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DIAGONALIZATION AND THE RECURSION THEOREM

JAMES C. OWINGS, JR.

In 1938 Kleene showed that if f is a recursive function then, for some
number ¢, ¢. =~ @), where ¢, is the partial recursive function with index
e. Since that time other fixed-point theorems have been found with similar
proofs. All of these theorems tend to strain one’s intuition; in fact, many
people find them almost paradoxical. The most popular proofs of these
theorems only serve to aggravate the situation because they are completely
unmotivated, seem to depend upon a low combinatorial trick, and are so
barbarically short as to be nearly incapable of rational analysis. It is our
intention, one, to put Kleene’s proof on classically intuitive grounds by
explaining how it can be viewed as a natural modification of an ordinary
diagonal argument and, two, to present a formulation of Kleene’s theorem
sufficiently abstract to yield all known similar theorems as corollaries.*

In a typical diagonal argument one has a class of sequences (with
terms from a set S), which he arranges as the rows of a square matrix, and
a mapping a of S into S. This mapping induces an operation a* on the class
of arbitrary sequences of elements of S in the natural way—if (s(i) :iel) is
such a sequence then a*((s(i):iel)) = {a(s(i)):iel). One then applies a* to
the sequence of diagonal elements of the matrix and shows that the result-
ing sequence is not a row of the matrix, thus diagonalizing himself out of
the class of sequences he began with. A good example is the matrix whose
rows are all infinite periodic sequences of 0’s and 1’s (binary expansions of
rationals) with the mapping a(0) = 1, a(1) = 0.

Usually, as in the example just given, the rows of the matrix are
closed under the operation a*. Hence, if the diagonalization succeeds, it is
usually true that the diagonal sequence itself is not one of the rows. But
what if the diagonalization fails, that is, what if the diagonal sequence is
one of the rows? Then the image of the diagonal sequence under a* will
also be one of the rows, which means some member of the diagonal
sequence must be left unchanged under the action of a*. In other words, a
has a fixed point!

To understand Kleene’s theorem in these terms, first assume f is a
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recursive function which is well-defined on the partial recursive functions;
i.e., assume Qe = Qo1 — Pf(e) =~ @y(.r) - Let S be the set of partial recursive
functions and let the n-th row of our matrix be @, o) Po,a)s Po,@)» - -
where, if ¢ (%) is undefined we mean by ®g, (%) the completely undefined par-
tial recursive function. If @ S, define a(¢) = ¢;() where e is any index for
@. Tt is clear that the diagonal sequence is one of the rows (there exists a
recursive function % such that @) =~ ¢@g,() S0 the diagonal sequence is the
a-th row where ¢ is any index for %) and that the rows of our matrix are
closed under the induced operation a*. So, for some number c, a(¢.) = @;
ie., ¢~ ¢s). We can easily compute a value for ¢. The a*-image of the
diagonal sequence iS @ (x(0))> Py(h()) > - - - 3 that is, Pa(0)s Ppatys «« - , where
dis any index for the composition of f over k. Thus the d-th term of this
sequence is a fixed point; that is, ¢ can be any number with ¢, ~ Opy(a)-
Since @ua) =~ Poqua) We may take ¢ = h(d).

Now suppose f is not well-defined on the partial recursive functions.
Then we cannot define a as above; instead, we take @ to be a binary relation
onS.' If 6, Y are partial recursive functions, we say 6 is a-related to y if
and only if there exists an index e such that 6 is ¢, and ¢ is ¢;(). Then any
row of our matrix is a-related to some other row in the sense that each of
its terms is a-related to the corresponding term in the other row. So,
since the diagonal sequence is one of the rows, it follows immediately that
some element of the diagonal sequence is a-related to itself. Thus, for
some number ¢, ¢. =~ ¢;,). A moment’s reflection reveals that we may
once again take ¢ to be x(d).

