(A) U enf(Uvrb(Uz))) <
(Uvrb(A4) U vrb(C)) N (Uvrb(A) U cnf(Svrb(¥r))) . [14]
16. vrb(A) N enf(Uvrb(Ar)) < vrb(A) N (Uvrb(A) U enf(Svrb(%z))) .
[15, 13, 3]
17. vrb(A) Nenf(Uvrb(%z)) < (vrb(A) N Uvrb(A)) U (vrb(4) N
enf(5vrb(dz))). [16]
18. vrb(A) Nenf(Uvrb(dUz)) = vrb(A) N enf(Svrb(dr)) .
(17, Ont. 13, 8, D5]
19. vrb(A) N enf(Svrb(Uz)) = vrb(A) N enf(Uvrb(YAr)) . [Sim., 18]

vrb(4) N cnf(5vrb(dUz)) = vrb(A) N enf(Uvrb(Ar)) [18, 19, Ont. 20]
The following theorems, which are not used later, are stated without

proof.

T4.1.13 [AB]:A g shgntf. B & sbqntf. 1vrb(A) = 1vrb(B) .O. A = B
T4.1.14 [ABC]:.A ¢ sbantf . B g sbaqntf . C e vrb(A) N vrb(B) .DO: A £ ingr(B) .v.
Beingr(A)

This last theorem cannot be strengthened to identity for consider the
subquantifier

"4 (us"up))

which contains properly a subquantifier equiform to

r.A
u .
T4.1.14 rules out situations like
A
,d‘
rlllrngl-‘lll—‘l
N —
B
TE4 [ABC]:A £Gnrl(BC) .=.
Beagntf.
C € shantf .

A gConcat(BC)
A is a genevalization with quantifier B and subquantifier C.
TE5 [AB]:AeQntf(B) .=. AgA .[3C]. BeGnrl(AC)

A is the quantifier of generalization B.
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TE6 [AB]: Ae Sbqntf(B) .=. A A.[3C].BeGnrl(CA)
A is the subquantifiev of generalization B.
TE7 [A):A egnrl .=. Ae A.[3BC]. AeGnrl(BC)

A is a generalization.
A generalization is an expression of the form

r a
Le o oy s

i.e., it consists of a quantifier followed by a subquantifier. We will prove
that every generalization has a unique quantifier and subquantifier.
However a generalization may contain many quantifiers and subquantifiers.
Thus in the generalization

Db, r¢(¢(PL7’J r—7"_') L'V_Jr-'r—l)-l
the two expressions equiform to
L7a

are quantifiers in the generalization, but not of the generalization. Hence
“‘having’’ must be distinguished from ‘‘containing.”” The following are
examples of expressions which are not generalizations.

r r ul
DL o), bua, () .
Instead of the second of these Protothetic uses

0a, "o(pa)’ .

Hence adjacent quantifiers will never occur in Protothetic.

T4.1.15 [ABCD]}:AeGnrl(BC).D eGnrl(BC) .D. A= D [TE4, D16, T2.5.7]
T4.1.16 [ABC]:AeGnrl(BC) .0. Acexpr [TE4, D16, D12]
T4.1.17 [ABC):AeGnrl(BC) .2. B eingr(A) [TE4, T2.5.30]
T4.1.18 [ABC]:AeGnrl(BC) .2. C gingr(A) [sim., T4.1.17)
T4.1.19 [ABC]:AeGnrl(BC) .2. 1vrb(A) = 1vrb(B) [TE4, T2.5.33]
T4.1.20 [ABC]:A ¢Gnrl(BC) .2. Uvrb(A) = Uvrb(C) [Sim., T4.1.19]
T4.1.21 [A]:Aegnrl .=, [3B]: BeQntf(A) [TE7, TES, TE4]
T4.1.22 [A]:Aggnrl .= [3C].C £Sbantf(A) [rE7, TE6, TE4)
T4.1.23 [AB]:A&gQntf(B) .O. A gqntf |TE5, TE4]
T4.1.24 [AB]:AeSbgntf(B) .D. A ¢ sbgntf [TE6, TE4]

After the rule of Protothetic is stated we will be able to prove partial
converses of the above two theorems: If (sub)quantifier A is an ingredient
of a thesis of Protothetic then A is the (sub)quantifier of some generaliza-
tion.

TES8 [AB]:. AeEssnt(B) .=: AcA:Acelnt(Sbqntf(B)) .v. A = B.Agexpr.
Ae N [gnrl]
A is the essence of B.

The essence of B is the interior of the subquantifier of B if B is a
generalization, and B otherwise.
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T4.1.25 [A]:A egnrl D, vrb(Essnt(A)) o int (Sbgntf(A))

Hyp(1) .D:
2. [B]: B gEssnt(A) .=. B & Int(Sbqntf(A)): [1, TES]
3. Essnt(A) o Int(Sbgntf(A4)) . (2]
4, virb(Essnt(A)) o vrb(Int(Sbgntf(A))) . (3]
vrb(Essnt(4)) o int (Sbantf(4))  [4, T2.5.22, T2.3.9, D13, T2.2.9, D14]

TE9 [AB]:A ebd(B) .=. A € int(Qntf(B))

A is a binder in B.
A binder is a word in the quantifier of a generalization. This T.E. is
purely abbreviatory yet frequently used.

T4.1.26 [AB]:A ebd(B) .D. A evrb(B)

Hyp(1) .2
2. A gint(Qntf(B)) . [TE9, 1]
[z¢].
3. CeQntf(B). [2,D13]
4, Agvrb(C). [2, 3, D13]
[gD] .
5. B eGnrl(CD). (3, TES]
6. Ceingr(B). [5. TE4, T2.5.30]
A gvrb(B) [T2.4.10, 4, 6]
T4.1.27 [AB]:A €bd(B) .2. [3C].Ceqntf. Acint(C)
Hyp(1) .>.
2. A gint(Qntf(B)) . [TE9, 1]
[3C].
3. Acgint(C).
4. C & Qntf(B) . } [2, D13]
5. C eqntf. [4, T4.1.23]
[3C].A eint(C) . C e gntf [3, 5]
T4.1.28 [AB]:A gbd(B) .2. Bggnrl [TE9, D13, T4.1.21)

It is important to remember that binders are not just words in
quantifiers, but words in quantifiers of generalizations.

T4.1.29 [ABC|:A ebd(B).Cebd(B).Agcnf(C) D.A=C

Hyp(3)..2.
4, A gint(Qntf(B)) . [1, TE9]
5. Ceint(Qntf(B)) . [2, TE9]
[3D].
6. D eQnif(B). [4, D13]
1. Agint(D). (4, 6]
8. Ceint(D). (5, 6]
9, Deqntf. [6, T4.1.23]
A=C 9, TE2, D19, 3, 17, 8,D13]
TE10 [ABC):.Agvar(BC) .=:
Bebd(C).
A gint(Sbgntf(C)) .
A eenf(B):

[DE]:Deingr(C).Ecbd(D).A ecnf(E) .Aevrb(D) . D.D=C
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A is a variable bound by B in generalization C. This very important notion
will be used constantly, so we give several examples. Consider the
following generalization

B
A: b, "o(ve(d) Lo, boD))

Bl V1 Bz V3 V4

In this example we have pointed to certain words to name them. This will
avoid cumbersome description like ‘“B; is the name of the second word of
A,”’ “B is the name of the Complex of the 11th through 20th words of A.”’
Referring now to this diagram we can say V; & var(B; A), and moreover V;
is the only variable of A. Vievar(B, B) and V,&var(By B), so it should be
clear that one binder can bind several variables. But neither V; nor V, is a
variable in A. Since quantifiers contain no equiform words no variable can
be bound by more than one binder. This prompts us to prove

T4.1.30 [ABCDE]:A gvar(DC).B¢var(EC) . Acgcenf(B) . D. D=E
Hyp(3) ..

4. Ds bd(C) .
5. Aecnf(D). } [1, TE10]
6. Eebd(C).
7. Becnf(E). } [2, TE10]
8. Decenf(E). [3,5,7, T2.2.20, T2.2.21]
D=E [T4.1.29, 4, 6, 8]
T4.1.31 [ABC]:A gvar(BC) .D. Bevrb(C) [TE10, T4.1.26]
T4.1.32 [ABC]:A € var(BC) .D. C £ gnrl [TEI10, T4.1.28]

TE11 [ABC)]:.A €cnvar(BC) .=: A gA .[3D].A e var(DC).B g var(DC)
A is an equiform variable with B in C.
TE12 [AB]:A g€var(B) .=. A € cnvar(AB)

A is a wvariable in the generalization B. As an example consider the
generalization A:

L 8(0(0g) $(gp))
RENA

Bl BZ Vl V2 VS V4
We have

Vigcnvar (V4 A), V€ cnvar (Vg A)
Vievar(B; A), Vszevar(ByA)
Vievar(4), (i=1,2,3,4)

The following theorems are obvious:

T4.1.33 [ABC]:A € cnvar (BC) .2. A € cnvar (AC) [TE1I1]
T4.1.34 [ABC]:A € cnvar (BC) .2. A € var(C) [T4.1.33, TE12]
T4.1.35 [AB]:A € var(B) .D. B & gnrl [TE12, TE11, T4.1.32]
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T4.1.36 [AB]:A gvar(B) .=. [3C].A € var(CB) [TE12, TE11]
T4.1.37 [ABC]:A € cnvar(BC) .D. Becnvar(AC) [TEI1I]
T4.1.38 [ABC]:A gcnvar (BC) .D. Agenf(B) [TEI11, TE10, T2.2.20, T2.2.21]
T4.1.39 [AB]:A gvar(B) .O. Betm [T4.1.36, TE10, TE9, T4.1.2, TE1]

2 Functions and Avguments (TEI13-29). We previously remarked that
almost all theses of Protothetic are generalizations of the form

1 D W)

More precisely, the essence of (1) is usually a many-link-function, i.e., an
expression of the form

(2) Skpq .. FAfg YU
In (2) the links, i.e., the expressions like
3) £q ... F tfg... (p..)

are called parenthemes and consist of an expression enclosed between
symmetric parentheses. Each parentheme can be uniquely decomposed into
an expression of the form

(4) '<a1 Ay . . . Qg >

where each a; is a term, generalization, or another function like (2). These
a’s are called the arguments of the parentheme (4). Besides these notions
we shall develop vocabulary for comparing parenthemes and the arguments
of different parenthemes.

