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A COMPLETENESS PROOF FOR C-CALCULUS

H. HIZ

To Alfred Tarski who fivst
axiomatized C-calculus

Introduction. Every true formula of the classical implicational logic,
the C-calculus, is provable, by means of substitution and detachment, from
the following three axioms:

1. CCCpgrCqr
2. CCCpaqrCCphrr
3. CCqrCCCpryCCpqr*

In effect 1, 2 and 3 jointly assert the inferential equivalence of a formula of
the form CCapBy with the set of two formulas of the forms CBy and CCayy.?
The completeness proof which follows is of elementary nature.® First, the
deduction of useful theorems is given. Then, it is shown that a formula in
the implicational normal form is true if and only if it satisfies the chain
condition, and that every formula in the implicational normal form which
satisfies the chain condition is deducible from 1, 2 and 3. Finally, it is
shown that every formula of the C-calculus is inferentially equivalent to a
finite set of formulas in the implicational normal form.

1. This axiomatization was discovered in 1961.

2. Equivalence asserting axiomatizations, besides being pedagogically transparent,
may be of interest in connection with systematization of metalogic by means of
inferential equivalence; see [1].

3. The first completeness proof of an axiomatization of C-calculus was given by
Tarski, but never published. See footnote to p. 145 of [3]. Formula 2 was used
by Tarski in his first axiomatization of C-calculus. Another completeness proof
of C-calculus was given by Kurt Schiitte, ¢f. [5] and [4], pp. 214-217. Schiitte’s
proof presupposes completeness of the logic of implication and negation (the C-N-
calculus).
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Derivation of useful theovems.

1. CCCpgqrCqr
CCCpqrCCprr
3. CCqrCCCprvCCpqr
1 p/Cpq, q/v, v/Cqr X C1-4
4. CrCqr
2 q/v, v/CqCpr x C4 v/Cpr-5
5. CCpCqCprCqCpr
3 q/Cpr, v/CqCpr x C4 v/Cpr-C5-6
6. CCpCprCqCpr
6 v/p, q/CrCqr x C4 v/p, q/p-C4-1

Do

7. Cpp
2 v/Cpg x CT p/Cpq-8
8. CCpCpqaCpq
1 p/7, v/CpCrq X C4 v/Cvq, q/p-9
9. CqCpCrq
3 ¥/CpCrq x C9-C8 q/Crq-10
10. CCpqgCpCrq
3 q/Cqr, v/CqCpr x C10 p/q, q/v, v/p-C5-11
11. CCpCqrCqCpy
11 p/Cqv, v/Cpr X C10 p/q, q/v, v/p-12
12. CqCCqvCpr
3¥/CCqvCpr x C12-C5 q/Cqr-13
13. CCpqCCqrCpr
11 p/CCppp, q/Cpp, v/p X CT p/CCppp-C'T1-14
14. CCCpppp
13 p/CCpqp, q/CCppp, v/p X C2 v/p-C14-15
15. CCCpgpp*
13 p/Cpq, q/CCqrCpr, v/CCCprsCCqrs X C13-C13 p/Cqr,
q/Cpv, v/s-16
16. CCpqCCCprsCCqrs
11 p/Cpq, q/CCprs, v/CCqrs x C16-1T
17. CCCprsCCpqCCqrs
17 p/Cpq, v/b, s/p, q/v x C15-18
18. CCCpqvCCrpp
18 /g% 19
19. CCCpqqCCqpp®
11 p/Cpq, q/Cqv, v/Cpr x C13-20
20. CCqrCCpqCpr

Metatheorem 1. If WP is a theovem wheve W is an n-tevin Sevies

4. 4, 13 and 15 form the Tarski-Bernays axiomatization of the C -calculus; see [3],
p. 145 and p. 296. In the original Tarski axiomatization, 2 was used instead of 15.

5. The derivation from 16 to 19 follows essentially that of fukasiewicz given in [2].
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n=2)of Cap (1 <k <n) and each ay and B is a well-formed formula, then
UB is a theovem wheve U is a sevies like W except for the ovder of ele-
ments.

