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ON THE INTUITIONISTIC EQUIVALENTIAL CALCULUS

ROBERT E. TAX

1 Introduction We consider first the fragment ICE of the intuitionistic
propositional calculus which consists of all wffs in which the only connec-
tives are C (implication) and E (equivalence). We then consider the
fragment IE of this system. From the Gentzen system GCE corresponding
to ICE, we construct a Gentzen system GE corresponding to IE, thus
obtaining a characterization of |IE which makes no reference to an implica~
tional system. We then look at an axiomatization and, using GE, show that
it does indeed constitute an axiom system for IE.

2 The Systems The system ICE is defined as follows: The wifs of ICE are
those constructed of propositional variables and two binary connectives, C
and E. The rules of inference are substitution and Modus Ponens (from P
and CPQ we can derive Q). There are five axioms:

1) CpCqp

2) CCpCqrCCpqCpr
3) CEpqCpq

4) CEpqCqp

5) CCpqCCqpEpq.

We define IE to be the equivalential fragment of ICE. We now construct
a Gentzen system GCE corresponding to ICE: A sequent of GCE is to be
any expression of the form P,, ..., P,— @, where P, ..., P,, and @ are
wifs of ICE, and » = 0. An axiom of GCE is to be any sequent of the form
P — P. There are nine rules of inference, as follows (where I and A
represent arbitrary sequences, possibly empty, of wifs of ICE):
I'-P @Tr—R . PTr-@Q
CPQ, T—R ¢ T Ccre
'-P @ TI—>R r-¢@ P, T>R
EPQ, T — R EPQ, T — R

P)F_"Q Q;F'_’P
T — EPQ

E —;: E —,:

— E:
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T e i . PPT—Q
Thin: Q. TP Cont: P.T=Q
. DPQ AR cy. LZP_P.T—Q
" T,Q, P, A—R ot r—Q

It is easily seen that GCE corresponds to ICE, in the sense that a
sequent Py, ..., P, — @ is provable in GCE iff the wff CP,CP,C ... CP,Q
is provable in ICE. Furthermore, just as in other Gentzen systems, the cut
rule is optional. We define an E-wff to be a wff whose only connective is E,
and an E-sequent to be a sequent which is made up of E-wffs. Suppose that
S, is transformed by rule L to S,, where S, and S, are sequents, and L is
not the cut rule. If S, is an E-sequent, it is clear from the form of the
rules that L cannot be C— or — C, and that S; must be an E-sequent. Given
a proof of an E-sequent in GCE, then, there is a proof of this sequent which
does not use the cut rule; this proof must then consist of E-sequents, and
the rules C— and —C will not appear in it. We can therefore form a
Gentzen system GE, whose sequents and axioms are precisely those
sequents and axioms of GCE which are E-sequents, and whose only rules of
inference are E—,, E—,, — E, Thin, Int, and Cont.

Then an E-sequent P, ..., P, — @ will be provable in GE iff the wff
CP,CE,C. . .CP,Q is provable in ICE. In particular, we have the following:

Theorem 1: If Pis an E-wff, then — P is provable in GE iff P is a theovem
of |IE,

We thus have a characterization of IE which makes no reference to any
system which uses a connective other than E. We will use this to prove
that the axiom system we now construct is sufficient to prove all theorems
of IE.

3 The Axiom System We now construct an axiom system for IE.' There is
to be one axiom: EEEqEqpEEqEqPEPEpEvsEEpsEvp. There are to be three
rules: i) substitution for propositional variables; ii) Modus Ponens (MP):
from EPQ and P we can deduce @; and iii) Rule *: from P we can deduce
EQEQP.

We denote provability in this system by ‘+’. It is easily seen that the
axiom and the rules are provable in ICE, and hence hold in IE. Suppose
+EPQ; by rule *, -EESESREESESREREREPQ; by the axiom and MP, then,
+EERQEPR. We thus have shown the following:

1) If FEPQ, then FEERQEPR.
Let EPQ be any theorem; by rule *, ~EpEPEPQ; by 1), WEEpPEpPEPQEDD;
so, by MP,

2) ~Epp.