TE13 [A]:.A eprntm .=
A gexpr-w-int:
[Cl:Cehd(4) .O. C eMtch(Uvrb(4) 1vrb(A)):
[C]:Cetl(A) .O. C e Mtch(1vrb(A4) Uvrb(A)):
1vrb(A) € protsym(Uvrb(A))

A is a parentheme. In a parentheme the first and last word are symmetric
parentheses, and those parentheses within A, which are equiform to either
the first or last parentheses of A, are properly mated. As examples of
parenthemes consider

(p)’ :é(p*%:y <Lu-1 rf(u)-l) (>°

One should also see the remarks concerning subquantifiers (TE3) as the
T.E.’s are quite similar. The following theorems are analogous to those
following TE3 and so no proofs are given.

T4.2.1 [A]:A eprntm .D. 1vrb(A) & prnt

T4.2.2 [AB]:A eprntm.B € prnitm . 1vrb(A) evrb(B) .D. A £ingr (B)
T4.2.3 [AB]:A gprntm.B gprntm. 1vrb(4) = lvrb(B) .D. A= B
T4.2.4 [AB]:Agprim .D. A gexpr

We cannot prove yet that if two parenthemes have a word in common
then one is an ingredient of the other, for consider
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stkarst.

A

Here parenthemes A and B are not disjoint, yet neither is part of the other.

TE14  [Aa]:.A gFnct(@) .=: lvrb(A) etrm :
[C]:Cea 2. Ceprim:
A £Cmpl(lvrb@) U a)

A is a function with paventhemes a.

TE15 [A]:Agfnct .= AgA .[3a].A eFnct(a). {a}
A is a function. A function is of the form

€. . F £ (.

The conjunct !{a} in TE15 prevents terms from being functions. Hence we
know a function has at least one parentheme. The many-link-functions we
spoke of earlier are functions with more than one parentheme.

T4.2.5 [A]:A etrm .DO. AgFnct(A)

Hyp(1) .2
2. Aevrb.
3. 1vrb(A) evrb@) .
4. vrbA) = A .
5. 1vrb(A) etrm .
6. 1vrb(A) € expr .
7. A eCmpl{vrb(4)).
8. vrb(A)olvrb(A) U A.
9. A eCmpl(lvrbA) U A).

A gFnct(A)

T4.2.6 [Aab]:A eFnct(a).A eFnct(b) .D. aob

T4.2.7 [A]:A gfnct .D. 2vrb(A) g prnt

Hyp(1) 2.
[3a].
2. A €Fnct(a) .
3. 1(a).
[3C].
4. Cea.
5. C g prntm.,
(3D].
6. Deint(C).
7. Ceingr(A).
8. Deint(4).
9. Ae ~ [vrb].
10. [3B].Be2vrb(4).
11. 2vrb(A) evrb(A) .
[3B].
12. Be(lvrb(4A) U a).
13. 2vrb(A) evrb(B). }

[TEI1, 1]

[1, T2.2.27, T2.2.30, D3]
[3, 2, T2.2.10]

(1, 4]

[3, T2.4.2, T2.2.9]
[T2.5.8, 6, 4]

[4, 3, T2.2.10]

(7, 8]

[TE14, 5, 9]

[TE14]

(1, TEI5]

(3]

(2, 4, TE14]

[5, TE13, T2.5.12]
(4, 2, TE14, T2.5.9]
(6, 7, D10, D13]

(8, T2.5.18]

[9, T2.2.29]

[10, T2.2.40, D4]

[11, 2, TE14, D12, D1]
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14. Bea.
15. Ivrb(A) & » (vrb(B)) . ) (12,13, 72.2.39]
16. Beprtm, [TE14, 14, 2]
17. Beingr(A). (14, 2, TE14, T2.5.9]
18. 2vrb(A) = 1vrb(B). [13, 15, 17, T2.2.41]
19. 1vrb(B) e prnt. [16, T4.2.1]
2vrb(A) € prnt [18, 19]
T4.2.8 [A]:Aegfnct .O. Uvrb(A) € prnt [Sim., T4.2.7]

TE16  [AB]:Aepmtm(B) .=. AgA.[3a].BeFnct(a) . Aca
A is a parentheme of the function B.

T4.2.9 [AB]:Agpmim(B) .DO. Befnct [TE16, TE15]
T4.2.10 [AB]:A eprmtm(B) .D. A € prntm [TE16, TE14]

Clearly a function can have several parenthemes, but it is not so clear
that a parentheme can be a parentheme of several functions. Consider the
function A:

C
s4pgF 13 (ps)

N — e’
B

C is a parentheme of A and also of the function B.

TE17 [Aa]:. AgP-arg(a) .=
Acgprntm:
[c]:Cea .D. Cetrm U gnrl U fnct :
Int(A4) e Cmpl(a)

A is a paventheme with avguments a.
TE18 [AB]:Acarg(B) .=. AcA.[3a]. BeP-arg(a) .A €a

A is an argument of parentheme B. The most important thing to remember
is that arguments can only be terms, generalizations or functions.

T4.2.11 [AB]:Agarg(B) .O. Aetrm U gnrl U fnct [TE18, TE17]
T4.2.12 [AB]: Agarg(B) .2. B £ pmtm [TE18, TE17]

Only parenthemes have arguments. We will not speak of functions
having arguments, but only of their parenthemes having arguments. We
cannot prove that all parenthemes have arguments, for consider the
parentheme:

(r).
r is the only thing which has a chance of being an argument, but it is

neither a term, generalization nor function. So this parentheme has no

arguments.
The requirement that arguments be terms, generalizations or functions
is quite natural from a semantical point of view; we certainly do not want
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corners, parentheses, quantifiers or any meaningless expressions to occur
as arguments. Syntactically it is easy to say to which of these three
classes an argument belongs. Terms are always single letters, but not
corners or parentheses. Generalizations always begin with . and end with
7. Because of the condition on matching corners we can always find the
end of a generalization. Functions always consist of a term followed by a
number of parenthemes. All of this is intended to convince one that we do
not need commas between the arguments. Consider, for example, the
following parentheme A:

A, A, Ay A,

I
(g Ve(p) b, $(bD)" 24SY)

The first argument must begin with the first word in Int(A), i.e., q. Since
the third word of A is a term, the first argument of A must be just the
second word of A. As the 4th word of A is a parenthesis the 3rd word
cannot be an argument by itself. So the 4th word is part of the second
argument and moreover it begins a parentheme of the function which must
be the second argument of A. This parentheme ends with the 6th word of A.
As the 7th word is equiform to . it cannot begin a new parentheme of the
function which is the second argument and so begins the third argument.
Since words equiform to . can only start generalizations the third argument
can only be a generalization. Going to the end of A; we find that the next
word is a term and so is either an argument by itself or begins a function.
Since the word after & is a parenthesis we see that the last argument is A,.
This argument should convince one of the plausibility of the following
theorem which states that parenthemes with arguments have those argu-
ments uniquely.

T4.2.13 [Aab]:A ep-arg(a):A €p-arg(d) .D. aobd
We also have
T4.2.14 [ABC):Agarg(B).Agarg(C) .D.B=C

We now begin a sequence of T.E.’s which will enable us to discuss
corresponding arguments of parenthemes and analogous functions. The
semantical reason for these syntactic requirements is as follows: We want
the number of arguments and shape of the parentheses of a parentheme to
indicate the syntactical categories of its arguments.

The idea is to say—and this is the purpose of the next paragraph—that
corresponding arguments enclosed in the same type of parentheses are of
the same syntactical category. Thus for example when we write

Y(g), Y(ou, "u’)

we want p and ¢, and also ¢ and (u_ "« to belong to the same category.
We avoid things like

1), @(f)
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Since we could conclude that p and f and also f and & are in the same
category. Hence f and p are in the same category. But a functor and an
argument of its parentheme being in the same category smacks of the
Russell Antinomy.

TE19 [AB]:Ag¢simprnim(B) .=,
A eprntm.
B¢ prntm.
1vrb(A) ecnf(lvrb(B)).
arg(A) «arg(B)

A is a paventheme similar to B. Because of T4.2.12, i.e., the only things
with arguments are parenthemes, it seems TE19.2 could be dropped. This
is indeed the case if we knew parentheme A had any arguments. Consider
<t> and <<t>, The first of these is a parentheme with no arguments.
The second also has no arguments, since it is not even a parentheme. This
establishes the independence of TE19.2 (or TE19.1).

The following parenthemes are similar,

b9), (Lo, "3PD)" ), (F(t) @<f>)

but none of these is similar to any of the following

®), (pg7), £ 0)

T4.2.15 [AB):A gprntm .D. A gsimprntm(A) [TE19, Ont. 14, T2.2.18)
74.2.16 [AB]: A gsimprntm(B) .D. B £simprntm(A) [TE19, Ont. 15, T2.2.20]
T4.2.17 [ABC]J:A gsimprntm(B) . B £simprntm(C) .D. A &simprntm(C)
[TE19, Ont. 16, T2.2.21]

TE20 [ABCD]:A gAnarg(BCD) .=.

A garg(C) .

Bearg(D).

(arg(C) N pred(A)) < (arg(D) Npred(B)) .

C gsimprntm(D)

A is an analogous avgument to B, which are arguments of C and D respec-
tively. Intuitively two arguments are analogous when they are both the n-th
argument of their corresponding parenthemes. For example in the similar
parenthemes

(Pf(@) Lu,"u")
and
(t* o< f>)
p is analogous to ¢, f(g) to * and Lu_ "u' to ®<F>.

T4.2.18 [ABCD].A gAnarg(BCD) .O. C gprntm . D g pratm [TE20, TE19)
T4.2.19 [ABCD]:A ¢ Anarg(BCD) 2. A £ Anarg(ACC)

[TE20, Ont. 14, T4.2.18, T4.2.15]
T4.2.20 [AC]:A garg(C) .O. A eAnarg(ACC) [TEZ20, Ont. 14, T4.2.15, T4.2.12]
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TE21  [ABCDEF]:A gAnfnct(BCDEF) .=,
CeConcat(AE) . AcA
D £Concat(BF).
E gsimprntm(F) .
Cefnct.
D g fnct
TE22 [ABCD]:A & Anfnct(BCD) .=. A €A .[3EF].A ¢ Anfnct(BCDEF)

A is an analogous functor to B in C and D respectively. By a functor we
mean either a function or term which is followed by a parentheme. Two
functors are analogous when the parenthemes following them are similar.
For example, in the functions

Vr(pg), ®4fF(Eusu’)

the functors Vr and &<€f¥ are analogous, but are not analogous to any
functor of the functions

f), vr [ fal , Xtpa ¥ (stu) .

