Notre Dame Journal of Formal Logic Volume XIV, Number 1, January 1973 NDJFAM

A NOTE ON NEWMAN'S ALGEBRAIC SYSTEMS

BOLESŁAW SOBOCIŃSKI

This note possesses a purely supplementary and informative character with respect to the papers [2], [3], [4], [5] and [6]. Namely, in order to describe the systems investigated in those papers more completely the definitions of the dual associative Newman algebras which are mentioned only casually in [6], p. 536, and of the dual mixed associative Newman algebras will be established. Additionally, a rather bad misprint and erroneous statement which both appear in [3] will be corrected.

1 It has been established in [4] that the associative Newman algebras can be defined, as follows:

Any algebraic structure

$$\mathfrak{D} = \langle A, +, \times, - \rangle$$

where + and \times are two binary operations, and - is a unary operation defined on the carrier set A, is an associative Newman algebra, if it satisfies the following postulates:

$$\begin{array}{lll} P1 & [ab]: a, b \in A . \supset .a = a + (b \times -b) & [Axiom F1 in [4]] \\ P2 & [ab]: a, b \in A . \supset .a = a \times (b + -b) & [F2 in [4]] \\ P3 & [abc]: a, b, c \in A . \supset .a \times (b + c) = (c \times a) + (b \times a) & [H1 in [4]] \\ P4 & [abc]: a, b, c \in A . \supset .a \times (b \times c) = (a \times b) \times c & [L1 in [4]] \end{array}$$

Therefore, it is self-evident that the dual associative Newman algebras can be defined as follows:

Any algebraic structure

$$\Re = \langle A, +, \times, - \rangle$$

^{1.} An acquaintance with the papers [2]-[6] is presupposed. Concerning the symbols used in this note it should be remarked that instead of " \overline{a} " which is used in [2], [3] and [4] I am using here "-a". An enumeration of the algebraic tables, cf. section 3 below, is a continuation of the enumeration of such tables given in [2], [4], [5] and [6].

where + and \times are two binary operations, and - is a unary operation defined on the carrier set A, is a dual associative Newman algebra, if it satisfies the following postulates:

R1 $[ab]: a, b \in A . \supset .a = a \times (b + -b)$ R2 $[ab]: a, b \in A . \supset .a = a + (b \times -b)$ R3 $[abc]: a, b, c \in A . \supset .a + (b \times c) = (c + a) \times (b + a)$ R4 $[abc]: a, b, c \in A . \supset .a + (b + c) = (a + b) + c$

Since $\Re 19$, cf. [6], p. 542, verifies the axioms RI-R4, but falsifies the law of idempotency with respect to the operation \times , we know that system \Re is not necessarily a Boolean algebra. In section 3, point (1), below the mutual independency of the postulates RI-R4 will be proved.

Using the deductions entirely analogous to those which are given in [4] we can prove easily that in the field of the fixed carrier set A the axioms R1-R4 are inferentially equivalent to the following formulas: R1, R2, R4 and

R5
$$[ab]$$
: $a, b \in A$. \supset . $a + b = b + a$
R6 $[abc]$: $a, b, c \in A$. \supset . $a + (b \times c) = (a + b) \times (a + c)$

and, moreover, that R1-R4 imply

$$R7 \quad [a]: a \in A . \supset a = a + a$$

Hence, cf an analogous case in [4], we can conclude:

A dual associative Newman algebra can be considered as a semilattice with respect to the binary operation + to which the additional postulates are added concerning the properties of the operations \times and -.

2 In [5], p. 418, an equational axiomatization of the mixed associative Newman algebras has been established. Analogously, we can define the dual mixed associative Newman algebras as follows:

Any algebraic structure

$$\mathbf{E} = \langle A, +, \times, \rightarrow \rangle$$

where $+, \times$ and \rightarrow are three binary operations defined on the carrier set A, is a dual mixed associative Newman algebra, if it satisfies the following postulates:

S1 $[abc]: a, b, c \in A . \supset . a + (b \times c) = (a + b) \times (a + c)$ S2 $[ab]: a, b \in A . \supset . (a + b) = b + a$ S3 $[ab]: a, b \in A . \supset . (a \rightarrow b) \times (a + b) = b$ S4 $[abc]: a, b, c \in A . \supset . (a \rightarrow b) + (a + b) = c \rightarrow c$

Concerning the primitive binary operation \rightarrow of the system \mathfrak{S} it should be remarked that this operation is not a pseudo-complement operation \Rightarrow which is a familiar primitive operation in the relatively pseudo-complemented lattices. It will be shown in section 3, point (2), below that £123 verifies S1-S4, but falsifies a formula:

$$[ab]: a, b \in A . \supseteq . (a \to (b \times c)) + (a \to b) = a \to b$$

which corresponds to the well-known formula of relatively pseudo-complemented lattices, cf. [1], p. 62:

$$a \Longrightarrow (b \times c) \leq a \Longrightarrow b$$

In section 3, point (3) below the mutual independency of the postulates S1-S4 will be proved. Again, using deductions entirely analogous to those given in [5], see p. 418, Theorem 2, we can establish that:

A dual mixed associative Newman algebra can be considered as a semi-lattice with respect to the primitive operation + to which the additional postulates are added concerning the properties of the primitive operations \times and \rightarrow .

