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NOTE ABOUT THE BOOLEAN PARTS OF THE

EXTENDED BOOLEAN ALGEBRAS

BOLES LAW SOBOCINSKI

Throughout this note1 the Boolean algebras extended by the additional
extra-Boolean operations and postulates and containing the so-called
Boolean part, in short BA, i.e., a postulate

CO the structure (A, +, x, -, 0, l) is a Boolean algebra

will be called the extended Boolean algebras. In [3] and [2] it has been
proved that in several systems of the extended Boolean algebras the
postulate CO can be substituted for the postulates weaker than CO, namely
either by

CO* the structure (A, +, x, -, 0, 1) is α non-associative Newman algebra

or by

Ctf** the structure {A, +, x, -, 0, l) is a dual non-associative Newman
algebra.

1 An inspection of the deductions presented in [3] and [2] suggests the
following elementary, but general lemma:

Lemma I. Let 9tt be an arbitrary extended Boolean algebra, M be the
carrier set of 9tt, <A be the set of all primitive extra-Boolean operations
occurring in the definition of 2W, and £ be the set of all extra-Boolean
postulates accepted in 9K. Let Z be a unary extra-Boolean operation which
either belongs to c4 or is definable in the field of the postulates of 9W.
Then:

(i) if Z either belongs to cA or is syntactically definable in the field of CO*,
extended by the postulates belonging to £, and in that field a formula

Al [a] :ae M.3. a + Zα = "La

1. An acquaintance with [3] and [2] is presupposed.
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is provable, then in the postulate-system of 9JΪ, the axiom CO can be
replaced by CO*;

and

(ii) if Z either belongs to c4 or is syntactically definable in the field of
CO**, extended by the postulates belonging to £, and in that field the
formulas

Bl [a]:aeA .^.αxZα = a
B2 0 = Z0

are provable, then in the postulate-system of 9W, the axiom CO can be
replaced by CO**.

Proof: Let us assume that Z is an operation which satisfies the assump-
tions of Lemma I and the antecedent of its point (i). Hence, we have
formula Al and, due to CO*, the Theorems Ml, M4, Dl, M7 and M25
presented in [3], pp. 532-533. Then:

Rl [a]:ae M .^.a = a + a

PR [α]:Hp(l).=>.
a = a x (Zl + - Zl) = a x ((1 + Zl) + - Zl) [l; M4; Al]

= β x ( l + ( Z l + - Z l ) ) = β x ( l + l ) = β + β [M25; Dl; Ml; M7]

On the other hand, if Z is an operation which satisfies the assumptions
of Lemma I and the antecedent of its point (ii), then we have the formulas
Bl and B2 and, due to CO**, the Theorems Nl and N7 presented in [3],
pp. 536-537. Then:

Tl [a]aeM . D . α = a x a

PR [α]:Hp(l).D.
fl = α + 0 = β + (0xZ0)=α + (0x0) = βXfl [1; iSΓ7; Bl; B2; Nl; N7]

Since the additions of Rl to CO* and of Tl to CO** yield Boolean
algebras in both cases, cf [5], pp. 533-534, section 1.2, and pp. 538-539,
section 2.2, the proof is complete.

2 As an example, we shall discuss here an application of Lemma I to the
monadic algebras of Halmos, cf. [1]. In the style which is used for the
definitions of the algebraic systems in [3] and [2], these algebras are
presented here as follows:

Any algebraic structure

51 = (A, +, x, -, 0, 1, 3)

where + and x are two binary operations, and - and 3 are two unary
operations defined on the carrier set A, and 0 and 1 are two constant
elements belonging to A, is a monadic algebra, if it satisfies the following
postulates: CO and

VI [a]:a eA .^.a ^3a
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V2 30 = 0
V3 [ab] :a,beA.^.3(ax 3b) = 3a x 3b

Of. [1], P 21 and p. 40. Since in U we have the postulate CO and " < " is not
a primitive notion of the investigated system, obviously we have two
inferentially equivalent forms oίVl, viz.