As any permutation is obtainable by successive permutations of neighboring
elements, it suffices to show that in WS any successive a; and a4, can be
interchanged preserving theoremhood. Let

a. CaCay...CapCapCaypyry
be a theorem. By 11 p/ay, q/ap+1, v/y,
b. CCoyCaypy,yCaypy,Capy
By 20 and b,
c. CCap_;CaCapyyyCay_,Cayq,Capy
Continuing in the same way,
d. CCaiCay ... CaopCapCapyyCayCay . .. Cayp_1CapyyCapy
Detaching a from d,
Ca,Cay . . . Cap_Capyy Capy

4 y/CCpqCCqrCpr, q/CvCCpqr x C13-21
21. CCvCCpgvCCpqCCqrCpr
21 Ix 22
22. CpCCqrCCvrCCpqvCCpgr
20 p/Cqr, q/CC¥CCpqvCCpqr, v/CCCCpqrrr x C19 p/r,
q/CChqr-23
23. CCCqrCCrCCpqvCCpgqrCCqrCCCCpgrry
20 q/CCqvCCrCChpqvCCpqr, v/CCqrCCCCpqrry x C23-C22-24
24, CpCCqrCCCCpqrry
24 Ix 25
25. CCCCpgrrCpCCqrr
20 g/CCqrr, v/CCrqq x C19 p/q, q/r-26
26. CCpCCqrrCpCCrqq
13 p/CpCCrqq, q/CCrqCpq, v/CCrCpqCpq x C11 q/Crq,
v/q-C2 p/v, v/Cpq-27
27. CCpCCrqqCCvCpqCpq
13 p/CpCCqrr, q/CpCCrqq, v/CCrCpqCpq x C26-C27-28
28. CCpCCqrvCCrCpqCpq
20 q/CCrCpqCpq, v/CCCpqrr, p/CpCCqrr x C19 p/7,
q/Cpq-C28-29
29. CCpCCqrrCCCpqrr
4 v/CCCpvpp, q/Cpg x C15 q/7-30
30. CCpqCCCprpp
29 p/Cpq, q/Cpr, v/p x C30-31
31. CCCCpqCprpp
19 p/CCpqCpr, q/p x C31-32
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32. CCpCCpqCprCCpqCpr
3 q/Cqv, ¥/CCpqCpr x C20-C32-33
33. CCpCqrCCpqCpr

Implicational normal form. We write ‘6’ with a numerical subscript as
a metalinguistic variable ranging over variables. A well-formed formula a
is in the implicational normal form if and only if @ is

CBuCBp-1 « . . CBidy

with n> 0, with each B, (1 <% < ) either a variable or an implication of the
form C6,6y. A formula in the implicational normal form is true if and only

if there is a chain B, Bs,, - - . , Bsyy (1<sy,Ss,..., Sy <n) such that either
Bs, = B
or else
Bs, = Omy Bsmer = COpBpoyy - o« 5 Bsy = C8,8,.

Metatheorem II. Every trvue formula in the implicational novmal form
iS a theovem.

Let @ be a true formula in the implicational normal form and let Bs,,
Bsys + - + 5 Bs, be the chain of conditions as described. The proof of Meta-
theorem II is by induction on the length of the chain. If B = 8, then CB; 150
is 7 or a substitution instance of 7. Suppose that C5,CC5,,0,,-; . . . CC;8,5,
is a theorem, then by detaching it from 20 ¢/5,,7/CC6,6,-; . . . CC5;8,5,,
7’/&5,,,4_1 we obtain as a theorem CC8,,,0mC8,1CCOyd,-y . . . CCH;040, and,
by Metatheorem I, C5,,4,CC6,,4,6,CC0,0,-1 . . . CC8;640,. Thus, by induc-
tion CBs,,CBs,-1CBsp—2 - . . CBs,80. To this theorem we can add by 4 any
condition which is in @ and not in the chain and by Metatheorem I we can
place it in the required position.