3) By 1) and 2), we have ~EEqpEpq.
Def: we write ‘P = @’ to mean FEPQ.

1 . . .
For more about the construction of the axiom, see section 6.
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By 2), p=p. If P= @, then FEPQ, so, by 3) and MP, -EQP, i.e.,
@ = P. By 1) and MP, we see that if P= @ and R = @, then P= R. But
R=2Qif Q =2 R; s0,if P2 @ and @ 2 R, then also P = R. Thus,

4) = is an equivalence relation.

By 1), if P = @ then ERQ = EPR; since EQR = ERQ and EPR = ERP,
we get, by 4),

5) If P2 @, then EPR = EQR and ERP 2 ERQ.
It follows that if P 2 @ and R & S, then EPR & EQR & EQS.

Def: By an expression in p,, ..., p,, where each p; is a propositional
variable, we mean a wff containing no variable other than p,, .. ., p,. If
f(py, . .., b, is an expression in py, . . ., p,, we denote by f(P,, . . ., P,) the
result of substituting P; for p; in f(py, . . ., p,), for each i between 1 and 7.
Similarly, if f is any expression containing p, we denote by f(P) the result
of substituting P for p in f.

From 5), using induction on the length of the expression, we obtain:
6) If f is any expression, and if P & @, then also f(P) = f(Q).

We will write ‘P = (n)@ to mean that ‘P 2 @’ follows from statement
number n. We will not, however, mark in this way reference to numbers 3)
and 6); use of any other statement will be marked in this way.

7) Letting 6 denote any theorem, we have, by rule *, P 2 EP§.
8) EEQEqpEEqEqPEpPEpr = (1) EEqEqPEEqEqpEPEPEYo =
(Ax) EEp6Evp = (1) EpEpr.
9) EpEpEvs = (8) EEqEqpEEqEqpEpEpErs = (AX) EEpsEvp = EEprEps.
10) EpEpEpq = (9) EEppEpq = (2, 7) Epq.
11) EpEpEqv =(10) EpEPEPEPEqy =(9) EPEPEEDGEDY = (9) EEpEpgEDEDY.
12) By induction, using 11), we see that if f is any expression in p,,. . ., p,,
then EqEqf(p,, . . ., b) & f(EqEqp, . . ., EQEqp,).
13) EqEqEpEqr = (11) EEqEqpEqEqEqv = (10) EEqEqpEqr = (9)
EQEqQEEqpy = EqEqEEpqr.

EEpqEpEqEqp = (9) EpEpEqEqEqp = (10) EpEpEqp = EPpEpEpq =
(10) Epq; so +EEpqEEpqEpEqEqp; by (9), FEEEpgqpEEpqEqEqp; also,
EEpqEqEqp = EEqpEqEqp = (9) EqEqEpEqp = EqEqEpPEpq; so

14) EqEqEpEpq = EEqpEqEqp = EpEbq.

In this paragraph only, let R be EpEpq, and let S be EqEqp. We then
see that EEpEpqEqEqp = EEEpqpEEpqq = (9) EEpqEEpqEpq = (2, T) Epq:
i.e., ERS 2 Epq. It follows that ERERS = EEpEpqEpq = (14) EqEqp = S:
so a) ERERS = S. Furthermore, we have that EEpPpEpqEEpPEpqp =
EEpEpqEpPEpEpq = (10) EEpEpqEpq = (14) EqEqp: i.e., b) ERERp = S.
So EpEpEqEqr = (12) EEpEpqEEPEpqEpPEpr = EREREPEpr = (12)
EERERpEERERPERERy = (b) ESESERERy. Similarly, EqEqEpEpr =
ERERESESy. But we can also see that ERERESESy = (12)
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EERERSEERERSERERy =(a) ESESERERv. As a result, we have proved
the following:

15) EpEpEqEqr = EqEqEDEDpy.

EqEqEEpqEEpPqry = (11) EEqEqQEpqEqEqEEpqr = (13)
EEqEqEpqEQEqEpEqry = (11) EqEqEEpqEpEqrv = (9) EqEqEDPEpPEqEqv =
(15) EpEpEqEqEqEqy = (10) EpEpEqEqy. Since we also know, by 10), that
EpEPpEpEPEqEqr = EpEpEqEqr, we have the following:

16) EpEpEqEqEEpqEEpqy = EpEpPEqEqv.

