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ON A PROPERTY OF CERTAIN PROPOSITIONAL FORMULAE

DAVID MEREDITH

In [l] section 4 Lukasiewicz gives a theorem concerning the law of

syllogism. The present paper presents a much more general theorem from

which the Lukasiewicz theorem can be derived. Sections 1 and 2 present

our theorem; a brief discussion of its application and its relationship to the

Lukasiewicz theorem is given in section 3.

1. Preliminaries and Statement of Theorem. We use (P', 'Q', 'R', with and

without subscripts to denote well-formed propositional formulae. ({P1} . . .

PnY, '{Qi, . . . QmY and so on denote ordered sets of such formulae. 'Φ' is

used for a constant operation under the substitution rule; {Φn' denotes n

repetitions of the operation; ζΦ{Pί9 . . . Pn}' is an abbreviation for ({ΦPί9 . .

ΦPn}'. 'U' and f C have their usual meanings. We use ζ~* to denote a

relationship between an ordered set of propositional formulae and a single

formula which is defined as follows.

Definition \Pχ, . . . Pn} ~ Q is defined inductively in two steps:

a. Let Q be a member of {Pl9 . . . Pn}; then {Pl9 . . . Pn} ~ Q.

b. For some R, let {pl9 . . . Pn} ~fl and let {Pl9 . . . Pn} ~ CRQ: then

{Pl9 ...Pn}~Q.

Less formally, our relationship holds between a formula and any

ordered set of formulae of which it is a member, or from which it can be

obtained by one or more applications of Modus Ponens. Our theorem can

now be stated.

Theorem For any well-formed formula of the form CPi . . . CPnCQ1 . . .

CQm-ιQm(m, n — 1) if the following three conditions are satisfied:

a. ΦCQ1 . . . CQm^Qm = CP1. . . CPnCQ1 . . . CQm^Qm

b . Qmis elementary

c. {Pl9 . . . Pn9 Ql9 . . . Qm-i}~Qm

then

Φ{PU . . . Pn] u Φ2{Λ, . . . Pn} u . . . Φw{Pi, . . . Pn] - C Λ . . .

CPnCQι . . . CQm^Qm
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To illustrate the theorem we may take CPλ . . . CPnCQ1 . . . CQm-iQm =

CCpCqrCqCpr, and Φ = p\q, q\CpCqr, r\Cpr. The three conditions of the

hypothesis are satisfied:

a. ΦCqCpr = CCpCqrCqCpr

b. Q3 = r is elementary

c. {CpCqr, q, p] ~r

Hence by our theorem CCpCqrCqCpr is closed by the union of the following

sets:

Φ{CpCqr} = CqCCpCqrCpr

Φ2{CpCqr} = CCpCqrCCqCCpCqrCprCqCpr

Φ3{CpCqr} = CCqCCpCqrCprCCCpCqrCCqCCpCqrCprCqCprCCpCqrCqCpr

The reader can easily verify that this is so by noting that:

ΦzCpCqr = CΦCpCqrCΦ2CpCqr CCpCqrCqCpr

2. Proof of Theorem.* Before proceeding to the proof of our theorem we

give five lemmas.

Lemma 1 For m < n, ΦCPλ . . . CPn.λPn = CΦPλ , . . CΦPmΦCPm+1. . .

CPn^Pn.

Lemma 2 If {pu . . . Pn] - Q, then Φm{Pu . . . Pn} <* ΦmQ.

Lemma 3 // φ{Pu . . . Pn} = {Ql9 . . . Qm}, then Φl{Pu . . . Pn} = Φ1'1 {Qu

. . . Qm}.

Proof. This follows from the lemma's hypothesis in virtue of the fact that

φ'{Pχ, ...Pn}= Φ1'1 Φ{Pl9 Pnl

L e m m a 4 // ΦCQX . . . CQm^Qm = CPX . . . CPnCQ1 . . . CQm-γQm(my n ^ 1),

then for kn-n + l^rn-l where k ^ 1 and I ^ n

$k{Qkn-n+l, . Qkn-t+l} = { Λ , Λ }

Proof. We assume that the lemma's hypothesis is satisfied. Then by

Lemma 1 we have

(1) Φ{QU . . .Qι}={Pu . . .Pi}

(2) Φ{QΛ+1, . . . Qβ+/}={Qi, . . Q/}.

From (2) by Lemma 3 and the hypothesis, we have

(3) Φ {Qkn-n+l, Qkn-n + lt = ^{Qik-Dn-n+l, - Q(k-l)n-n + l}

Our lemma follows from (3) and (1).

Lemma 5 // ΦCQL . . . CQ^Qm = CPi . . . CPnCQ1 . . . CQ^Qm (m, n ^ 1)

*The author is indebted to Lars Svenonius for help given him in 1957 with this
proof.
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ΦιCQλ . . . CQm^Qm = CRX . . . CRkCPί . . . CPnCQί . . . CQm^Qm

(l>l,k>l) where {Ru . . . Rk} c φ{P1? . . . pn] u . . . Φι'\Pl9 . . . Pw}.