T4.2.21 [ABCD]:A g Anfnct(BCD) .2. A € Anfnct(ACC) [TE22, TE21]
TE23 [ABCD]:.A € An(BCD) .=: Ag A: AcAnarg(BCD) .v. A € Anfnct(BCD)

A is analogous to B which are in C and D respectively iff A and B are
either analogous arguments of parenthemes C and D respectively or
analogous functors of C and D respectively.

T4.2.22 [ABCD]:Ag An(BCD) .D. A £ An(ACC) [TE23, T4.2.19, T4.2.21]
T4.2.23 [ABCD]:A € An(BCD) .O. Be An(ADC) [TE23, TE22, TE21, TE20]
TE24 [AB]:A glarg(B) .=. A € Anarg(10vrb(dr) B Cmpl(9vrb(3z) U

10vrb () U 11vrb(¥r) U 12vrb(dr)))

A is the first avgument of parentheme B.

TE25 [AB]:A €2arg(B) .=. A £ Anarg(11vrb(z) B Cmpl(9vrb(%z) U
10vrb(Ur) U 11vrb(Uzr) U 12vrb(Ar)))

A is the second avgument of parentheme B. It is important to remember
that we are speaking of the arguments of very special parenthemes, viz.,
those similar to

(bq)

which is equiform to the Complex of the 9th through 12th words of our
axiom Ur.

TE26 [AB]:.A € leqvl(B) .=: 1vrb(B) e cnf(6vrb(¥r)) :
[3C].A elarg(C) . BeConcat(lvrb(B)C) :AeA

A is the first equivalence of B.

TE27 [AB]:.A¢ 2equl(B) .=: 1vrb(B) ecnf(6vrb(dr)) :
[3€].A g€2arg(C) . Be Concat(lvrb(B)C) :A e A

A is the second equivalence of B. B is a function of the form
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¢(--),

where ¢ is to be interpreted as the biconditional.

T4.2.24 [AB]:A elequl(B) .O. Befnct

Hyp(1) .2

2. 1vrb(B) ecnf(6vrb(Ur)) . [1, TE26 ]

3. 1vrb(B) etrm . [2, TE1, Q7]
[3C]. )

4, A glarg(C) .

5. B £ Concat(1vrb(B)C) . } (1, TE26]

6. C eprntm. [4, TE24, TE20, TE19]

7. B g Fnct(C) . [TE14, 3, 6, 5]
B ¢ fnct [6, 7, TE15]

TE28 [AB]:A eltrm(B) .
A is the first tevm of B.
TEZ29 [AB]:A €2trm(B) .=. Ag 2eqvl Essnt(B))

. A & leqvl(Essnt(B))

i

A is the second term of B. There are two cases to consider here. If B is a
generalization then it is of the form

ARG

where the first dash indicates its first term and the second dash its
second term. If B is not a generalization then Essnt(B) = B and hence is of
the form

(=)

These forms are extremely important in Protothetic. All definitions have
one of these two forms, although the second is used only in defining
constants. All theses of extensionality have the first form.

3 Syntactical Categories (TE30-33). No one today would consider the ex-
pression

Y

as meaningful, yet there is still considerable debate as to how to preclude
such expressions from arising in formal languages. Le$niewski’s solution
was to introduce the concept of semantical category into his logical
theories. The main semantical criteria for two expressions to be of the
same semantical category is that they be intersubstitutable in all contexts.
We cannot use this as a criteria for defining semantical categories, but it
is the main motivational force behind what we now do.

TE30 [AB]:Acgingrthp(B) .=. Ae A.[3C]. Cethp(B). Agingr(C)

A is an ingrvedient of a thesis of Protothetic with respect to B. This term
is purely abbreviatory so we make no further comment.
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TE31 [AB):.Acfrip(B) .=: A g A:A ethp(B) .v.[3C].C gingrthp(B) . C € sbgntf .
A glInt(C) .v.[3C].C & ingrthp(B) .A £larg(C) .v.[3C]. C gingrthp(B) .
A g2arg(C)

A is a (propositional) phrase with respect to B. This is a start toward
building up the syntactical category of propositions. Clearly we should
include all theses and essences of generalizations. We also include the
arguments of parenthemes similar to

(5) (pq)

i.e., both p and ¢ are to be called propositions. One should realize that
frp(B) does not include everything which is in the syntactical category of
propositions, for consider the definition of Verum:

(6) LD, TS (pD) Ve (D)’

It is not the case that the p in Vr(p) is a phrase. Since we want it to be of
the same category as the p’s in ¢(pp) we must enlarge our notions so that
equiform variables are of the same category.

Immediately after the above definition we could make the following
definition.

(7 LI ERET))

The question of what syntactical category f belongs to cannot be answered
on the basis of equiform variables. It is the case that the f in f(p) is
analogous (in the sense of TE22) to Vr in Vr(p) and hence it is natural to say
they are in the same syntactical category. These two remarks motivate

TE32 [ABC]:.A¢lhomosemp(BC) .=: AgA:Aefrp(C).Befrp(C) .v.[3D].
D gingrthp(C) .A € cnvar (BD) .v. [3DE]. D g ingrthp(C) . E € ingrthp(C) .
A ¢ An(BDE)

A is a divect homoseme of B with respect to thesis C. This means that A
and B are in the same syntactical category.
The following theorems are easily proved.

T4.3.1 [ABC]: Aethp(B).C ethp(B) .2. A & Thomosemp(CB) [TE32, TE31]
T4.3.2 [AB]:Agthp(B) .O. Aglhomosemp(AB) [14.3.1]
T4.3.3 [ABC]:A € 1lhomosemp(CB) .D. A & lThomosemp(AB)

[TE32, T4.1.33, T4.2.22]
T4.3.4 [ABC]:A & 1homosemp(BC) .2. B ¢ 1homosemp(AC)

[TE32, T4.1.37, T4.2.23]

These last two theorems show reflexivity and symmetry, but transi-
tivity is still lacking. The following example shows why

(8) b, "o(b(pp) Vr ()
I ‘\III
(9) LTS, ) a<>)!
A4

I
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Vr and f are in the same category since they are analogous functors
(arrow I). The two f’s in (9) are in the same category (arrow II) since they
are equiform variables. But Thomosemps are connected by analogy or by
equiform variables, but not by both. Hence, Vr and the second f in (9) are
not lhomosemps (arrow III).

In order to obtain transitivity, and hence arrow III, we must induct. As
we have no recursive definitions we use the Frege-Dedekind technique of
ancestral relations. Before giving TE33 let us see how it works. We want
A and B to be in the same class iff there is a finite sequence

A, C, Cy...,Cn,B

such that adjacent terms are lhomosemps. We insure this in the following
way. Let a be any class which includes B and which is closed under the
relation of Thomosemp, Z.e.,

[DE]:D ea .E € 1Thomosemp(DC) .2. Eca

(this is the condition which guarantees transitivity). Now take the smallest
class which satisfies these properties. (For a simpler example of how this
works see Ledniewski [20]).

Finally we remark that the clause

[D]:Dea .O. D & 1homosemp(DC)

is included in TE33 so that the intersection is finite. This is true since we
consider only a’s which are subsets of Thomosemp(DC). These sets are finite
(for any given D and C) since, at any given time, Protothetic contains only a
finite number of theses with respect to B and each of these contains only a
finite number of expressions and hence Thomosemps. If we were willing to
take an unrestricted quantification we could drop this part of the T.E.

TE33 [ABC]:: Achomosemp(BC) .=:. Ac A.
B € Thomosemp(BC) :.
[a]:.Bea:[D]:Dea .2. D elhomosemp(DC) :[DE]:D¢ea .
E & 1homosemp(DC) .O. Eca :D. A ca

A is of the same syntactical category as B with respect to thesis C.
T4.3.5 [AC]:A¢&lhomosemp(AC) .DO. A ghomosemp(AC) [TE33]
We shall now prove transitivity.

T4.3.6 [ABCDal]:: A ¢homosemp(BC). Bshomosemp(DC) .Dea:lE]:Eca O
E € lhomosemp (EC) : [EF]:E ea .F € lhomosemp(EC) .O. Fea:.D. Aca.

Hyp(5) .D:-:
6. [2]:.Dea:[E]:Eea .O. E g lThomosemp(EC) : [EF].E ca .
F & 1homosemp(EC) .O. F €a :.0. Be a:. [TE33, 2]
7. Bea. [673’4!5]
Asa [1, TE33, 1, 4, 5]

T4.3.7 [ABCD]:A € homosemp(BC) .B ghomosemp(DC) .D. A £homosemp(DC)
[TE33, T4.3.6]
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4 Special Terms (TE34-45). In this section we give several very technical
Terminological Explanations. They are designed for special uses in the next
section and consequently we shall discuss them in the context that they will
be used.

TE34 [ABCD]:.CeAntrm(DAB) .=: CeC:Celtrm(A). De ltrm(B) .v.
Ce2trm(A) . Dg 2trm(A)

This is used only in TE47, the rule for distribution of quantifiers.
This gives us a method to relate analogous terms of generalizations where
the essence is an equivalence. The following diagram may be useful.

B: L* " g r#(— —)-I
Pt

D D'

'

i
A: Lt ré(_ _.)—'
TE35 [CDEa):Deg Cort(ECa) .=.
DeD.
Ega.
(@ N prcd(E)) = (int(Sbgntf(C)) N pred(D))

This correspondence is used only in formulating the rule of substitu-
tion (c¢f. TE49 below). Taking advantage of some knowledge from TE49 we
can say that Corr will be used only in the following situation

C: L"'_,'_‘,D('...p...%‘-l

aa a a
—~

A v U 0(t) .Y
where D is one of the words in the essence of C and E is one of the a’s in

A, in particular E is that ¢ with the same number of a’s preceding as D has
words of Essnt(C) preceding.

TE36  [AB]:.Agfnctgen(B) .=:
A g fnct.
pratm(A) = prntm(B) :
[cD]: Ceprtm(A) . D gprntm(B) . (prntm(A) N sed(C)) « (prntm(B) N
scd(D)) .2. C esimprntm(D)
A is a function genevated by function B iff A has fewer links than B and each
link of A is similar to the corresponding link in B. For example if B is

d£pF £q7 (7)

then it generates the following functions
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*£pF £qF ), vtq> (s), d(Lu, "u)

but none of

QEPF£aF £7 (5), $(p9), DtDgY (7).