A much simpler situation is the following. Suppose the multiplication
table of a semigroup S has the property that its main diagonal is one of its
rows. Then since the rows are closed under multiplication on the left by a
fixed element of S, given any seS there must exist a t €S with st =¢.2 Two
examples of such multiplication tables appear below.

1 2 3 1 2 3
1 1 2 3 1 1 2 3
2 ]2 2 3 2 1 2 3
3 3 3 3 3 1 2 3

Theorem 1.° Let (S, o, %, -, 0, =, 6) be a structure in which S is a set of
objects, o, *, and - ave binavy opevations on S, O is a partial binary opera-
tion on S, = is an equivalence rvelation on S, and 6 is a special object in S
such that 60 f is defined for all fe S. Suppose furthev that §T f = f * f for
all fe Sand (feg)*h=f - (g Oh) whenevey f, g, he S and g O h is defined.
Then, given any feS, theve exists a teS such that t =f -t, namely t=
80 (fed).

1. This idea is due to Carl Jockusch, Jr.
2. In fact, as was pointed out to the author by Judson Temple, one can take ¢ = s3

3. The present statement of this theorem profited considerably from a suggestion of
E. G. K. Lopez-Escobar,
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Proof. t=60(fe8)=(fod) *(fed)=f. (60 (fo8)=F-t.

To understand Theorem 1 as a diagonal argument, one supposes there
are two multiplications defined on S, * and O (O may be only a partial
multiplication). The equation 6 Of =f *f says that, modulo the equivalence
relation =, the diagonal of the multiplication table for x is the ¢¢6-th’’ row
of the multiplication table for 0. The equation (f og) * h=f . (¢ O k) means
that if one applies f to the ‘‘g-th’’ row of the [J-table, the result is, again
modulo =, the ‘f og-th’’ row of the *-table. It follows that, given any feS,
there exists a term ¢ of the ¢“6-th’’ row of the [O-table such that -7 =¢.
For the result of applying f to that row is, up to equivalence, the ‘‘f o 5-th”’
row of the *-table. So, since the ‘“6-th’’ O-row is, modulo =, the *-diagonal,
the “f o 6-th’’ *-row must intersect the *-diagonal in an element equivalent
to the corresponding term of the ‘‘6-th’’ O-row. Hence, f must not map the
“f o 6-th’’ term of the ‘‘6-th’’ O-row outside its own equivalence class;
i.e.,f-t=t where t =6 0 (f »8). Notice that, although (f 0 6) % (f o 8) =
3O (f d), (f 20 % (f - 8) need not be a fixed point of f; nowhere did we
assume that - (or, for that matter, any of the binary operations) was well-
defined with respect to =.

We give five applications. The first four are known theorems; the fifth
is included as an illustration of the generality of Theorem 1. In each
application some of the operations o, *, -, O are identified. We do not know
of a reasonable application in which all four operations are distinct. In our
discussion of semigroups preceding Theorem 1 all four operations were the
same; the equation (f *g) * & =f * (g x 1) is just the associative law.

In Applications 1, 2, and 4 the reader will notice that the operations *,
-, and O are identified. In this case, one should think of S as a collection of
names or indices for functions mapping S into S. o is a composition and * is
evaluation. The assumption (f og) *h =f * (g * k) is simply the definition
of composition; § is the ‘‘self-evaluation’” map. Let N be the set of non-
negative integers for each application.

Application 1 (Kleene’s fixed-point theorem for Church’s x-calculus).
Let S be the set of all terms of the A-calculus and let = denote A-converti-
bility. If F, G are terms define F *G =F .G = FOG = (FG), FoG =
2x(F(Gx)). Let & be Ax(xx). Then 6 0 G = (6G) = (\x(xx)G) = (GG) = G * G
and (F o G) * H=(F o GH) = \x(F(Gx))H) = (F(GH)) = F . (G O H). Applying
Theorem 1 we find for every term F there exists a term T such that
(FT) = T. Namely, T = (\x(xx) y(F(Ax(xx)y))). Notice that T does not have
a normal form, in the sense of Church.

