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INCOMPLETENESS THEOREM VIA WEAK DEFINABILITY
OF TRUTH: A SHORT PROOF

GIORGIO GERMANO

Introduction According to Tarski [9] no consistent theory T in which all
recursive functions are definable allows definability of the truth of its own
sentences, in the sense that there exists no formula © (with at most cne
free variable) such that for all sentences &

(©(Dg(p) <> ) €T,

where g(®) is the Godel-number of ¢ and Dg(¢) is the digit representing it.
We shall refer to the definability of truth in this sense as ‘‘strong
definability of truth.”” Myhill [8] defines a system S which allows
definability of its own truth in the sense that there is a © such that for
all &

O(Dg(q) € S iff ®€S.

We shall refer to the definability of truth in this sense as ‘‘weak
definability of truth,’”’ because if truth is definable in the first sense, it
follows that truth is definable in the later one.

In [2] Germano, solving a problem which in [1] Germano has left open,
proves that the weak truth definability is a property of every recursively
enumerable arithmetic in which all recursive functions are definable.

In [3] Germano gives a strong formulation of the incompleteness
theorem (concerning every recursively enumerable arithmetic in which the
elementary functions, i.e., the functions of the class £ of Grzegorczyk [5],
are definable) by comparing opportune formulations of the theorem on weak
definability of truth and of the theorem on strong definability of truth. The
present note gives a proof of the incompleteness theorem in the same
strong formulation as in Germano [3], using only the theorem on weak
definability of truth as announced in Germano [4]. The proof obtained in
this way is the shortest direct proof of the incompleteness theorem known
to the author and it is characterized by the fact that it mirrors step by step
the construction of the liar’s paradox, which will be discussed later. A
future paper will treat the possibility of extending the incompleteness
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theorem to every arithmetic in which only a few of the functions of the
class £? of Grzegorczyk [5] are definable. A problem, which should be
interesting with regards to applications, is the following: can the incom-
pleteness theorem be extended to every arithmetic in which only functions
of the class £° are definable ?

Nomenclature In order to obtain a more compact exposition, we consider a
language (of order n =1) constructed using three (denumerable) sets of
individual symbols: free individual variables a,, a;, . . ., bound individual
variables %o, X5, . . . and individual constants (as digits) Dy, Dy, . . .. Fur-
thermore, the equality symbol =, the negation 1, the existential quantifier
of the first order and at most denumerably many other symbols shall be
used. The considerations below apply nevertheless to many other lan-
guages, e.g., to the languages of Tarski [10].

Let f be any injective mapping of the set of the introduced symbols into
the set of positive integers, such that f(D,) = in + 1, where % is a constant.
For any finite sequence of symbols s, . . . s, let

f(s;)
also . . .5, =11/,
1EM
where p; is the i’th prime number. Now consider the function

d(n) = ].-[ P?(t) )

i<l(n)
hn + 1 for exp;(n) = fla,)
exp;(n) otherwise.
The function d is obviously elementary. Let E be any finite sequence of
symbols and E(D,) the sequence obtained by replacing every occurrence of
the free individual variable 4, in E by D,. Then obviously

d(g(E)) = g(E(Dg(r)),

i.e., the function d is a diagonal function.

A theory shall be a set of sentences (well formed formulas without
free variables) closed with respect to the inference rules of the predicate
calculus of the first order with identity. A theory will be said to be an
arithmetic iff it is satisfied by a realization whose universe is the set of
negative integers and which interprets every D, as n. A theory will be
said toc be recursively enumerable iff its image under g is recursively
enumerable.

For the sake of compactness we will use in the metalanguage the
connectives ‘="’ and ‘‘<>’’, the quantifiers ‘V’’ and ‘‘3’’ and the
following letters: ‘T’ representing theories, ‘‘®’’ representing sentences,
‘@’ representing well formed formulas with no other free variable thana,
and ‘“¢’, ‘‘6’> representing terms (individual-to-individual functional
expressions) with no other free variable than a,.

We will say that truth can be weakly defined in T iff

JOVP (@(Dg(q))) eT<deT)

where |(z) is the length of » and a () ={
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We will say that the function f can be defined in T iff
36vn 6(D,) = Dy €eT.

Also this less general form of definability of functions (see Mostowski [7])
is used in order to obtain a more compact exposition. Nevertheless we
could apply the same method also using a more general form as, e.g., in
Tarski [10], p. 46, Theorem 1.

Theorem If (a) T is an arithmetic, (b) T is vecursively enumevable, and
(c) every elementary function is definable in T, then (A) truth can be weakly
defined in T, and (B) T is incomplete.

Proof: By (b) there is an elementary function f such that
(1) ®eT<>3n f(n) = g(d).
By (c) there is a 6 such that
(2) vn6(D,) =DyneT.
By (2)
(3) 3ng(®) = f(n)=>Vx, 6(x,) = Dgye T
and, by (a) and (2)
(4) Vx, 6(x,) = Dg(wye T=>>3n f(n) = g(®).
From (1), (3) and (4) we get
(A) Vo 6(x0) = DgoyeT <> deT.
As d is elementary, by (c) there is a 6 such that
(5) Vn6(D,) = Dyimye T-
Therefore, for n: = g(1Vx, 8(x,) = 8) and e: = d(n) = g(1Vx, 6(x,) = 5(D,))

(6) Vx,6(x;) = D, e T<>1Vx,0(x,) = 6(D,)eT, by (A)
<>V, 0(x,) = D €T, by (5)

Therefore, as by (a) T is consistent
(B) Vx,6(x) = D.¢T and 1V, 6(x,) = D ¢T.

Discussion According to (A) the sentence Vx, 6(x,) = Dg(¢) means intuitively:
the sentence named Dgq) is true,i.e., & is true. So D, is the name of the
sentence named 5(D,) is not true. This is equivalent to the sentence named
D. is not true, because 5(D,) = D, is true by (5). So the sentence named D,
affirms that D, itself is not true, as is the case by the liay in the form of
Eubolides (see Kleene [6], p. 39). So the sentence D, is true iff D, is not
true, (6). To avoid a contradiction it and its negation must therefore be
excluded from the theory T, i.e., (B) follows.
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