This T.E. will be of great use in formulating the directive concerning
substitution: The only functions which can be substituted are those which
are generated by functions already in the system. We state without proof.

T4.4.1 [A]:A € fnct .DO. A gfnctgen(A)
TE37 [ABCDE]:: Ceconstp(BADE) .=:,
D ghomosemp(EB ) .
Ceenf(D):
[F]: Feingrthp(B) .O.D e ~ l:var(F):I :
[3FG]. Feingr(A). Geingrthp(B). Ce An(EFG)
TE38 [ABC]:. Ceconstp(BA) .=. Ce C.[3DE]. Ceconstp(BADE)

C is a constant of Protothetic with respect to thesis B and (occurring in) A.
We now state without proof.

T4.4.2 [ABC]:Ceconstp(BA) .O. Cevrb(A)

This term is used only three times, in TE46.3, 4, and TE49.8. TE37.3
states that no word equiform to a constant C has ever served as a variable.
Thus, once we quantify a letter it may never be used as a constant.
Condition TE37.4 guarantees that C is being used properly (if a functor, the
right type of parentheme follows; if a variable, it occupies a spot which can
hold something of that type) in expression A, which we intend to add as a
thesis after B.

TE39 [ABCDEF]:. A € q-homosemp(BCDEF) .=,

E ghomosemp(FC) . AgA.

[3GI]. Geingr(D) .I £ingrthp(C) . A € An(EGI)
[3GI]:G € ingr(D) .I gingrthp(C) . Be An(FGI)
ABDF):.F €q-homosemp(DBA) .=. FeF.

TE40 |
[3GH]. F € q-homosemp (DBA GH)

It is meaningful to say two expressions are of the same syntactical
category only when they are ingredients of theses of Protothetic. Hence,
when we are considering an inscription A as a possible thesis, it is not
meaningful to say certain parts of it are in the same syntactical category.
The term q-homosemp is used to circumvent this difficulty. We say F' and D
will be of the same syntactical category when A is added as a thesis after B
if F and D are analogous to ingredients of theses which are already of the
same syntactical category.

TE41 [ABCDE]...C &fnctp(BADE) .=:

D ehomosemp(EB) .

C gfnctgen(D) :

[3FG].F gingr(A). Geingrthp(B) .C & An(EFG)
TE42 [ABFGHI).: F € varp (GBAHI) .=:
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TE44
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H € homosemp(GB) :

[3JK]: Keingr(A) .J eingrthp(B) .H € An(IJK) :

F gcnvar (14) .

Ig ingr(1trm(A))

[ABCDE]:.C &prtmp(BADE) .=:

D g homosemp(BB) .

E g prntm(D) .

C gprntm(2trm(A)) .

arg(C) ©arg(E) :

[FG]:Fearg(C) . Gearg(E) . (arg(C) N pred(F)) « (arg(E) N pred(G)) .2.
[3HI]. F € varp(GBAHI)

[ABCDE]: C £ 1pmimp(BADE) .=.

C eprntmp(BADE) .

Uvrb(D) evrb(E)

[ABCDEFG]: C & 2pmtmp(BADEFG) .=.

C e prntmp(BADE) .

F eprntm(D) .

Uprcd(F) ¢ ingr (E) .

G esimprntm(F)

These technical terms will be useful for choosing parentheses in
definitions. They will be explained later when used.

5 The T.E.’s for Definition, Quantification, Detachment, Substitution and
Extensionality (TE46-51). The previous forty-five Terminological Explan-
tions were all in preparation for this section which is the key to

Protothetic.

TE46  [AB):-:A ¢ defp(B) .=::

R1 Tvrb(Essnt(A)) e ~ [var(A)].A€A.

R2 Tvrb(2trm(A)) & ~ [var(4)] .

R3 Tvrb(2trm(A)) e ~ Econsfp(BA)] .

R4 [C]:.Cetrm. Cevrb(1trm(A)) .D: [3G]. Cebd(G) .v.[3D]. Deingr(A).
Ce var(D) .v. Cg constp(BA) :.

R5 [CD]:Deingr(A). Cebd(D) .O. [3E]. Eevar(CD):

R6 [C]: Cebd(4) .2. [3D]. Devrb(1trm(A)) . De var (CA) :

R7 [C]:Cebd(A) .2. [3D]. Devrb(2trm(A)). De var(CA) :.

RS [DEF]:. Fevrb(1tm(A)) . Devrb(1trm(A4)) . F g cnvar (DE) .D: D= F .v.
F & q~homosemp (DBA) :.

R9 [C]:Cegnrl.C €ingr(Int(A)) .O. [3DEF]. D ghomosemp(BB) .
E gingrthp(B) . F £ ingr(A) . De Anarg(CEF) :.

R10 (CD]: Cegnrl.Ceingr(4).DeEssnt(C) .DO: D evrb .v.[3E]. Ecfrp(B).
D ¢ fnctgen(E) :.

R11 [C]: Cefnct. Ceingr(1trm(A)) .D: [3D]. De gnrl.C gEssnt(D) .v.
[3DE]. Cefnctp(BADE) :

R12 [CD]: Deint(C) . Ceprmim(2trm(A)) .D. D € var(A) :

R13 2trm(A) € non-rep :

R14 [CDE]: C¢ 1pmtmp(BADE) . Uvrb(2trm(4)) € ingr (C) ..

Cesimprntm(E) :.



32 V. FREDERICK RICKEY

R15 [CDEFG]:C & 2pmtmp (BADEFG) . G £ ingr(A4) . Uprcd(G) € ingr (C) .2.
C gsimprntm(E) :.

R16 [CE]: C g prntm(2trm(A)) . Uvrb(2trm (A)) £ ingr (C) . E g ingrthp(B) .
C esimprntm(E) .2, [3D]. C & 1prntmp (BADE) .

R17 [CEG]: C eprntm(2trm(A)) . G e pmtm . G € ingr (4) . Uprcd(G) e ingr (C) .
Egingrthp(B) . C gsimpmtm(E) .D. [3DF].C & 2prntmp (BADEFG)

A is a definition after thesis B.

Several conjuncts of TE46 apply to any prospective thesis of Proto-
thetic. They are TE46.4, 5, 8, 9, 10, 11. Let us ignore them for the
moment and concentrate on the conjuncts peculiar to definitions.

First remark that a definition need not be a generalization. But its
essence, by TE46.2, must be an equivalence. The second term of A can
contain no variables in this case (T'E46.3) and is thus a term. In this case
then we are defining a constant without any parameters, or, as one usually
says, a constant. The definition thus has the form

W )

where * is the newly defined constant and y is a well formed formula (the
other conjuncts guarantee this) which contains no free variables.

As examples of this type of definition consider the following definitions
of 0 and 1 (falsehood and truth)

¢(Lu_: u’ 0)
¢(¢(Lu_l "u? LU, ru-‘)l)

These are not the only definitions of constants possible, but any constant
defined will be equivalent to either 0 or 1.

Now we move to the more interesting case of where A is a generaliza-
tion. From TE46.2, 5, 13 we can prove 2trm (A) € fnct and so A has the form

Lo Lot 3 L))

The first term of A, since it is an argument, is either a term (TE1),
generalization, or function. All three cases can occur but if the definiens
is a term then the definiendum has the shape

As(x)

i.e., it has only one parameter. The definition is precisely (up to change of
symbolism)

Xy TP(x As(x),

which is usually called Assertium.

TE46.12 tells us that the words in the parenthemes of the function
which is the definiendum are variables. Hence the parenthemes of the
definiendum (2trm(A)) look like

<pqg ...s>,

and the definiendum looks like
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Spg . .. sFtfg .. ¥ .. (uv. . )

where all the symbols are different (TE46.13).

TE46.6, 7 tell us that every binder in A binds at least one term in the
definiens and exactly one variable in the definiendum. These conditions are
necessary to prevent contradictions (Cf. eg., Carnap [3]).

Combining all of this information we see that definitions have the form

bafguv ... bWpgfeuv .. .) d%pq .. FLfe. Y . @)

It remains to show how T'E46.14-17 govern the choice of parentheses in
the definiendum. These conjuncts are very important for they insure that
the syntactical categories are uniquely determined on syntactical grounds.
In particular, if we know 1) the shape of the parentheses and 2) the number
of arguments of a parentheme, then we know the syntactical category of
each argument and also the syntactical category of the functor which
precedes this parentheme.

Conditions 714 and 15 force us to use certain parentheses; 16 and 17
prevent us from using others. Conditions 14 and 16 govern the choice of
parentheses for the last (i.e., rightmost) parentheme in the definiendum.
Conditions 15 and 17 govern the choice of the other parentheses in the
definiendum in a manner akin to inductive definitions, but of course without
using natural numbers.

The explanations of conditions 14 and 16 which follow refer to the
following diagram:

D« prop.
s
T vi..r..)
;E
G
/-C/{-—\ «\056“\9
T" <...q...> >
H
&\
B: I C
‘ ,—-—/“l
A oo pe <o > B b))
— f
K F

Condition 14 dictates that whenever there is a parentheme E, which is
the last parentheme of a function D, which is in the syntactical category of
propositions, and when corresponding arguments of £ and C, which is the
last parentheme of the definiendum (i.e., 2trm) of A, are destined to be in
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the same category, then one must use the same kind of parentheses for C
as E has.

We speak of an argument F of C as being ‘‘destined to be’’ in a certain
syntactical category since inscription A, of which C is a part, is not yet a
thesis of Protothetic and accordingly its part F cannot be in any syntactical
category. What we intend is that if and when A is added to Protothetic as a
new thesis according to the rule of definition then F will be in the same
syntactical category as E.

The category to which F is destined to belong is established as follows:
Relate F back to an equiform variable in the definiens, say I, which is in
parentheme K (if I is a functor the argument is similar). Then I can be
related to the variable H in parentheme J which is part of some thesis of
Protothetic with respect to B. This is done in such a way that / and H are
analagous arguments (or functors) in K and J respectively. Now since H
and G are both ingredients of theses of Protothetic it is meaningful to say
that they are in the same syntactical category. Since H and I are analagous
they should be in the same category, and since I and F are equiform
variables they should be in the same category. Finally, by transitivity, F
and G are destined to be in the same category.

Condition 16 states that when the last parentheme C of the definiendum
is similar to the last parentheme E of a function D which is in the syntacti-
cal category of propositions then corresponding arguments of the par-
enthemes C and E are destined to belong to the same syntactical category.
In particular this says that if the nth argument of E is of different category
than the nth argument of C then the parenthemes E and C are not similar,
i.e., either C and E have different numbers of arguments or they have
non-equiform parentheses.