Application 2 (Kleene’s recursion theorem [1, p. 352]). Identify «, -,
and O. Let S be N and let y,o(u,v), Y1(u,v), ¢(u,v), . . . be a standard
enumeration of all partial recursive functions of one or two arguments
(here # may be a dummy variable). Let s(m,n), t{(m,n) be recursive func-
tions such that, for all m, ne N, Ys(m,») (V) = Yn(2, ), Wiim,n) (U, V) = YUn(sn, u),
v). If m,neN define m *n=s(m,n), mon=1tim,n). Let m=mn denote

m =~ Y, and let 6 be an integer such that ys(u,v) = y,(u,v) for all u, v. We
find Y5, () = Ys(5,0)(0) = Ys(n, V) = Yn(n,0) = Yo(n,n)(0) = Yn.psothatd On =
n *n. Also, W(mon)tp(v) > L[/s(mon,p)(v) =~ Ymon (D, V) = Yiim,n)(0> V) = Ym(s(n, P),
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U) =~ lpm(n 0O p>v) =~ lJ/s(m,nl:lp)(v) &= Hl/m'(nup)(v) so that (m ° n) xp=m- (n 0 p)-
So, by Theorem 1, given a partial recursive function ,(u,v) there
exists an integer ¢ with Y (v) ~ Y, (c,v), namely ¢ =6 O (a o 6) = s(5, Ha, 5)).

Application 3 (Roger’s version of Kleene’s recursion theorem [2,
p. 180]). Let S be N and, for ee S, let ¢, be the partial recursive function
of one argument having Gddel number e. Let (r, m) be a recursive function
such that @uepm) = Po,om) if @.(m) is defined and such that ¢, , is totally
undefined if ¢,(m) is not defined. Let g(n, m) be a recursive function such
that @g(s,m)(v) is undefined unless ¢,(v) and @,(¢»(v)) are both defined, in
which case @g(u,n)(V) = Ou(Pn(v)). U n, meNlet n * m=n - m = h(n, m) and
nom =g, m). If g.(m) is defined, set n O m = ¢,(m); otherwise, n O m is
not defined. Let » =m mean ¢, ~ ¢, and let 6 be an integer such that
@5(n) = h(n,n) for all n. Then @55, = Psm) = Chin,n) = Prunr 50 0 D 0= n ¥ 0,
Also Plromdp = Phlrom,p) = PLPpom® = PPela,m)®) = PPu(@n@) = Poylmop) =
Dhimmop) = Pnimop) if @a(m O p) is defined, @(,ompand @n.(mnp) are totally
undefined if not, so (n om) x p =n - (m O p) whenever m O p is defined. So,
given any recursive function f, there exists a number ¢ such that @) =~ ¢;
namely, ¢ = ¢5(d) where ¢;= fo s (that is, c = 6 O (a © 8) = ¢5(gla, §)) =
hig(a, d), g(a, 8)), where @, ~ f). Since % and g are recursive, a fixed point
¢ can be found effectively from any Gédel number a of f.

Application 4 (Feferman’s fixed-point theorem for elementary number
theory). Identify *, -, and O. Let S = {®,, &, &, . . .} where &;, &, ®s, . .
is the customary enumeration of all formulas of elementary number theory
with at most one free variable v (cf. [1, §52]) and, if ¥ is such a formula,
let "' =¢ where ¥V =&,. If &, TeS let & o ¥ be the formula (Eu)(du) &
A("¥7, u, v)) in which A is a formula such that, for any formula ¥ and any
n, meN, FA("¥", n, m) iff » = "¥(m)' (whenever a formula & has no free
variables &(v) and &(n) are to be interpreted as ®). If &, Te S let & * ¥ be
®("¥") and let & = ¥ mean & = ¥. Let 6 be a formula such that, for any
neN, -8(n) = &,(n); it is well-known that & exists (cf. [1, p. 206, Lemma
21]). We have 6 0¥ =06("¥) = (" E) =T * ¥, (o ¥) x0 = &("Y9")) =
& -(¥009), for all &, ¥,0eS. So, by Theorem 1, given any formula &
there exists a formula 6 such that &("0") =9. Namely, 0 =80 (& 00)=
6("(Eu)(®(u) & A("8", u, v))7). Notice that 0 is a sentence; i.e., § has no
free variables.