VI* [a]:aeA.^.a + 3a = 3a

and

VI** [ α ] : α e A , ^ . α x 3 α = fl.

Therefore, there are two versions which are inferentially equivalent
to the postulate system of % namely {CO, VI*, V2, V3} and {CO, VI**, V2,
V3}. It follows automatically from Lemma I that in the first version CO can
be replaced by CO* and in the second version CO can be replaced by CO**.

2.1 In [1], p. 21, it is stated that in the field of CO the set of postulates VI,
V2 and 73 is inferentially equivalent to the following set of axioms:
VI, V2 and

Wl [ab] \a, beA.^. 3{a + b) = 3a + 3b
W2 [a]:aeA . ^ . 3 - 3a = - 3a
W3 [a]:aeA .^ .33α =3a.

As far as I know, it was not mentioned in the literature that, in this
second postulate-system of the monadic algebras, the axioms VI andWΉ
are superfluous.

Proof: Assume CO and the axioms VI, Wl and W2. Then:

V2 30 = 0

PR
1. 31 = 1 [VI; BAJ

0 = - l = - 3 1 = 3 - 3 1 = 3 - l = 30 [BA; 1; W2\ 1; BAj
W3 [a]:aeA .^.33a = 3a

PR [a]: Hp(l) . =>.

2. 3a = - 3 - 3a [1; W2, BA]
3a = - 3 - 3a = 3 - 3 - 3a = 33a [1; 2; W2; 2]

Thus, in the field of CO, VI and W2 imply V2 and W3 and, therefore,
due to the deductions given in [l], pp. 40-44, we can establish that

{CO, VI, V2, V3}^{C0, VI, Wl, W2]

2.2 Now, it follows from Lemma I at once that {CO, VI, Wl, W2}^{C0*,
VI*, Wl, W2}. On the other hand, a proof that the equivalence

(a) {CO, VI, Wl, W2}ϊϊ{C0**9 VI**, Wl, W2]

holds is more elaborate, since we have to prove that in the field of CO**,
VI**, Wl and W2 imply V2 and, therefore, in virtue of Lemma I, CO. It
will be shown here that in the case of the equivalence (a) such deduction is
possible.
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Proof: Let us assume CO**, VI**, Wl and W2. Hence, due to CO** we
have at our disposal the Theorems Nl, Dfl, N7, N20, N24 and N25, cf. [3],
pp. 536-538, sections 2 and 2.1. Then:

W3 [a]:aeA.o>.3a = 33a
PR [α]:Hp(l).3.

2. 3tf = - 3 - 3a [1; JV20; W2]
3a = - 3 - 3α = 3 - 3 - 3a = 33a [l; 2; W2; 2]

^4 [α]: α e A . 3 . 3α = 3α x 3α
PR [α]:Hp(l).3.

3 « = 3 « x 33a =3ax3a [1; FI**, PK?]

ίF5 [α] :αeA.3 .-3« = -3« x -3α

PR [α]:Hp(l).=>.
- 3a = - 3α x 3 - 3a = - 3a x - 3α [ 1 ; VI**, W2]

Tl [a]:aeA.^>.a = axa
PR [α]:Hp(l).3.

α = α + 0 = α + (3α x - 3a) = α + ((3αx 3α) x (- 3a x - 3α))
[1; JV7; D/2; PF4; Wδ]

= α + ( ( 3 α x - 3 α ) x ( 3 α x - 3α)) [JV24; iV25]
= fl + (0x0) = (σ + 0)x(fl + 0) = flXα [Dfl; Nl; N7]

Since the addition of Tl to CO** generates CO and since, in the field of
CO, VI** implies VI, we have V2} cf. section 2.1 above. Therefore, in
virtue of Lemma I, VI** and V2, the proof is complete.
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