Def: For any finite set of wffs A = {a,, . . ., a,}, define a function A# by
setting A # P=Ea,Fa,Ea,Fa,E . . . Ea,Ea,P; if A = ¢, set A#P=P. We will
sometimes write ‘A # (P)’ to mean A # P.

By 10) and 15) above, this expression is independent of the order and
possible repetitions of the a;, so A* is well-defined, up to the equivalence
relation 2. We will use the letters A and B to refer to finite sets of wifs.
We see that for any finite sets A and B of wffs, A# B# P =(AUB)# P.
Also, by induction on 12) above, we see that for any expression f in
P> .-y ppwehave A#f(py, .. ., p) 2 fA# Py, ..., A¥ D).

4 Some Consequences For any finite set A of wifs, we define A* to be the
smallest set containing A and which is closed under E and rule *, i.e.,
which satisfies the two conditions: i) if P, Qe A*, then EPQe A*; and
ii) if Pe A*, then EQEQPe A*. Note that if Pe A*, then B# Pe A*.

Lemma 2: If Pe A*, then A# EPEPQ = A # Q.

Proof: We use induction on the length of P. From the definition of A*, it
is clear that we must consider three cases:

Case 1: Pe A. Then A# EPEPQ=A+# {P}# Q=(AU{P)# Q=A+4 @,
since AU {P} = A.

Case 2: P = ERS, with R, Se A*, The lemma then holds for R and S.
Then A# EPEPQ = A# EERSEERSQ = (ind. hyp.) A# ERERESESEERSEERS®Q
= (16) A # ERERESESQ = (ind. hyp.) A # Q.

Case 3: P = ERERS, with SeA*, The lemma then holds for S. Then
A#EPEPQ =A# EERERSEERERSQ = (ind. hyp.) A # ESESEERERSEERERSQ
= (8, 15) A4 ESESQ = (ind. hyp.) A# @, proving the lemma.

Lemma 3: If A C BC A* wheve A and B are finite sets of wffs, then
A# P=2B# P.

Proof: Let B=AUu{by, ..., b,}, with each b; e A*, Then, using Lemma 2
ntimes, B# P= A # Eb,Eb,E . . . Eb,Eb,P = A 4 P.

Def: If A is a finite set of wffs, we write ‘A > P’ to mean that A # P.
Lemma 4: The following properties of > hold:

a) if A> P, then A > B# P;
b) if A> EPQ and A > P, then A > Q;
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c) if A > EPQ then A > EEPREQR and A > EERPERQ;

d) if A > EPQ and A > EQR then A > EPR;

e) if A > EPQ and A > ERS then A > EEPREQS;

f) if f is an expression and A > EPQ, then A > E(fP)(fQ);

g) if PeA*, then A > Ef(EQEPR) f(EEQPR), for any expression f.

Proof: a) If A> P,then+A # P; using rule *, -B# A# P, sorA# B# P,
ie., A> B# P.

b) If A> EPQ, then A # EPQ,so -EA # PA# @. If also A > P, then
FA# P. By MP, A # @,i.e., A > Q.

c) Suppose A > EPQ; by a), A > EREREPQ. But, by 9) of section 3,
+EEREREPQEERPER®, so, applying rule * several times, A >
EEREREPQEERPER®. By b), then, A > EERPERQ. Similarly, A >
EEPREQR.

d) If A> EPQ, then A > EEPREQR by c¢), so A > EEQREPR. If also
A > EQR, then A > EPR by b).

e) If A> EPQ, then A > EEPREQR by c). If A > ERS, then A >
EEQREQS, again by c). By d), then, if A > EPQ and A > ERS, then
A > EEPREQS.