3 In order to establish the independencies which are announced in sections 1 and 2 above we use the following algebraic tables: #14, #15, #21, cf. [6], p. 541 and p. 545, and:

α α 1 1 1 1 金22 1 1 0 1 **M23** η η **M24** δ × 0 0 0 α δ γ 0 0 α α α α α α β 0 0 β 0 β β β δ δ 0 0 γ γ γ γ γ δ α δ 0 0 β α β γ 0 β α γ γ 0 β α 0 γ 1 α α α α α 孤25

1 1 1 1 1

1

1 0

0

1

1 0

α

- (1) Since: (a) #15 verifies R2, R3 and R4, but falsifies R1, cf. [6], p. 542; (b) #22 verifies R1, R3 and R4, but flasifies R2 for α/α and b/1: (i) $\alpha = \alpha$, (ii) $\alpha + (1 \times -1) = \alpha + (1 \times 0) = \alpha + 0 = 0$; (c) #14 verifies R1, R2 and R4, but falsifies R3 for α/γ , b/α and c/β : (i) $\gamma + (\alpha \times \beta) = \gamma + 1 = \gamma$, (ii) $(\beta + \gamma) \times (\alpha + \gamma) = \beta \times 0 = 0$; and (d) #121 verifies R1, R2 and R3, but falsifies R4, cf. [6], p. 545, the proof that the axioms R1-R4 are mutually independent is complete.
- (2) Since #23 verifies S1, S2, S3 and S4, but falsifies the formula (β) for a/0, b/η and c/η : (i) $(0 \rightarrow (\eta \times \eta) + (0 \rightarrow \eta) = (0 \rightarrow 0) + \eta = 0 + \eta = 0$, (ii) $0 \rightarrow \eta = \eta$, we know that (β) is not a consequence of S1-S4.
- (3) Since: (a) £424 verifies S2, S3 and S4, but falsifies S1 for a/α , b/β and c/γ : (i) $\alpha + (\beta \times \gamma) = \alpha + \delta = \alpha$, (ii) $(\alpha + \beta) \times (\alpha + \gamma) = 0 \times 0 = 0$; (b) £425 verifies S1, S3 and S4, but falsifies S2 for a/α and b/1: (i) $\alpha + 1 = 1$, (ii) $I + \alpha = \alpha$; (c) £425 verifies S1, S2 and S4, but falsifies S3 for a/0 and b/α : (i) $(0 \rightarrow \alpha) \times (0 + \alpha) = 0 \times 0 = 0$, (ii) $\alpha = \alpha$; and (d) £427 verifies S1, S2 and S3, but falsifies S4 for a/α , b/β and c/0: (i) $(\alpha \rightarrow \beta) + (\alpha + \beta) = \alpha + \gamma = \beta$, (ii) $0 \rightarrow 0 = 0$, the proof that the axioms S1-S4 are mutually independent is complete.

4 Corrections:

(A) The proof of F3 in [3], p. 268, lines 8-13, contains rather bad misprints. It should be given, as follows:

F3
$$[ab]: a, b \in A . \supset . a = (b + \overline{b}) \times a$$

PR $[ab]: \operatorname{Hp}(1) . \supset .$
 $a = a \times (b + \overline{b}) = (\overline{b} \times a) + (b \times a) = ((\overline{b} \times (b + \overline{b})) \times a) + ((b \times (b + \overline{b})) \times a)$
 $[1; F2; H1; F2]$
 $= (\overline{b} \times ((b + \overline{b}) \times a)) + (b \times ((b + \overline{b}) \times a))$
 $= ((b + \overline{b}) \times a) \times (b + \overline{b}) = (b + \overline{b}) \times a$ $[H1; F2]$

(B) Since $\Re 5$, cf. [2], p. 263, falsifies H1 for a/0, b/α and c/1: (i) $0 + (\alpha \times I) = 0 + I = I$, (ii) $(I + 0) \times (\alpha + 0) = I \times \alpha = \alpha$, the statement " $\Re 5$ verifies F1 and H1, but falsifies F2," which due to a manuscript mix-up appeared in [3], p. 268, lines 30-31, is obviously false. It should be substituted by the correct one:

[&]quot;an algebraic table

verifies F1, H1 and L1, but falsifies F2 for a/α , and b/1: (i) $\alpha = \alpha$, (ii) $\alpha \times ((1 + \overline{1}) = \alpha \times (1 + 0) = \alpha \times 1 = 1)$.

REFERENCES

- [1] Rasiowa, H., and R. Sikorski, "The mathematics of metamathematics," Monografie Matematyczne, tom 41. Państwowe Wydawnictwo Naukowe, Warszawa (1963).
- [2] Sobociński, B., "A new formalization of Newman algebras," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 255-264.
- [3] Sobociński, B., "An equational axiomatization of associative Newman algebras," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 265-269.
- [4] Sobociński, B., "A semi-lattice theoretical characterization of associative Newman algebras," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 283-285.
- [5] Sobociński, B., "An equational axiomatization and a semi-lattice theoretical characterization of mixed associative Newman algebras," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 407-423.
- [6] Sobociński, B., "Solution to the problem concerning the Boolean bases for cylindric algebras," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 529-545.

University of Notre Dame Notre Dame, Indiana