The following examples show how these two conditions govern the
choice of parentheses in definitions.

The axiom contains only parentheses of the shape (--) and these are
preceded by a functor in the category S/SS. Condition 14 dictates that in
any definition where we have a sentential function of two sentential
variables then the arguments must be enclosed in parentheses equiform to
(--). For example, in

(1) _pa, "o(b@p) $:009))

the choice of parentheses in the definiendum is forced by condition 14 since
the arguments of ¢, are destined to be in the category S, and there are two
of them. Any other choice of parentheses would violate 14.

(2) _par, "d(b(p dlgr)) *1 £p}(gr))

Condition 14 forces the choice of the last parentheses of (2). But any
type of parentheses, except (-), could be used for the second parentheme.
Condition 14 is satisfied for the following since its hypothesis is false:

(3) b, "o(b(p) *2 £p})

However, this is unacceptable as a definition since the only parentheme in
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the definiendum is similar to the second parentheme in the definiendum of
(2), which is not the last parentheme of (2) as is required by condition 16.
The following is eligible as a definition immediately after (2):

@) b, D) Vr ()

This satisfies both 14 and 16 vacuously, since there is no one argument
parentheme in the system which is last in its definiendum. Actually any
choice of parentheses, except 4 -3, could be made here. However, in all
further definitions where the last parentheme contains but one argument
and that of the syntactical category of propositions, we must use par-
entheses equiform to those in (4). The freedom to choose the type of
parenthesis in (4) enables one to display analogy between defined terms
through the notation.

Both conditions 14 and 16 are necessary to keep the syntactical
categories separate. If we dropped 14 then we could add

(5) b, "$(b(pD) *s <p>)'

and thus get the erroneous impression that Vr and *s; belong to different
categories. If we dropped 16 then we could add

(6) _fb, "S(f (D) *« (f5))

which would give the impression that the functor *s4, which should be of the
category S/(S/S)S, is of category S/SS. Thus if 16 were omitted the
categories would coalese while if 14 were dropped the categories would
multiply needlessly.

Conditions 15 and 17 govern the choice of parentheses for all but the
last parentheme of the definiendum. The explanations which follow refer to
the following diagram:

D < prop
vE ... F£...... ¥
m— m— —— —
B E F
C G
e e e ~t— A
A (L0 -0 L ¥ F....)

Condition 15 dictates that parenthemes C and E will have the same type
of parentheses when they have the same number of arguments, when
corresponding arguments are destined to be in the same syntactical
category, and when the parenthemes following them (i.e., G and F respec-
tively) are similar.

Conversly condition 17 stipulates that when the parenthemes C and E
are similar and when C is followed by a parentheme G then there is a
parentheme F following £ which is similar to G and moreover C and E have
the same number of arguments and corresponding arguments are destined
to be in the same category.

These conditions are very similar to 14 and 16 respectively and so we
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go right to examples. The following is a legitimate definition immediately
after (1), (2), and (4) above:

(1) _par, "S(b(b(pa)r) *s £p¥ (g7))

To use another shape of parentheses on the second parentheme would violate
condition 15. This arrangement of parentheses was used in (2) and must
always be used when a functor of type (S/SS)/S is involved. We can also
add the definition

(8) _pars, "4($(b(pg) (7)) *s £bg} (rs))’

The use of the same shaped parentheses for the second parenthemes of (7)
and (8) causes no confusion as these parenthemes contain different numbers
of arguments. Both conditions 15 and 17 are satisfied as their hypotheses
are false.

9) _par, "$(b(p $(qr)) * £pg¥ (1)

This violates condition 17 since the second parenthemes of (8) and (9)
are similar but the first parentheme of (8) is not similar to the first of (9).
So a different choice of parentheses must be made for the second
parentheme of (9).

Condition 17 prevents us from taking

(10) _pq, "b(_f,F(pa) *s (pg) <f>)

as a definition since the second parentheme of (10) is similar to the first
parentheme of (2), whereas condition 17 requires that if the second
parentheme of a proposed definition is similar to any other parentheme
then that parentheme, among other things, must be followed by another
parentheme. In particular 17 prevents us from having both €--9(..) and
(..) €-- 7 in the system.

Finally let us consider the inscription

(1) _pgr, "o(§(p $(g7) *s (1) (¢7))

This satisfies conditions 14-17, but does not satisfy 13 since the would-be
definiendum contains two equiform symbols. Thus it is not eligible as a
definition of Protothetic. Sobocinski has remarked (orally) that LeSniewski
would not have allowed this as a definition either. However (11) does
satisfy Lesniewski’s formulation of the rule of definition as formulated in
[18]. Thus it seems that Leéniewski’s verbal statement of the rule does not
agree with his printed one. This is the only point at which our rule differs
from that given by Lesniewski in [18], and this point does not affect the
deductive strength of the theory, but only the shape of parentheses in some
theses.

TE47 [AB]:.: A ecngntf(B) .=::

R1 Essnt(1trm (A)) e cnf(Essnt(1trm (B))) . Ac A

R2 Essnt(2trm(A)) € cnf(Essnt(2trm(B))) :

R3 [C]: Cebd(A) .2. [3D].D eenf(C).D ebd(B) .
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R4 [CDE]:. C e Antrm(DAB) . E € var(B) . E e vrb(D) .O: [3I]: Iecnf(E) :
Igbd(A).v.Iebd(C):.
R5 [CDE]: C eAntrm(DAB) .E £ bd(D) .2, [3H].H ecnf(E) .H £bd(C) :.
R6 [CDE]:.C e Antrm(DAB) . E £ bd(C) .2. [3H].H ecnf(E) .
H eingr(D) :H ¢ var(B) .v.H g bd(D) :.
R7 [CDEF]:C eAntrm(DAB) .F £bd(A) . E €bd(C) . F eenf(E) .D. [3G].

Geenf(E) .G £bd(D)

A is a consequence of B by quantification. TE47.1, 2 tell us that both A
and B are generalizations (admittedly both A and B could be equivalences
but this case is both trivial and uninteresting since we are trying to
distribute quantifiers), and moreover that they are generalizations of
equivalences. Also corresponding terms have equiform essences. Let us
extend the schematic diagram following T E34:

D D!
e~ ,—*—-\ﬂ
—l r !
B - r(L 'Jr L* 2 )
cnf cnf
A: Leea I—$l>(L-.._,r..._| ‘_..._"—...-')-I
N —

N — e’
C c'

TE47.3 says any binder in A is equiform to a binder in B. Semantically
this means any binder which was not distributed is a binder in both A and B.

TE47.4 says that for every variable in B which occurs in D (D') there
is a binder in A or C (C') which is equiform to that variable. This notation
is quite cumbersome so we introduce the following.

We say the binders of A are an equiformity subset of the binders of B
iff for every binder of A there is an equiform binder of B. Then TE47.3
merely says that the binders of A are an equiformity subset of the binders
of B.

TE47.5 says that if C (C') is an analogous term to D (D') in A and B
respectively then the binders of D are an equiformity subset of the binders
of C.

TE47.6 says any binder in C has an equiform binder in D or there is
some occurrence of that binder in D which is bound in B.

Finally TE47.7 says that if the quantifiers of A and C contain equiform
words then there is a word in the quantifier of D equiform to it.

Let us give several examples. If Bis

b2, "$$(pq) $(ap))
then A could be B or
D, (a, Tea) a, ap))

or a similar expression with p distributed or we could distribute both
variables and get

S pa, "b(pa) _pa, "baD))
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In this case the order of the binders in either quantifier could be altered.
As a more complicated example consider

ba, (b, b)) (b, )Y
Then A could be, if we distribute p

L S, Tbpa) b, "o, Tu)Y

or, if we distribute g

D, T pa, Tb(pa) blou, Tu)) .

TE48 [ABC]:A € cneqvl(BC) .=. Cecenf(leqvl(B)).
A ecnf(2eqvl(B))

A is the result of detaching C from B.
Schematically we have
B: o——)
T 1 <~—cnf
Cc A

N.B. We are not considering detachment under quantifiers, i.e., we do not
want the rule

r~7

..., C
Lo o $(CA)
ey AT
But the rule
C
9(CA)
A
TE49 [ABCa]:.: A gcnsbst(BCa) .=::
R1 Essnt(A) e Cmpl(a) . A€A.
R2 a * int(Sbgntf(C)) :.
R3 [DE ]:. D& int(Sbgntf(C)) . D& Corr (ECa) .O: Devar(C) .v. Decnf(E) :.
R4 [DE]: D g int(Sbgntf(C)) . D € Corr (ECa) .2.
E gtrm U gnrl U fnct U enf(D) :,
R5 [DEFG]: D€ cnvar(EC) . Dg Corr(FCa) . E € Cort (GCa) .0. F eenf(G) :.
R6 [DEFGHIKL]: D¢ ingr(Essnt(C)) . E £ bd(D) . F & var(KC) . F € ingr (D) .

EeCorr(GCa) . F € Corr(HCa) . L e ingr{A) .Ie var(GL) .2,
Ie ~ (ingr(H)]:.

R7 [DE]:.Debd(A) . Eecnf(D) . E € ingr(C) .O: [3F]. E e bd(F) .v.
[3FGl.Feingr(C) .E € var(GF) :.

R8 [D]:.Detrm.Devrb(A) .O: [3G].Debd(G) .v.[3G].Devar(G).
G eingr(A) .v. D egconstp(BA) :.

R9 [DE]:Eeingr(A).Debd(E) .2 [3F].F & var(DE) :.

R10 [DEF]:..Ecingr(A).F ecnvar(DE) .O: F = D .v.F & g-homosemp(DBA):.
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R11 [D]:Degnrl.Deingr(A). D+ A 2. [3EGH]. E £ homosemp(BB) .
G eingrthp(B) .H € ingr(A) . E € Anarg(DGH) :.

RI12 [DE]:. Degnrl . Deingr(A) . E gEssnt(D) .O: E gvrb . [3F].
F efrp(B) . E & fnctgen(F) :.

RI3 [D]:.D gfnct.Deingr(4) .O: D=A .v.[3E].Eggnrl.
D gEssnt(E) .v.[3EF]. D efnctp(BA DE)

TE50 [ABC]:.Agcnsub(BC) .=. AgA .[3a].A gcnsbst(BCa)

A is a consequence of substitution in C with respect to thesis B.