f) If f is an expression and A > EPQ, then -A # EPQ. Let f(p) be
g, 91, . . ., q,), where g is an expression in p, ¢, . . ., g,. Then f(P) =
g(P, ¢4, . . ., q,), SO, by an obvious induction applied to 12) above, A # fP &=
gA#P,A#q,,...,A¥q,). Similarly, A4fQ =2 gA#Q,A#q,,...,A#q,).
Then, using 9) above, A # E(fP)(fQ) = EA # fPA # fQ = Eg(A # P,
A#qy, ..., A#q)gA# @, A # qy, ..., A#gq,). Since FA # EPQ, also
+EA # PA # @, so this last wff in the chain is a theorem, by property 6)
above; so FA # E(fP)(fQ), i.e., A > E(fP)(fQ).

g) Suppose P ¢ A*, By Lemma 2, A # EPEPEEQEPREEQPR =
A # EEQEPREEQPR. But by 13) above, ~EPEPEEQEPREEQPR, so
+A # EPEPEEQEPREEQPR, and hence +A # FEQEPREEQPR, i.e., A >
EEQEPREEQPR. The result then follows by f).

n
Notation: we write ‘2 P;> to mean EP,EP,E . ..EP, ,P,. We set this
i=1
equal to P, if n =1, and to any theorem if n = 0: we will often omit the
limits of the index when clear from the context, writing Z} P; or even ), P;.
1

We note that EpEpEqEqEpEqr = (13) EpEpEqEqEEpqr = (15, 3)
EqEqEpEpPEEqpy = (13) EqEqQEPEpEqEpy = (15) EpEpEqEqEqEpy. Using
this and Lemmas 4b, 4f, 4g and some of the results from section 3, the
following additional properties of > are easily seen:

Lemma 4': Let @, ..., Q, be a permutation of P, . .., P,, where each
P;e A*, and let f be any expression. Then

a) A>AT P)iffA>7 (T Qi)
b) A>f(EP.EP,E .. .EP,R)iff A> f(ED P,-R);
¢) A>f(EP.EP,E . . .EP,R) iff A > f(EQ.EQE . . .EQ.R).
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5 Completeness of the Axiom System Our major goal is to show that +P
iff P is a theorem of IE. We have already noted that the axiom and rules of
our system hold in IE, so that P is a theorem of |IE whenever -P. By
Theorem 1, it suffices to show that if — P is a theorem of GE, then -P.
We do this by defining a relation Py, ..., P, +@ in our system, with the
property that +P iff +P. The desired result is then a special case of the
fact that if P, ..., P,— @ is a theorem-of GE, then P,, ..., P,#Q@. To
show this, we show that the axioms of GE, when interpreted in this way,
become provable in our system, and that this property is preserved by all
rules of inference of GE. The only difficulties will be the rules E —, and
— E, which we dispose of in Theorems 8 and 9. We will then be able to
conclude that +P iff P is a theorem of |E, as desired.

Def: For any finite set A of wffs, we set A’ = {B # alacA, B a finite set of
wifs}.

We note that A C A’ C A*, Furthermore, (A U B)'=A'U B’.

Def: If A is any finite set of wifs, we say ‘A H+P’ to mean that there are
wifs @, ... @, with each Q;eA’, such that FEQ,EQ,E ... EQ,P. We
allow »# = 0 in this definition; thus, if P, then A #+-P.

We write ‘+-P’ to mean ¢#P. Thus, it is clear that P iff -P. We
write ‘P,, ..., P,#+Q to mean {P,, ..., P,}+Q. As noted above, we will
show that P,, ..., P,#+@Q whenever P,, ..., P,— Q@ is a theorem of GE.
Clearly, P+ P, for any wif P. Equally clearly, the rules Cont and Int of GE
preserve v-. If A C B, and A# P, then it is clear from the definition of -
that B#-P; thus, the rule Thin also preserves #-. The rule E —, is an easy
consequence of the rule E —,, when interpreted in terms of », since we
know that EPQ can be substituted for EQP anywhere, in our system. Thus,
we have merely to show that +-is preserved by the rules E —, and — E in
order to prove that we do have an axiomatization of IE. This is what we
now do, after some preliminary lemmas.

Lemma 5: Suppose A > EPQ, and Qe A*. Then AW P,

Proof: We use complete induction on the length of @; suppose the lemma is
true for all wffs shorter than Q. Let A ={a,, .. .,a,}.

