Notre Dame Journal of Formal Logic Volume XIV，Number 3，July 1973 NDJFAM

MODAL SYSTEM S3 AND THE PROPER AXIOMS
 OF S4．02 AND S4．04

BOLES£AW SOBOCIŃSKI

In［1］，p．392，a proof attributed to G．E．Hughes is published which stated that in the field of S4 the proper axiom of S4．04，cf．，e．g．，［8］，

L1 © $L M L p C p L p$

and the formula

L2 ๔pLCMLpp

are inferentially equivalent．It is self－evident that in the field of S4 also a formula

L3 © $L M L p L C p L p$

is inferentially equivalent to L1（and to L2）．
In this note the effects of the addition of L1，L2，L3 and of the formulas

Ł1（s๔epLppCLMLpp

i．e．，of the proper axiom of S4．02，cf．［6］，and

Ł2 ๔๔๔ $p L p p L C L M L p p$

which，obviously，in the field of $S 4$ is inferentially equivalent to $Ł 1$ in the system S 3 respectively will be investigated．

1 In the discussions presented below the following matrices

明 1

p	1	2	3	4
$M p$	1	1	1	3
$L p$	2	4	4	4

日月 2 | p | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $M p$ | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 8 |
| $L p$ | 1 | 4 | 4 | 4 | 8 | 8 | 8 | 8 |

AH 3

p	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$M p$	1	1	1	1	5	6	7	8	1	1	1	1	5	6	7	8
$L p$	1	10	11	12	16	16	16	16	9	10	11	12	16	16	16	16

will be used．These matrices are given here only for the functors M and L ．

An acquaintance with 4， 8 and 16 valued ordinary logical Boolean matrices for the functors C and N is presupposed．Matrix $\not \notin 1$ ，in which 1 and 2 are the designated values，is the familiar Group I of Lewis－Langford，cf．［2］，

2 Matrix $\not \mathrm{Al}^{2}$ verifies system S 3 and the formulas $Ł 1$ ，$Ł 2$ and L1，but falsifies：
（i）the proper axiom of S 4 ，i．e．，$\Subset L p L L p$ for $p / 1$ ：$\Subset L 1 L L 1=L C 2 L 2=$ $L C 24=L 3=4$ ；
（ii）$L 2$ for $p / 2$ ：$\subseteq 2 L C M L 22=\mathbb{C} 2 L C M 42=\mathbb{C} 2 L C 32=\mathbb{C} 2 L 2=L C 24=L 3=4$ ；
（iii）$L 3$ for $p / 1$ ：© $L M L 1 L C 1 L 1=\mathbb{C} L M 2 L C 12=\mathbb{C} L 1 L 2=L C 24=L 3=4$ ．
Hence，the addition of $Ł 1$ ，$Ł 2$ and L1，as the new axioms，to $S 3$ does not generate system S4．04．On the other hand，an addition of L2 or of L3，as a new axiom，gives S4．04．Proof：

2．1 Assume S3 and the formula L2．Then：
$Z 1$ 『® $p q \mathbb{E} L p L q$
［ $\mathrm{S} 3^{\circ}$ ］
Z2 © $1 p L L C M L p p$
［Z1，q／LCMLpp；L2］
Z3 LLCMLCpLCMLppCpLCMLpp
［ $Z 2, p / C p L C M L p p ;$ L2］
Since，$c f$ ．［3］，p．148，the addition of any formula of the form $L L \alpha$ to S3 gives S 4 and since we proved $Z 3$ ，it follows from the definition of system S4．04，cf．［8］，that the proof is complete．