Contrary to the commonly held opinion that Hilbert and Bernays were
the first (in 1934) to correctly state the rule of substitution for functional
variables it should be noted that Le$niewski had already done it in [18]in
1929. Le$niewski cleverly solves the problem of substitution by not saying
what is substituted for the variables. This paradoxical statement will be
explained by means of an example. Suppose we have

(12) bar, "o(e(rap)p)’
and wish to substitute Vr(p) for p. Everyone knows that we get
(13) bar, "o(elrg Ve(p)) Vr(p)) .

We do not care how one divines this but only need give a method to verify
that it is correct. Look at the essence of (13) and break it up into 10 parts
(= the number of words in the subquantifier of (12)) in such a way that
constants, corners, and parentheses in (12) correspond to equiform words in
(13) and also so that variables in (12) correspond to expressions in (13).
This nearly forces us to view (13) in the following way

NAANNANN""NA 77 NN

(14) _bav, r¢<w<rq1r</p)) w))’
} 1
a, aq ag

These ten expressions constitute a. The argument DegCorr(E C a) used in
TE49.3, 4, 5, 6 corresponds words D in the subquantifier of C (i.e., (12) in
our example) to expressions Eea. TE49.3 says corresponding things are
equiform except (possibly) in the case when D is a variable in C. The only
places which are not equiform are those for which we substituted.
Naturally enough the a’s all must be terms, generalizations or functions, or
equiform to that to which they correspond. Semantically speaking this says
we can only substitute terms, generalizations or functions (¢f. TEI7).

TE49.5 guarantees that we substitute equiform expressions for equi-
form variables in C. This requirement is so natural as to defy comment.

TE49.6 is the famous and troublesome clause which states that interior
quantifiers may never trap variables. If we have

Lbg, T (b, T(pe) p)

then we may not substitute p for g to get
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B
—m—

b, "W, s B

f

V10V; U,

for then we have both v, and v, bound in B whereas we wanted v, to be bound
by the MGQ and hence be an equiform variable to vs.

The remaining conjuncts of TE49 concern arbitrary theses and will be
discussed at the end of this section.

TES51 [AB]:: A eextp(B) .=:.

R1 Int(Qntf(A)) e ~ [vrb] .AcA:

R2 [CD]:D ¢ ingr(A). Degntf .C gint(D) .2. [JEF].E g var(CF).
E ¢ ~ [enf(lvrb(Essnt(A)))] :

R3 [3C]. C eprntm(1tm(2trm(A))) . 1vrb(leqvl (Int(Sbgntf(1trm(A))))) €
cnvar (Int(C)A) .

R4 [3C]. C gprim(2trm(2trm(A))) . Ivrb(2trm (1trm (4))) € cnvar (Int(C)A) :.

R5 [C]:.Cefnct.Ceingr(d) .D: [3D]. C £ Int(Sbgntf(D)) .v.[3DE].
C efnctp(BADE) :.

R6 [CDEF]: D gpratm(1tm(1trm (A))) . E € protm(2trm(1trm (A))) .
F g€ Anarg(CDE) .2, F € cnvar(C 1trm(A)) :

R7 [CDF]:Ceingr(A). Fe cnvar (DC) .O. F € q=homosemp(DBA) :

R8 [CD]: D& cnvar(C 1tm(A)) 2. [3EF]. D g Anarg(CEF) :

R9 [CDE]: C e prtm(Essnt(2trm(A))) . D e arg(C) . E € Anfact(EDD) D,

E g var(Int(Qntf (2trm(A))) 2trm (A))

A is a thesis of extensionality with respect to thesis B.
Let us begin with an example of a thesis of extensionality:

fgL Th(iab, TH(f4aY B)gtay (1) Lo, (o< fro<g>)")

and examine what the rule tells us about it.
TE51.1 says that A is a generalization containing at least two binders.
From TE51.3, especially from

C ¢ prntm (1trm (2trm(A)))

we have that the essence of A is an equivalence and that the 2trm of this
equivalence has an essence which is an equivalence. The rest of this con-
junct tells us that Int(C) is a variable in A and hence a word. Thus the
2trm (A) has the shape

L= r¢(_ <f> —“'<g>°)-l

TE51.9 implies that the three dashes represent the same variable (¢).

TE51.6 and 8 tell us that the terms of the first term of A are equiform
except for the first letter of each term.

The remaining conditions, TE51.5 and 7, apply to any thesis.

Finally we mention several common conjuncts of the 7.E.’s which are
requirements we want any thesis to satisfy.

TE46.4, TE49.8: Terms are binders, variables or constants.
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TE46.5, TE49.9: Binders actually bind variables. Hence every quan-
tifier is part of a generalization.

TE46.8, TE49.10, TE51.7: This guarantees that equiform variables of
inscriptions considered for addition to Protothetic as new theses will be in
the same syntactical category.

TE46.9, TE49.11: Generalizations occupy argument places which are
capable of having arguments from the category of propositions.

TE46.10, TE49.12: The essences of generalizations are either words
or functions which have been generated by functions occurring in a previous
thesis of Protothetic (this prevents substitution from introducing new
syntactical categories).

6 The vule of Protothetic:

Under the assumption that B is the last thesis of this system of
Protothetic one may add the expression A as a new thesis of Protothetic
provided one of the following conditions is fulfilled:

1) A g defp(B).

2) [3C]. Cethp(B) . A gcngntf(C).

3) [3CD]. Cethp(B) . Dethp(B) . A £Cneqvl(CD) .
4) [3C]. Cethp(B).A gcnsub(BC).

5) Acextp(B).

CHAPTER V

In this chapter we sketch the proof that our formulation of the rule of
Protothetic has the same deductive strength as that which Le$niewski
presented in [18], pp. 63-76. The reader should have [18] at hand.

1 Definability of LeSniewski’s primitive terms in MP. The first step toward
proving equivalence of our rule and Lesniewski’s is to show that his
primitive terms are definable in system MP. The definitions seem obvious;
but there are subtle difficulties involved. To bring these out we describe
again how the rule of Protothetic was formulated.

Leéniewski formulated the rule by giving a number of Terminological
Explanations which prescribed exactly what he meant by detachment,
substitution, etc. He realized that his T.E.’s did not belong to the system
itself, and so it was his practice—one fortunately thwarted in [18] by space
limitations—to express the T.E.’s in ordinary language. Hence it is
understandable that the undefined terms which he used to express the
T.E.’s were explained by only a few words of commentary. It is here that
our difficulty lies—for we have no way of being certain that our definitions
of his primitive terms agree with the intuitive meanings that he attached to
them.

What we do is to give definitions in MP of Les$niewski’s undefined
terms and then argue intuitively that we have captured the meanings which
he intended. We shall use two devices for this:

a) We refer to theorems in M and MP which agree with Le$niewski’s
commentary on his undefined terms.
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b) By examining Leéniewski’s T.E.’s we deduce certain properties of his
undefined terms which he must have intended if he was to be consistent with
the remark ([18], p. 63) that the separate conjuncts of his T.E.’s are
logically independent.

The following is a list of Le$niewski’s undefined terms:

Aceb prntsym(A)
Id(A) cnf(A)
N [a] AL

anNbn...Nk thp
aUbU...Uk ingr(A)

a b prcd(A)
a<b scd(4)
vrb Uprcd(A)
expr Uingr(4)
prnt lingr (A)
protl 2ingr(A)

Of these ¢, Id (G.e., =), ~, N, U, ©, < are terms of Ontology. Their
definitions can be found in Chapter I, 3.

Of the remaining terms A1l holds a special place, for it as an individual
name, viz., the name of the axiom of Protothetic for which Les$niewski
stated his rule (Cf.,[18], p. 59). This axiom is not the same one that we
have used. For this reason it will be necessary to adjust Le$niewski’s
rule to the axiom %Ar which we use. These changes are minor and are
necessitated by the different number of binders in the quantifiers of Al
and Ur.

We now proceed to define the rest of these terms in MP.

Df1.1  [A]:Aevrb .=. Aevrb

This definition states that Lesniewski’s term vrby corresponds exactly to
our term vrb. We use the subscript L to indicate that the defined term is
one of Le$niewski’s undefined terms. In support of this definition we
mention 72.3.2, T2.4.17, T2.4.18, and T2.4.26 which are the analogues in M
(and hence in MP) of LeSniewski’s commentary in [18] on his term vrby.

Df1.2  [A]l:AcexprL .=. Acexpr

The justification of defining Le$niewski’s notion of expression as equivalent
to ours is found in T2.4.2, T2.4.3, T2.4.4.

Df1.3  [A]l:Aepmt .=. Agpmt
Df1.4 [Al:Aepmtl .=. AcA.[3B].Beprmtm.A¢ 1vrb(B)

The first of these definitions identifies LeSniewski’s notion of parenthesis
with ours. The second defines left parenthesis, a term which we eliminated
from our system, but can easily define as the first word of a parentheme.
Actually the explicit use of left parentheses has been eliminated in our
presentation.
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Df1.5 [AB]:A eprtsym| (B) .=. A €prntsym(B)

Hence our notion of symmetric parentheses agrees with Ledniewski’s.

Up to now there has been little doubt about Lesniewski’s intentions; his
terms clearly agree with ours. For some of the remaining terms this is
not the case and so care must be taken to observe the subscripted L’s.

Df1.6 [AB]:Acenf (B) .=. Accnf(B).
A cexpr.
B g expr

Le$niewski’s notion of equiformity holds only between expressions, where-
as ours is applicable to any inscriptions. He uses cnfi (A) as an abbrevia-
tion of ‘“mit A gleichgestalteter Ausdruck’® and later speaks of ‘‘Zwei
miteinander gleichgestalteter Ausdriicke’’ (Cf. [18], p. 60, 62). Together
these show that he intends

[AB]:A ecnf(B) .O. A eexpr
[AB]:A eenfy (B) .O. Beexpr,

Together with Df1.2 these justify the above definition. For further evidence
of agreement see T2.4.14, T2.4.15.

Df1.7 [A]l:Aethp_ .= Acthp

It should be remarked that whereas Lesniewski took thp_ as primitive we
have taken thp(B). The reasons for this choice were explained in Chapter
i, 4,

Df1.8 [AB]:Acgingr (B) .=: AeA :[C]: Cevrb(4d) .DO. Cevrb(B)

Remembering that our notion of ingredient can hold only between expres-
sions (Cf., T2.4.7, T2.4.8) it is understandable that we can only prove

T5.1.1 [AB]:Acingr (B).Acexpr.Beexpr .=. Acingr(B) [ D10, Df1.8]
Although Le$niewski did not explicitly state it we know he did not intend
[AB]:Aeingr(B) .O. Beexpr

for TEVI of [18] contains the logically independent factors Beexpry and
Agingry (B). That he does not intend

[AB]:Aeingr (B) .2. A cexpr

follows from TEXXII which contains the conjuncts A € expry and A € ingr(B).
That he does not intend this is also indicated by the complexity of TEVII. 4.
Cf.,also T2.4.6.