Case 1: Qe€A; since -Ea,Ea,E . . . Ea,Ea,EQP, with a;, QeA’' AW P,

Case 2: @ = ERS, with R, Se¢ A*; then the lemma is true for R and S by
induction hypothesis. We have A > EERSP, with R, Se A*; by Lemma 4’,
A > ERESP; by ind. hyp., A#-ESP. Then there are wiffs c¢,,. . ., cpe A' C A*
such that ~Ec,E ... Ec,ESP. We then also have A > Ec,E ... EczESP.
Since c¢;, Se A*, we can permute, by Lemma 4, getting A > ESEc,E. .. Ec,P.
By induction hypothesis, then, AwEc,E ... EctP. Then there are wifs .
by, ..., bye A" such that ~EbE... Eb,Ec,E ... Ec,P. Since each b;,
c;e A', this shows that A#+ P, as desired.

Case 3: @ = B # ERS, with R, SeA*. Then A > EPEB # RB # S, with
B # Rand B # S in A* and shorter than . By Case 2, A # P,
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Lemma 6: Suppose Aw-P, Then theve is a wff Qe A* such that A > EQP.

Proof: By definition, there are a,, .. ., ane A’ C A* such that ~FEq,E . ..
Ea,P. Let Q=2 a;. By Lemma 4', A> E Eaq,E ... Ea,PEQP; also,
A> EaE. .. EaP. By Lemma 4b, A > EQP. Also, each a; € A*, s0 Q¢ A*,
as desired.

Lemma T: Suppose A, Pw-Q, Then theve is a wff Re A* and finite sets

By, ..., B, such that A> EPEPERE (2 B;# P) Q and A> EPEPEQERY

B; # P.

Pyroof: There are a,, ..., e (AU{PP)'=A"U{P} such that +Ea,E ...

Eaq,Q. Then A, P> Ea,E ... Ea,Q, with each a;e (AU {PP)*. Let the a;’s

which are in A'be b, ..., b,, and let R = 2 b;; then Re A*. Let the other
i=1

a;’s, which are then in {P}, be B, 4 P, ..., B,# P. By Lemma 4’ ,we can

permute the a;’s, getting A, P > Eb,E ... Eb,EB,# PE...EB,# PQ; by
Lemma 4’, we can now reassociate the a;’s, getting A, P > ERE (Z) B; 4
P)Q, which is equivalent to the first desired form. Now, since R, ), B: #
Pe (A U {P})*, we can, by Lemma 4’, rearrange the terms, getting A, P>
EQER }; B; # P, which is equivalent to the other desired form.

Theorem 8: Suppose Aw-P and @, Aw R. Then EPQ, Aw- R,
Pyoof: By Lemmas 6 and 7 we get

i) A > EQEQEa,E 7, B; 4 QR, with a, e A*,
ii) A > Ea,P, with g,e A*.

We apply {P}# to i), by Lemma 4a, and distribute, letting a3 = EPEPa;;
ase A*:

iii) A > EEPEPQEEPEPQEa.E Y, B; # (EPEPQ) EPEPR.
By ii) and iii) and Lemmas 4f and 4b, we get
v) A > EEa,EPQEEa,EPQEa E ), B; # (Ea,EPQ) Ea,Ea.R.

Now let a = EEa,EPQEEa,EPQEa,E ), B; # (EA,EPQ) Ea,a,; then, since each
of Ea,EPQ, ag, a,, B;# (Ea,EPQ) e (A U {EPQ)* we see that ae (4 U {EPQ})*,
and also that we can reassociate v) to get the following, using rule * and the
definition of >:

vi) A, EPQ > EaR.
By Lemma 5, then, we see that A, EPQ + R, as desired.
Theorem 9: Suppose A, Pw-Q and A, Q+ P, Then A#EPQ.