Application 5. Let S be the set of all partial recursive functions of one
variable and, for ee N, let ¢, be as in Application 3. For each y e S choose
a number "€ N such that ¢ry1~y. Identify . with o and O with x. When
ne N we shall denote by aun the constant function whose value for any
argument is n. If @, Y e Slet ¢ oy (u) = ¢(Y(u)) if both Y(u) and @(Y(u)) are
defined; otherwise, let @ oy/(x) be undefined. Define ¢ * ¥ = xu(e( 7)) if
¢("y") is defined; otherwise, let ¢ * Y be ¢,, the completely undefined
function. Let = be ~ and let 5 € S be such that 8(u) = ¢,(«) if ¢,(u) is defined,
6(u) is undefined otherwise. We find & O ¢ =~ xu(5("y ™)) = Au(gor¢1(rw1)) o
@ (Ty)) =g kg if Y(TY7) is defined; otherwise, 6 Oy =~ %y ~ ¢,
Hence 6 Oy =y xy for all YeS. Also (¢ o) * 6 =~ xu(p(767))) ~ ¢ -
Au((707) =~ ¢ - (w O8) if ¢(767) and (¥ (797)) are both defined; otherwise,



DIAGONALIZATION AND THE RECURSION THEOREM 99

(pov) 8 >~ ¢ (YO0 >~ ¢, Hence (¢ oY) x8 =¢ - (Y O0) for all ¢, Y,
BeS. So, given any Yy €S there exists a 8 €S such that ¢ o6 =~ 0; namely,
0 =~ xu(d("y 067)) if 6("Y 0 87) is defined and 6 ~ @, if not.

Actually, the completely undefined function ¢, is always a fixed point,
but it is not true that the fixed point 6 given above is always ¢,. For
example consider the case y is the identity function. Then "y o &7 is just
757, so whether or not 9 is ¢, depends upon whether or not §("67) is
defined. Now the function p e S determined by the conditions p(u) = ¢,(u) + 1
if ¢,(u) is defined, p(u) is undefined otherwise, is, of course, not defined at
"p7 no matter what choice one makes for "p'. Therefore, one might
suspect that 6 has the same property. Not so! There exist recursive
functions f, f, (£ = 0) such that

@u(u) if @, () is defined and u # e

Do) () = {undefined otherwise

@, (u) if @, (u) is defined and u # e
Ppe) (W) = (kifu=e
undefined otherwise

and by Application 3 one can find integers ¢, ¢, (k= 0) with ¢, =~ @),
Gep, = Ppicy) - Hence, @c = ¢, =~ 5, but ¢.(c) is undefined while ¢, (c) = k.
Thus, at least in the case y is the identity function, one can obtain any
solution 6 of the equation { o8 ~ 6, where 6 is a constant function or is
completely undefined, simply by varying one’s choice of "67.

The main virtue of Application 5 is that it, together with Application 3,
demonstrates the necessity of having four operations in the statement of
Theorem 1. Otherwise, not every ‘‘Kleene-like’’ argument would be a
corollary. Actually, Theorem 1 can be further strengthened by not requir-
ing o, *, and - to be total operations, but this seems purely academic.

Many people believe that something akin to self-reference must be
inherent in a situation before one can apply Theorem 1. We share this
impression but are not sure how to make it precise. The equation 6 Of =
f * f says there is an object 6 which is capable of ‘‘squaring’’ all the others
(including itself), but we do not consider this just cause for calling &
self-referential. On the other hand, it is an easy corollary of Application 3
that, for some e, the range of ¢, is {e}, which clearly suggests that e is
able to talk about itself.
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