It is understandable that Les$niewski did not restrict ingr| to expres-
sions, for without this restriction we have just the usual notion of
ingredient in a completely atomic Mereology. We used the more restric-
tive notion of ingredient to simplify our presentation of the T.E.’s.

Df1.9 [AB]:Aceprcd(B) .=. Acprcd(B)
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LesSniewski gives no commentary on his use of predy. It is clear that strict
precedence is intended, ¢.e.,

[AB]:A eprcdiL(B) .O.A #B
for TEXXXII contains the conjunct
Aeprcdy (B).v.A=B

which would be redundant with weak precedence. At all other times prcdL
is used in contexts like

Agvrb. Npredy(B)
or
A g exprp N predy (B)

(Cf., TEIX.3, XVI1.3, XXV.4, XLVII.3, 4, 5, 6, IL.1) and so we cannot decide
if he intends

[AB]:A eprcdy .O. A eexpr . Beexpr

The interpretation of the rule does not depend on whether we consider
precedence as restricted to expressions, or holding for arbitrary inscrip-
tions. We have opted for the later.

After similar argumentation we define

Df1.10 [AB]:A escd(B) .=. A escd(B)

We make no comments about the remaining definitions as there is no
reason to question their correctness.

Df1.11 [AB]:A eUprcdi(B) .=. AcUprcd(B)
Df1.12 [AB]:A e€Uingr (B) .=. A eUvrb(B)
Df1.13 [AB]:A elingr(B) .=. A £ 1vrb(B)
Df1.14 [AB]:A £2ingr(B) .=. A £2vrb(B)

We now make the claim that Le$niewski’s and our primitive terms are
interdefinable in system MP, and hence our statement of the rule and his
rest on the same logical basis. This claim is partly justified by the
argumentation above, but mainly by intimate knowledge of [18]. The
methods used above have followed, in spirit, Goodman’s comments on
constructional definitions [10].

2 Methodological Scheme. Each of LeSniewski’s Terminological Explana-
tions is in the form of an ontological definition:

(1) [A...]:Aed(...) = YA...)

where & is the defined term. ¢(A ...) is a well formed formula built up
from LeSniewski’s primitive and previously defined terms. As such, this
is not a formula in MP. But since in 1 we defined Les$niewski’s primitives
in system MP, there is a natural translation of (1) into a formula (2) in MP:

@ [A...J:Adea(...) = Y (A..)
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where the subscripted L’s indicate that we are using the analogues of
Les$niewski’s terms in MP. Thus whenever Le$niewski writes

A ¢ ingr(B)

in [18] we shall write

A gingr ,_()B)
as its natural translation into MP.
In Chapter 1V we defined what we wish to prove are terms equivalent
to Le$niewski’s. To do this we prove, in each of the following paragraphs,
theorems of the form

B) [A...]:Aead (...) = Aecag(...)

where &g is a term defined in one of the T.E.’s in Chapter IV. These
theorems establish that our terminological explanations are equivalent to
those given by Leéniewski in [18]. Only when our terms are proved
equivalent to LesSniewski’s will it be clear that our statement of the rule of
procedure for Protothetic is equivalent to that stated by Le$niewski in [18].

3 Concerning TEI (vrbi).
Df3 [A]:A evrb 1 .=. A eenfy (lingr (%z))

A is a wovd of the first kind (in the sense of Lesniewski). This definition is
the exact analogue of Le$niewski’s TEI. Since we have not defined “‘vrb1®’
in Chapter IV we cannot prove a theorem of the desired form (3) without
first defining ¢‘vrb1’’.

Df3.1  [A]:A evibl .=. A senf(lvrb(Uz))

Since our notion of equiformity differs from Lesniewski’s we need
several lemmas.

T5.3.1 [AB]:A elingr(B) .D. A evrb [Df1.13, D3, T2.2.9]
75.3.2 [A]:A gvrb .2 cnf(4)ocnf (A) [T2.4.2, T2.4.24, Df1.6)
75.3.3 [A]:Agvrb | .= A gvrbl [Df3, Df3.1, Df1.13, T5.3.1,T5.3.2]

4 Concerning TEIL, III, IV (vib2, vrb3, vrb4).
Df4.1  [A]:A evrb 2.
Df4.2  [A]:Aevrb 3.
Df4.3  [A]:Aevrb 4.

1l

. A eenfy (4ingr (%))
. A g enfy(Singrp(Uz))
. A genf (Uingr (Yz))

1

These are Leéniewski’s TEII, III, IV, adjusted to Sobocifiski’s Axiom.
In complete analogy with 3 we need the definitions

Df4.4 [A]:Agvib2 .=, Ascnf(4vrb(Ur))
Df4.5 [A]:Agvib3 .=. Aecnf(Svrb(dr))
Df4.6  [A]: Agvrbd .=, Accnf(Uvrb(Uz))

to prove the theorems

T5.4.1 [A]:Aevrib 2 .=. Ag vib2
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T5.4.2 [A]:Agvrb 3
T5.4.3 [Al:Aevrb 4

. Agvrb3
A€ vrb4

5 Concerning TEV (trm).

Dfs [A): Aetm .=
Aevrbe.
Agnw [pl‘nfL] .
Aen [vrb[_]]
Agnw~ [vrbLZJ
Agnw [vrb[_3:|
Agnwn [vrbL4]
T5.5.1 [A):Aetrm .= Agtm

|TE1, Df5, Df1.1, Df1.3, T5.3.3, T5.4.1, T5.4.2, T5.4.3]

Df5 is the exact analogue of Lesniewski’s TEV. The theorem, which is
of the desired form (3), proves that our TE1 has the same strength as

Lesniewski’s TEV.
6 Concerning TEVI (int).

Dfé [AB]:Acint (B) .=
Beexpry .
Acevrby.
Agingr(B).
Ae ~ (lingr (B)].
Ag n~ [Uingr(B))
T5.6.1 [AB]:Aevrb(B) .D. Aevrb .A¢cingr (B)

Hyp(1l) .2
2. Agvrbyp.
3. Aceingri(B).

AevrbL.Agingr(B)
T5.6.2 [AB]:Aevrby.Acingr (B) .O. Aevrb(B)
Hyp(2) .2
3. Aevrb(4).
A evrb(B)
T5.6.3 [AB]:Aevrb(B) .=. Agvrby .A¢ingr (B)
T5.6.4 [AB]:Aceint (B) .=, Agint(B)

[1, T2.2.9, Df1.1]
(1, T2.2.7, Df1.8]
[2, 3]

[1, Df1.1, D2]
[2, Df1.8, 3]
[15.6.1, T5.6.2]

[Df6, D13, Df1.2, Df1.13, Df1.14, T5.6.3]

T Concevning TEVII (Cmpl),
Df7 [Aa]::AeCmpl (4) .=:.Aeexprp:.

B]:Bevrbyg . BemgrL(A) 2. [3C]. Cea.Beingr (C):.

B]:Bga .D. Beexpry Ningri(A)
T5.7.1
D eingr (C) .>. B=C
T5.7.2 [ABal:AeKl(a).Bea .DO. Beingr(A4)

[
[BCD]:Bea.Cea.Devrby . Deingr (B).Deingr (C) .2. B= C:
[
(

al:.disj(a) .=: [BCD]:Bea.Cea.Dgvrb . Deingr (B).

[D11, T5.6.3]
[D1, Df1.8]

75.7.3 [Aa]:.AeKl(a).a Cexpr O: [B]:Bea .O. Beexpry N ingr (A)

[T5.7.2, Df1.2]
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T5.7.4 [ABal:AeKl(a).Bevrbr. Beingr (A) .D. [3C]C ea . Beingr (C)
Hyp(3) ..

[3¢].

4. Cea.

5. Bevrb(C). } [1,D1, T5.6.3, 2, 3]
[aC].Cea . Beingr (C) (4,5, T5.6.3]

T5.7.5 [Aa]: AcCmpl(a) .O. AcCmpl(a)
[D12, Df7, Df1.2, T5.7.4, T5.7.1, T5.7.3]
T5.7.6 [Aa):.A€A:[B]:Bevrb.Beingr (4) .2 [3C].Cea.
Beingr (C):[B]:Bea .2. Beexpry NingrL(A) 12 AeKl(a)
Hyp(3) .O:

4. [B]:Bevrb(4) .D.[3C].Cea.Bevrb(C): (2, T5.6.3]
5. [BC]l:Cea.Bevrb(C) .O. Bevrb(4): (3, Df1.8]
AeKl(a) [D1,1, 4, 5]

75.7.7 [Aa):A eCmpli(a) .=. A eCmpl(a)
[D12, Df7, T5.7.6, Df1.2, T5.7.1; T5.7.5]

8 Concerning TEVIII (gntf).

Df8 [A]:. A eqnif .=
lingr(A) e vrb 1.
Uingr (A) g vib 2.
[3B].Beint (A):
[Bl:Beint (4) .0 Betrm :
[BCl:Beint (A).Ceint (A).Becnf (C) .D. B=C
[A]:1ingr (A) e vib 1 .=. Tvrb(A) eenf(lvrb(Yz))

[Df1.13, T5.3.3, Df3.1]
T5.8.2 [A]:Uingr (A) e vrb 2 .=. Uvrb(A) e cnf(4vrb(Yz)) [Sim., T5.8.1]
75.8.3 [A]:Int(A) eCmpl(trm N int(A)) .O. [3B]. Beint (A)

[D14, T2.3.4, T5.6.4]

T5.8.4 [AB]:Int(A) eCmpl(trm N int(A)) . Beinty(4) .O. B gtrm|_
Hyp(2) .>.

T5.8.1

3. Beint(A). (2, 75.6.4]

4. Bevrb. (3, D13, T2.2.9]

5. Bevrb(Int(4)) . [12.3.9, 3, 4, D14]
[ac].

6. Cetrm.

7. Bevrb(C). } (1,5, D12, DI

8. Cevrb. (6, TE1]

9. B=C. (7,8, T2.2.10]
Betrm (6,9, 15.5.1]

75.8.5 [ABC]:A enon-rep.Beint (A).Ceint (A).Becnf (C) .D.B=C
Hyp(4) .>.

