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CONCERNING THE QUANTIFIER ALGEBRAS

IN THE SENSE OF PINTER

BOLES LAW SOBOCINSKI

1 In [ 3 ] , 1 cf. especially p. 362, section 2.1 and p. 365, section 4.1, C. C.

Pinter formulated and investigated an algebraic system which he called the

quantifier algebras and which, in conformity with the style used in [6],

pp. 529-530, [5], p. I l l , section 1, and [4], is defined here as follows:

(A) Any algebraic structure

l l = <A, + , x , -, 0 , 1, Sλ

κ, Ξ κ ) K j λ . a

where a is any ordinal number, + and x are two bi?iary operations, and -, Sχ

{for any ordinal numbers K, λ < a) and 3K (for any ordΰial number K < a)

are the unary operations defined on the carrier set A, and 0 and 1 are two

constant elements belongiϊig to A, is a quantifier algebra of dimension a, if

it satisfies the following postulates:

CO the structure (A, +, x, -, 0, 1) is a Boolean algebra

Ql [aκ\] :a eA . K, λ < a . - . S λ ( - # ) = S\a

Q2 [abκ\] :a,beA.κ,λ<a. ^.S\(a + b) = S\a + S\b

Q3 [a K] : a e A . K < a . D . S^a = a

Q4 [aκλμ\ :a eA . K, λ, μ < a . 3 . SχS^a = S^Sχa

Q5 [abκ\ :a, beA . κ< a.^.3K(a + b) = 3Ka + 3Kb

Q6 [a K] : a e A . K < a . ^ . a < 3Ka

Q7 [aκλ]:aeA .κ,λ<a. =λS^3κtf = 3Ka

Q8 [aκλ]:aeA. K, λ < a . K * λ . ^. 3KS^a = Sχa

Q9 [aκ\μ] :ae A . κ9 λ, μ < a . μ Φ K, λ . ~^.Sχ3μa = 3 μ Sχ«

Moreover, if, besides 0 and 1, tlie carrier set A of the structure %

contains also the constant elements eκχ (for any ordinal numbers K, λ < a)

such that 51 satisfies the following two additiofial postulates:

1. An acquaintance with papers [3], [6] and [4] and with the symbolism used in [6] is
presupposed.

Received September 2, 1972



548 BOLESLAW SOBOCINSKI

Q10 [κλ]:κ, λ < a.^.Sκχeκλ= 1
Qll [aκλ]:ae A. K, λ< a .^.a x eκλ= S\a

then the structure U is a quantifier algebra with equality of dimension a.

In this note: 1) a problem will be discussed concerning the quantifier
algebras of dimension a ^ 1 (this problem was not investigated in [3]) and
2) it will be proved that in the postulate-system of quantifier algebras of
dimension a ^ 1 the postulate CO can be replaced by each of the following
assumptions:

CO* the structure (A, +, x, -, 0, 1) is a non-associative Newman algebra

and

CO** the structure {A, +, x, -, 0, 1) is a dual non-associative Newman
algebra

i.e., by a postulate which is weaker than CO.

1.1 In connection with the formalization of system SI, cf. [3], p. 362,
section 2.1, and definition (A) given above, it should be noted that since in 91
we have CO and "*z" is not a primitive notion of the investigated system,
we have obviously two inferentially equivalent forms of the postulate Q6,
viz:

Q6* [a κ]:aeA . K < a.^.a + 3Ka = 3Ka

a n d

Q6** [a K] :a e A . K < a .^.a x 3Ka = a

2 The deductions which follow will be used in the considerations presented
in the next sections.2

2.1 Let us assume CO** and the formulas Ql, Q6**, Q7 and Q8, each of
them of dimension a ^ 2 . Hence, due to CO**, we have the formulas Dfl
and N19 given in [6], p. 537. Then:

QO* [a κ ] : a e A . K < a . ^ . 3 K - 3 K a = - 3 K a

PR [ α / ί ] : H p ( 2 ) . 3 .

[Ξ!λ].

4 3 : λJί;} [2, since . . 2 ]
5. -3Kfl = -Sκ

λ3κa . [1 ; 2; 3; Q7]
6. -3Ka = -S$3κα = SA - 3Ka [1; 2; 3; 4; 5; Ql]

= 3,Sχ - 3κα = 3 K - 3κα . [Q8; Ql; Q7]
3 K - 3κα = -Έκa [6]

Zl [a]:κ< a . 3.1 = 3«1 [<?<?**; iV2£>]

2. The deductions presented in the sections 2.2 and 2.3 below are analogous in some
respect to the proofs which are given by Halmos in [1], pp. 38-44.
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QO** [/c]:/c< α . D . O = 3 K 0

PR [/c]:Hp(l).=>.

2. 0 = l x - l = - l . [Dfl; N17]

0 = - 1 = -3 K 1 = 3 K - 3 K 1 = 3 K - 1 = 3K0 [1; 2; 7 i ; QO*; Zl; 2]

Thus, {CO**, Ql, Q6**, Q7, Q8} - {QO*, QO**}.

2.2 Now, let us assume CO and the formulas Q1,Q5, Q6, Q7 and Q8, each of

them of dimension a ^ 2. Since we have CO, both forms of Q6, i.e., Q6* and

Q6**, are valid, and since CO** is a proper subsystem of CO, cf. [6],

p. 536, section 2, we have QO* and QO**, c/. section 2.1 above. Then:

Z£ [# K] :a e A . K < a . ^. 3Ka = 3K3Ksi

PR [a κ ] : H p ( 2 ) . = > .

[ Ξ λ ] .