Proof: In the following, let ¢ and 2 run from 1 to m; jfrom 1to n. Let
B=AuU{P,Q}. We have, by Lemma 7, since Pe B and Q ¢ B,

i) B> EQEa,?; C;4 P where a ¢ A*,
z

ii) B> EPEa,2; D;j# Q where a,¢ A*.
]
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For each j, we apply D;# to i), getting
iii) B> ED;# QED;# a,2; (C; U D;) # P, for each j.
1

By ii) and iii) and Lemmas 4b and 4f, we can ‘substitute,’ getting
iv) B > EPEe, Y (ED;j# @, T (C; U D) # P);
i i
so, since P, a,e B*, we get, by Lemma 4', B >EPEa,E},;D;#a, 2
i

i
(C; UD;)#P; letting a5 = Ea, Z/D,- #a, e A¥, we get, by Lemma 4',
i

v) B> EPEaz2; (C; UD;)# P.
i

Applying C,#, we get: For each k, B> EC,# PEC, # a, 2o (Cc; U D;j UCp) 4 P,
ie., Li
vi) B> ECp# PECk#asEE (CLUD)# P 25 (C; UD;UC)4 P, for each k.
t#Jk
But by i), B> EQEa, 2, C,# P; summing over k, using vi) and Lemmas 4’,
k
4b, 4f, we see that B> EQEa,E }; Cp# a;E 25 (C,k UD)# P 2, (C; UD; U
k ik ik
. itk
C,)#P. But B> Z_)k (C; UD; UCy# P, by Lemma 4', since each term
i,
itk
appears exactly twice. By Lemma 4a, then, B > EE Z} (CLUD)# P Z} (C; U

70y
D; UCG# PZ} (CLU D)) # P, and hence, by Lemmas 4', 4b, 4f, letting a, =

EaIE Cp#l a3e A* we get B> EQE&,E (C, U D)# P. Using v) and Lemma
4e, we see that B> EEPQEEasz‘, (CkUD )# PEa4Z) (CLUD;j)4 P. Since
as, a4, Z} (CrUD; )# Pe B*, we can reassociate, by Lemma 4'  getting B>

EEPQEa3a4 Letting a5 = Eaja,e A*, we see that B > Ea,EPQ. Since B =
A U {P,Q}, we have A > EPEPEQEQEa,EPQ, so by Lemma 4b, A >
EEPEPEQEQa,EPEPEQEQEPQ. But

EPEPEQEQEPQ = EPEPEQEQRQEQP = (10 above) EPEPEQP = EPEPEPQ &
(10) EPQ.
Thus, letting a = EPEPEQEQa,, we see that ae A* and A > EaEPQ. By
Lemma 5, then, A - EPQ, as desired.

As noted before, Theorems 8 and 9 give us the following results:

Theorem 10: Py, ..., P,+-Qiff Py, ..., P,— Qis a theorem of GE.
Theorem 11: Fov any E-wff P, =P iff P is a theorem of |E.

6 Fuvther Remavrks To help the intuition, we note that
EEpEpPEqEqvEKpqEKpqr is a theorem of the full intuitionistic propositional
calculus; many of the wffs we used follow quite easily from this. For
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instance, since CCpgEpKpq is intuitionistically valid, it follows that
CCpqEEpPEpPEqEqvEpEpy is also. Since CpEqEqp is also intuitionistically
valid, for instance, then, so is EEpEpEEQEqPEEqEqpvEPEpr, And,
since EKpgKqp is a theorem of the intuitionistic system, so is
EEpEpEqEqvEEqEqEDEDY.

Our axiom is essentially built up of three wffs: i) EEpqEqp;
ii) EEpEpEqvEEpqEpy; and iii) EEEqEqpEEqEqpEPEPYEPEDY. If we were
to take i) and ii) as axioms, with the same rules as before, we would get a
very large subsystem of |IE; in fact, all of the numbered wifs in section 3
would be provable with the exception of number 8. That iii) is actually
independent of i) and ii) can be shown using the following matrix:

The values are 0, a, 1+, 1-, 2+, 2-, . . ., with 0 the designated value. For
any values x and y, Exy = Eyx; Exx =0; and EQx = Ex0 = x. For n=1,
2, ..., Ea(nt) = n¥, and E(nt) (n¥) = ((n + 1)-). Also, if m < =, then

E(m+)(nt) = (m+), and E(m+)(n¥) = (m-). It seems to me that this subsystem
would be of great value in any search for a shortest sole axiom of IE. I
conjecture that rule * is necessary, in the sense that there is no finite
axiomatization of |E in which the only rules are substitution and MP. I have
not succeeded in proving this, however.
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