5. Bevrb(4). (2, T5.6.4, D13)
6. Cevrb(4). [38, T5.6.4, D13]
7. Becenf(C). (4, Df1.6]

B=C [D19,1,5,6,17]

75.8.6 [A]:A gqntf .O. Aggntf [TE2, Df8, T5.8.1-5]
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T5.8.7 [AB]: Beint (A):[B]:Beint (A) .D. Betrm| :
D. Int(A) e Cmpl(trm N int(A))
Hyp(2) .2
3. Beint(A). (1, T5.6.4]
4, trm N int(A) o int(4) . [2,T5.5.1, T5.6.4]
[3¢].
5. CeKl(int(4)). (3, T2.1.1]
6. C = Int(4). [5, T2.3.1, D14]
7. CeCmpl(int(4)). (6, T2.5.25]
8. CeCmpl(trm N int(A4)) . [4, 7]
Int(A) e Cmpl(trm N int(A)) (6, 8]

In LeSniewski’s presentation TEVIII (gntf) contains the clause
[BC]:Beint (A).Ceint (4).Beenf (C) .2 B=C
which is equivalent to
Int(A) e non-rep
In TE2 we used
Agnon-rep

This is possible since a generalization begins and ends with (left and right
respectively) corners, which are not terms and hence not equiform to any
word in Int(A).

From D13 we obtain at once

[AB]:. Bevrb(A).Acexpr .D: Beint(A).v. Be lvrb(A) .v. Be Uvrb(A)

Hence when we take two words in (but not necessarily interior to) A we
obtain the following nine possibilities:

I.

II.
I1.
IV.
V.
VI.
VII.
VIII.
IX.

Beint(A). Ceint(A)
Beint(A).Ce lvrb(A)
Beint(A).CeUvrb(4)
Belvrb(A).Ceint(A)
Belvrb(A). Celvrb(A)
Belvrb(A) . CeUvrb(A)
BeUvrb(4).Ceint(A)
BeUvrb(A4).Celvrb(A)
BeUvrb(A). CeUvrb(A)

We wish to establish theorems of the form

[ABC):Agqntf_ .Beenf(C).Y D B=C

where Y is one of I-IX. Taken together these yield
[A]:A gqntf_ .D. A enon-rep

Of the nine cases IV, VII, VIII can be omitted by symmetry with II, III, VI
respectively. Case VI is impossible since . and - are not equiform.
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Cases V, IX are just 72.2.30, T2.2.31. So there remain three cases to
consider.

T5.8.8 [ABC]:.[BC]:Beint (A).Ceint (4).Becnf (C) .2 B=C:

Bevrb(4).Cevrb(A).Becenf(C) .Beint(A).Ceint(4) :2 B=C
Hyp(6) .>.

7. Beexpr. (2, T2.2.9, T2.4.2]

8. C & expr. [3,T2.2.9, T2.4.2]

9. BeenfL(C). (4,1, 8, Df1.6]

10. Beinty(4). [5, 75.6.4]
11. Ceinty(A). (6, T5.6.4]
B=C (1, 10, 11, 9]

75.8.9 [ABC]:.lingr(A) e vibL1:[B]:Beint (4) .2 Betrm :Becnf(C).
Beint(A).Celvrb(4) :D B=C

Hyp(5) .2
6. Beint (4). (4, T5.6.4]
7. Betrm| . (2, 6]
8. Be ~ [vrbl]. (7, Df5]
9. Cevrb 1. [5, T2.2.30, Df1.13, 1]
10. C ecnf(lvrb(r)) . [9, T5.3.3, Df3.1]
11. Becnf(lvrb(Uz)) . [3,10, T2.2.1]
B=¢C (11, 8, T5.3.3, Df3.1]
75.8.10 [ABC]:.Uingr (A) e vrb 2:[B]:Beint (A) .2 Betm :
Becenf(C).Beint(A).CeUvrb(4) :D.B=C [Sim., T5.8.9]

T5.8.11 [ABC]:Belvrb(A).C eUvrb(A).Beenf(C).lingr(4) e vrb 1.
Uingry(A)evrb 2 DB =C

Hyp(5) .2
6. Bevrb 1. (1, 72.2.30, Df1.12, 4]
7. Cevrb 2. [2, T2.2.31, Df1.13, 5]
8. Tvrb(Uz) e cnf(dvrb(¥r)) .
[15.3.3, T5.4.3, 6,1, Df3.1, Df4.6, T2.2.20, T2.2.21]
B=C (8, @4]

Finally we are able to state the desired theorem

75.8.11.1 [A]:. Ae qntf . B evrb(A).C evrb(4) .Becenf(C) .O. B =C
Hyp(4) .>:

5. A gexpr: [1, Df8, 15.6.4, D13]

6. Beint(A) .v.Belvrb(4).v. BeUvrb(A): [2, 5, D13]

7. Ceint(d).v.Celvrb(A).v.C eUvrb(4): [8, 5, D13]
B=C

(6,7, Df8, T5.8.8, T5.8.9, T5.8.10, T5.8.11, T2.2.30, T2.2.31]

T5.8.12 [A]: Agqntf .D. A enon-rep. [75.8.11.1, D19]

T75.8.13 [A]:. Aeqntf .D. Agqntf
[Dfs, TE2, T5.8.1, T5.8.2, T5.8.7, T5.8.12]
T5.8.14 [A]: Aeqntf .=. A eqntf [T5.8.6, T5.8.13]

We now continue in this fashion introducing definitions of Le$niewski’s
terms into our system and then proving that our terms are equivalent to
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his. In this way we obtain theorems which show that each of the terms used
in the statement of the rule of Protothetic that we gave is equivalent to a
term used in Leéniewski’s statement. Hence the two statements of the rule
are equivalent in the sense that they allow precisely the same deductions.
These proofs, the details of which are too long to include here, can be found
in [46].

CONCLUSION

As we have stressed earlier the most important part of this work is
the first, particularly Chapter II. There we presented and developed a
system M of metalogic. Our aim in constructing this system was twofold.
We wished it to be adequate for the statement of procedural rules of
formalized systems, and wished it also to be adequate for conducting some
metalogical investigations. Our claim is that, with varying degrees of
success, both of these aims have been accomplished.

Clearly a proof that we can formulate rules for any formalized system
in M, or even in extensions of M like MP, is out of the question at this
time. To do so would require a precise notion of ‘‘rule of procedure’’
which is, to our knowledge, not available at this time. Probably if such a
definition did exist we could easily establish whether all such rules were
expressible in M. Since such a proof was beyond our grasp we adopted the
following technique.

Protothetic is a system with rules which are complicated to state
precisely, and strong enough so that they encompass the rules of most
logical theories. Thus there can be little doubt that the statement of the
rule of Protothetic is a challenging test of the first part of our claim.

For one familiar with Leéniewski’s systems it should be clear that the
rule of Ontology can be presented analogously to the rule of Protothetic.
Moreover, using the results of Chapter IV we could simplify the statement
of the rule of Ontology given by Le$niewski in [19].

It seems almost banal to remark that system M is sufficient to state
the rules for propositional calculi. If the only rules are substitution and
detachment then the statement of the rule is trivial; the propositional
constants all occur in the axioms and so we can just specify all symbols
not equiform to one of those to be variables. If the calculus contains
definitions then more care is required. Cf. Lesniewski [20].

By modifying the techniques of Chapter III, IV we can present the rules
for functional calculi of any order and for set theories. For Gentzen like
systems it is not so obvious that we can use similar techniques. The main
difficulties are the linearization of the language and allowing for expres-
sions of arbitrary (even infinite) length. This would require us to drop the
axiom concerning the finiteness of inscriptions.

In regard to the other half of our claim we have shown in Chapter 1V
that system M, or really MP, is adequate for some metalogical investiga-
tions, viz., proof of the equivalence of different statements of rules. A
most interesting question is what type of metalogical investigations can
actually be carried out in system M. Probably consistency and completeness
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of propositional systems could be carried out completely in M, but it seems
highly doubtful that incompleteness results could be established within M
without the use of variables of higher types and new axioms involving these

types.
FOOTNOTES
1. Cf. TE51, Chapter IV, 5.
2. The following definition, due to Sobociriski [47], is more perspicuous:
[pql: .p.g.=: [fl: f(pg).=.f(11)
3. In systems of Protothetic based on implication definitions must be stated either
as pairs of implications:
aDdB
BDOua
or in the complicated form
aDdDB.D:BDa.Dp:Dp
where both the definiens @ and definiendum g are free in p, ¢f. Lejewski [50].

4, The symbolism used here is that of Leéniewski. Once the key to the ‘‘wheel and
spoke’’ notation is explained it is easy to remember. The symbol ¢ corresponds
to the truth table

0 1
0|1 0
110 1
i.e., to equivalence., In general a spoke at the top (right, bottom, left) means a
1 in the (0-0)-place (resp (0-1), (1-1), (1-0)-place) of the truth table. Thus ¢ is
conjunction for it corresponds to
0 1
010 0
110 1
It should be understood that this symbolism, while very convenient, is not man-
datory. Protothetic is formulated in a way which leaves all possible choices of
symbolism up to the individual.

5. Interchanging functors in the same category need not preserve truth, and gen-
erally it does not.

6. One reason for rejecting incomplete symbols is that the rule of substitution has
never been strictly formulated using them.

7. Just like ‘man’ is a growing name., Every time a baby is born the name ‘man’
denotes one more object.

8. Whether a parenthesis is called left or right is a matter of having a familiar

looking notation. We could just as well write ‘)p(*> as ‘(p)’. No confusion can
arise as the introductory thesis for a new pair of parentheses determines which
of the two is called left.
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10.

11.

V. FREDERICK RICKEY

We have used different enumerations on the axioms to indicate that they are of
different natures. The P axioms concern the primitive terms of MP. The @
axioms are statements about the axiom g of Protothetic. They are of empirical
origin, but must be introduced as axioms into system MP.

The Terminological Explanations stated in this Chapter are different than those
in Leéniewski [18]. They will be proved equivalent in Chapter V.

By the n-th conjunct of a T. E. we mean the n-th conjunct on the right hand side
of the main equivalence of the T.E. More specifically TEMn will denote the
n-th conjunct of TEM. The conjuncts of the T.E.’s are independent. This
claim implies that the 1st, 4th, 5th and Uvrb of ¥r are not equiform.
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