Proof. We assume the lemma's hypothesis. Then by Lemma 1 we have

(1) Φ/CQ1 . . . CQ^Qm = cΦ'P, . . . C Φ1'1 P.Φ^CQ, . . . CQ^Qn.

Our lemma follows from (1) and the hypothesis.

To prove our theorem we assume that conditions (a) through (c) of the

hypothesis are satisfied. From Lemma 4 we have:

(1) $k+1{Qkn-n+U . Qkn-n+l} = MPl, ^/}

and hence by the meaning of φ{Px, . . . Pn},

(2) Φk^Qkn_n+ι=ΦPh

By the hypothesis of Lemma 4, kn-n+l^m-l. Hence for n = 1, k ^

m - 1 and k +1 ^m. Therefore from (2) we have

(3) Φ Qw_! = Φ P/.

Purely from the meaning of the symbols involved, we can assert

(4) Φmjpu . . . P n , Q u . . . Qm^}= Φm{Pu . . . Pnju Φm{Qu . . . Q j u . . .

§m{Qkn-n+U - Qkn-n+l} ?

for kn-n+l^m-l where k ^ 1 and Z ̂  n. From (4) by Lemma 4 and (3)

it follows that

(5) Φ"{P1? . . . P n , Q u . . . Qm^} = Φm{Pl9 . . . Pn} U Φ " - 1 ^ ! , . . . P j U . . .

Φ^-^{P1? . . . P,}

and hence we derive

(6) Φm{Pu . . . P n , Q u . . . Q . . J C Φ{P l 7 . . . Pw}u . . . Φm{Pu . . . Pn}.

From condition (c) of the hypothesis, we have, by Lemma 2

(7) Φm{Pu . . .Pn,Qu . . . Q . - J - Φ ^ .

From (6) and (7) it follows that

(8) Φ{P1? . . . Pn}u . . . Φm{Pu ...Pn}~ Φ"QW.

We now turn attention to ΦmQm. By condition (a) of the hypothesis we have

(9) a. ΦQm = CQOT_W . . . CQ^Qm when n < m - 1

b. Φ<?m = CQx . . . CQm^Qm when w = m - 1

c. ΦQm = CPW . . . CPnCQ1 . . . CQm-ίQm whenn > m - 1.

From (9) by condition (a) again and Lemma 1, we derive

(10) where / is the least integer such that In ^ m - 1

a. Φ / + 1 Q W = CPj . . . CP^CQi . . . CQw_xQm when In = m - 1

b. Φ / + 1 Q , = CΦP W . / W + W . . . CΦPnCP1. . . CPnCQ1. . . CQm.xQm when 2n >

m - 1.
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By the hypothes is in (10) m^l + 1. F u r t h e r Φ{Pn.in+m . . . Pn} c φ{p 1 ?

. . . Pn}. T h e r e f o r e f rom (10) by L e m m a 5 it follows that

(11) a. ΦmQm = CP, . . . CPnCQ, . . . CQ^Q* or
b. ΦmQm = CR, . . . CRkCP, . . . CPnCQ, . . . CQm^Qm

where {flx, . . . Rk} c φ{P1? . . . Pw}u . . . Φ"-M{-Pi, . . . i^} (& ̂  1). From
(11) by the definition of ~, it follows that

(12) Φ{P 1 ? ...Pn}\j... Φm-l-ι{Pu . . . Pn] U { Φ m Q w } ~ C P X . . . CPnCQ, . . .

CQOT_iQOT.

In v i r tue of the fact that φ{Pu . . . Pn] u . . . Φ 1 " " " ' " 1 ^ ! , . . . P«} c φ{P x, . . .
Pn}u . . . Φm{Pi, . . . P«} our t h e o r e m follows from (8) and (12).

3. Application of Theorem. Our theorem is useful for discovering deriva-
tions for formulae within Propositional Calculus. One example is the by no
means obvious derivation of CCpCqrCqCpr from CqCCpCqrCpr given in
section 1. Another is given by taking CPX . . . CPnCQ^^ . . . CQm^Qm =
CCpqCCqrCpr, and Φ = p\cpq, q\a, r\CCqrCpr. By our theorem Φ{Cpq,
Cqr} U Φ2{cpq, Cqr} ~ CCpqCCqrCpr. The union yields the four formulae

(1) CCpqa
(2) CaCCqrCpr
(3) CCpqaΦa
(4) CΦaCCaCCqrCprCCpqCCqrCpr

From (1) and (3) we get Φa by Modus Ponens. With Φa and (2), two applica-
tions of Modus Ponens to (4) yield the original formula. This instance of
our theorem is a proof of the Lukasiewicz theorem referred to above,
which states that from any two formulae of the form (1) and (2) the law of
syllogism can be derived using only Substitution and Modus Ponens. Useful
derivations result when a is so chosen that CCpqa and CaCCqrCpr are
theses.
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