Reduction to sets of formulas in the implicational novmal form. For
the purpose at hand, we say that a formula a is inferentially equivalent to a

finite set of formulas {8, B, . . . , Bn} if and only if CapB,, CaB,, . .., CaB,
and CB,CB; . . . CB,a are theorems. Then, also, a is a theorem if and only
if By, Bay . . ., Br are theorems. The completeness proof will be provided

by showing that every formula is inferentially equivalent to a finite set of
formulas in the implicational normal form. As every true formula will be
provable from a set of true formulas inferentially equivalent to it and of the
implicational normal form, and since all true formulas in the implicational
normal form are provable, every true formula is a theorem,

Metatheorem IIl. CCaBy<—=>{CBy, CCayy}° [1, 2, 3]
Metatheorem IV. CCafBp <> CCBaa [19]
Metatheorem V. CCCaByy <> CaCCByy [25, 29]

Metatheorem V1. If B<—>{y, e}, then Cap<—>{Cay, Cac}

6. ‘< stands for ‘is inferentially equivalent to.’
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Proof: a. B<>{y, &}

b. CBy

c. CBe

d. CyCeB [a]

e. CCafCay (20, b]

f. CCaBCas (20, c]

g. CCayCaCeB (20, d]

h. CCayCCasCap (13, 33, g]
Cap<«>{Cay, Cas} [e, £, h]

Metatheorem VII. If a<—>{B;, Ba} and Br<=>{y1, ya} then a<—>1{y,, va, Ba}
(13, 33, 1]

Metatheorems VI and VII also cover the cases where y = ¢, 3, = 8,3, y1 = ya.
Every well-formed formula a is of the form

a=Ca,Cay...Ca,0,

If n=0, o is a variable and «a is not true. Let g8 be the number of
occurrences of ‘C’ in B and g[B] =maxgB; (1 <i<m) where B=CpB; ...
CB,6,. Let gaj = gla] and, in addition, let a@; be the last occurring a; such
that gao; = gle]. If go; <1, then @ is in the implicational normal form.
Suppose now that ga; > 1. One of the cases holds: A. a; =CCpye, B. a; =
CBCye.

In case A, CajCaj4; - . . Capdy = CCCByeCj4y - . - Caydy. By I this
formula is inferentially equivalent to the set {6;, 6;'},

6; = CeCajyy « . . Cady

6;'= CCCBYC 41+ + - CADoCjyy « - - CADg
0;'«>CCCajyy - . . Cay0oCPRyCPy, by IV,

9]‘ '<——>Cozj+1CCCaj+2 . .. Ca,,GOCByCBy, by V.

Continuing in the same way, by V and VI,

0j'e>Cajq . . . CanCCOLCPBYCPy

0j'«>Caji1 . . . CaCCCPydydo, by IV and n -j times VI.
0;'<>Caj4y . . . CaCBCCyB,0, = 0;"', by V and n - j times VI.
al6;1 < gla] and g[6; "] < g[a].

In case B, CqjCaj41 .. .Coy0p = CCRCyeCj4y - - - CADo. By TI this
formula is inferentially equivalent to the set {;, 6, '},

0; = COYECa 4y - . . Candy
0] ''= CCBCa]+1 .« e e Cdnéocaj+1 .« .. Ca’,,GO

Proceeding as in case A,

0j'<>CCCajyy . . . CandoPB
9/ '<——>CC(,-+1C(1]~+2 PR CO[,,CC@OBB
9]"(—9C(1/‘+1C‘a]'+2 “ .. Ca,,CCBGOGO = 9;‘”

Again, g[0;] <g[a] and g[0;""] <gla]. In either case, by successive applica-
tions of VI and VII
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a<>{Ca, ... Ca;.,0;, Cay . ..Ca;_,0;"}

If it is still the case that g[Ca; ... Ca;-,0;] = gla], then by a similar
reasoning there are formulas 0, and 6," such that g[0,] < g[a], g{6,""] < g[a],
k<jand Ca...Caj-10;<>{Ca ... Caop 0, Cay ... Ca,0,}. Similarly,
there are formulas ), and )/’ such that g[x]<g[a], g[x{'] < gla] and
Cay ...Ca;,0;"<>{Ca, ... Cap_ N, Cay ... Cap_i),"}. By VIIa<e>{Ca, . . .
Cay 10, Cay ... Cay 0", Cay ... Cap Ny, Cay . . . Cap_i2,"}. Repeating the
reasoning as many times as there are @; with ga; = g[a] we obtain a set of
formulas which is inferentially equivalent to @ and, for each formula g in
the set, g[B] < gla].

Repeating the entire procedure g[a] - 1 times, we obtain a finite set of
formulas which is inferentially equivalent to a and for each formula 8 in the
set, g[f] <1, i.e., Bis in the implicational normal form, which completes
the completeness proof.
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