2．2 Now，let us assume S3 and the formula L3．Then：
$Z 1$ 厄 $p M p$
$Z 2$ ๔ฺpq®pCpq
$Z 3$ ©® $L p M q L M C p q$
Z4 © $4 M C M p L q L M L C p q$
$Z 5$ © $L C p q L C L p L q$
Z6 〔LMLpLCLpLLp
$Z 7$ © $L M L p M L C L p L L p$
Z8 LMCMLpLCLpLLp
Z9 LMLCLpCLpLLp
$Z 10 \Subset L C L p C L p L L p L L C L p C L p L L p$
$Z 11$ © $L C L p L L p L L C L p C L p L L p$
$Z 12$ ©LMLpLLCLpCLpLLp
Z13 LLCLCLpCLpLLpCLCLpCLpLLpLLCLpCLpLLp．
［Z12，p／CLpCLpLLp；Z9］
Since the proven formula $Z 13$ has the form $L L \alpha$ ，the proof，$c f$ ．section 2.1 above，is complete．

2．3 Thus，we have：

$$
\{\mathrm{S} 4.04\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{L} 1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{L} 2\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{L} 3\} \rightleftarrows\{\mathrm{S} 3 ; \mathrm{L} 2\} \rightleftarrows\{\mathrm{S} 3 ; \mathrm{L} 3\}
$$

3 In section 2 above it is shown that the addition of $L 1$ ，as a new axiom，to
 S3, $Ł 1$ and $Ł 2$ falsifies L1, cf. [5], p. 374, section 4.4. Hence, we have a system, viz. $\mathrm{S} 3.04=\{\mathrm{S} 3 ; \mathrm{L} 1\}$, which is a proper extension of S 3 , a proper subsystem of S4.04 and contains neither S4.02 nor S4. It remains an open problem whether in the field of S3 L1 implies $Ł 1$ or $Ł 2$.

4 Since matrix $\notin \mathbb{A} 2$ verifies S3, but falsifies $Ł 1, c f$. [6], p. 381, section 1,
 $\Subset L C 43 L C 13=\Subset L 1 L 3=L C 14=L 4=4$, we can distinguish two proper extensions of S 3 , viz. $\mathrm{S} 3.02=\{\mathrm{S} 3 ; Ł 1\}$ and $\mathrm{S} 3.03=\{\mathrm{S} 3 ; Ł 2\}$. The reasonings given in sections 2 and 3 above imply that both these systems are proper subsystems of S 4.02 and neither of them contains S3.04 or S4. On the other hand, it is self-evident that in the field of S3, S3.03 contains S3.02. But, I was unable to prove that the former system contains the latter properly.

5 The discussion presented in this note can be visualized by the following diagram:

in which an arrow occurring between two systems indicates that a tail system contains an edge system, supposing that S 3.04 contains neither S3.02 nor S3.03 and that S3.03 contains S3.02 properly.

6 Remark: In [1], p. 342, Goldblatt says that from a modal-theoretical stand-point L2 is the "right" axiom of S3.04. But, since in the field of S3 L1 is weaker than L2, from the logical (syntactical) point of view L1 can be considered as a more suitable axiom for S 4.04 .

REFERENCES

[1] Goldblatt, R. I., "Concerning the proper axiom for S4.04 and some related systems,'" Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 392-396.
[2] Lewis, C. L., and C. H. Langford, Symbolic Logic, Second Edition, Dover Publications, Inc., New York (1959).
[3] Parry, W. T., "Modalities in the Survey system of strict implication," The Journal of Symbolic Logic, vol. 4 (1939), pp. 137-154.
[4] Sobociński, B., "A new axiomatization of modal system K1.2," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 413-414.
[5] Sobociński, B., "A new class of modal systems," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 371-377.
[6] Sobociński, B., "A proper subsystem of S4.04," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 381-384.
[7] Sobociński, B., "Certain extensions of modal system S4," Notre Dame Journal of Formal Logic, vol. XI (1970), pp. 347-368.
[8] Sobociński, B., "Note on Zeman's modal system S4.04," Notre Dame Journal of Formal Logic, vol. XI (1970), pp. 383-384.

University of Notre Dame
Notre Dame, Indiana