3. λ < a. \ fr> . n Ί

4. « * λ . f [2, s ince α ^ 2]

5. 3K« = S χ 3 ^ - 3 K SΛ3 K Λ = 3K3Ka . [1; 2; 3; 4; Q7; QS; Q7]

3κα = 3κ3^ι [5]

Z5 [ α δ / < ] :a,b e A . K < a .a ^ b .^.3Ka < 3Kb

P R [abκ]:Hp(3) . ^ .

4. α < 3Kb . [1; 2; 3; Q6; BA]

5. rt+3κδ = 3 κ δ . [ 1 ; 2 ; 4 ; B A ]

6. 3κδ = 3 κ 3 κ ύ - 3K(« + 3K6) - 3Ktf + 3K3K6 [1; 2; Z2; 5; Q5]

= 3K« + 3Kb . [Z2]

3Ka £ 3κύ [1; 2; 6; BA]

Q5* [«5/i]:«, ^€^1 . K < a.^.3K(a x 3K6) = 3Ka x 3K5

PR [ « 6 κ ] : H p ( 2 ) . 3 .

3. « x 3K6 < 3K« x 3K6 . [1; 2; Q6; BA]

4. 3κ(α x 3 κδ) < 3K(3K« x 3K£) - 3 K - (~3Ka + - 3Kb) [ l ; 2; 3; Z 3 , BA]

- 3K - ( ( 3 , - 3Ka) + (3 K - 3K6)) [(?0*]

= 3 K - 3K(-3Kflr + - 3Kb) [Q5]

= -3K(-3Ka + - 3Kb) feθ*]
= - ( ( 3 κ - 3 κ α ) + ( 3 κ - 3 K 6 ) ) [Q5]

= -(-3Ka + - 3K6) = 3Kr/ x 3K6 . LW*; BA]

5. a = (a x 3κδ) + (« x - 3Kb) ^ (a + 3Kb) + - 3Kb . [ l ; 2; BA]

6. 3K« ^ 3κ((a x 3κδ) + - 3Kb) [1; 2; 5; Z3]

= 3 κ ( α x 3K5) + ( 3 K - 3Kb) [Q5]

= l ( β x 3K6) + - 3Kb. [QO*]

7. 3Ka x 3K5 < (3K(« x 3Kb) + - 3Kb) x 3Kb [ l ; 2; 6; BA]

= (3K(a x 3 κ δ) x 3Kb) + (-3K6 x 3Kb) [BA]

< 3 κ ( « x 3 κ δ ) . [BA]

3 κ ( « x 3 κ δ ) = 3Krt x 3 κ δ [1; 2; 4; 7; BA]

Thus, {CO, Ql, Q5, Q6, Q7, Q8} - {QO*, QO**, Q5*}.

2.3 Finally, let us a s s u m e CO and the formulas Ql, Q5*, Q6, Q7 and QS,

each of them of dimension α 2*2. Since we have CO both forms of Q6, i .e . ,

Q6* and Q6**, a r e valid and s ince CO** is a p r o p e r subsystem of CO, cf.
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section 2.2 above, and in the field of Cr;** the formulas QO* and QO** follow

from Ql, Q6**, Q7 and Q8, we have these formulas at our disposal . Then:

Z2 [a K] :ae A . K < a . ~λ 3K« = 3K3Ktf

[CO; Q7; Q8, s ince α > 2. C/. a proof of Z2 in sect ion 2.2]

Z3 [a ft κ]:a, be A . K < a .a < b . :>. 3Kr/ • 3Kb

PR [<7ft/cJ :Hp(3) . ~κ

4. at b = a . [1; 3; BAj

5. ft x 3Kft = ft. [1; 2; Q6**; BA]

6. 3K« x 3Kft = 3K(r/ x 3Kft) = 3K((r/ x ft) x 3Jή [ l ; 2; Q5*; 4]

= 3K(« x (ft x 3Kft)) = 3K(a x ft) = 3Ka . [BA; 5; 4]

3κ« *• 3Kft [1; 2; 6; BAj

Q5 [a bκ]:a, b e A . K < a . '">. 3K(a + ft) = 3Kr/ + 3Kft

PR [abκ]:Hv(2). K

3. 3Ka + 3J) = -(-3 K r/x - 3Kft) [ l ; 2; BA]

= -((3 K - 3 K « ) x (3K - 3Kft)) l ^ * j

= -3K(-3Ka x ( 3 , - 3Kft)) [Q5*\

= 3 κ - 3 K (-3κflx (3κ - 3Kft)) lQ^*]

- 3 K - ( (3 , - 3Ka)x (3K - 3Jή) \Q5*]

= 3κ - (- 3Kr/ x - 3Kft) [QO*]

= 3K(3Ka + 3Kft). [BAJ

4. tf + ft ••: 3Kr/ + 3J) . [I; 2; Qβ; BA]

5. 3κ (r/ + ft) « 3κ(3κ« + 3Kft) - 3Ka + 3Kft . [ l ; 2; 4; Z5; 3]

6. 3Ka • 3K(a + f t ) . [1; 2; BA; 73]

7. 3Kft •" 3κ(r/ + ft). [ 1 ; 2; BA; Z'J\

3K(a + ft) = 3Ka + 3,ft [ l ; 2; 5; 6; 7; BA]

Thus, {CO, Ql, Q5*, Qβ, Q7, Qβ) -* {QO*, QO**, Q5}.

2.4 The deductions presented in sect ions 2.2 and 2.3 above show at once

that if sys tem U has dimension a - 2, then its set of postulates {CO, Ql, Q2,

Q3, Ql, Q5, Q6, Q7, Q8, Qίj] is inferential ly equivalent to the set {CO, Ql,

Q2, Q3, Ql, Q5*, Qβ, Q7, Q8, Q<ή.

3 An analys is of the a r g u m e n t s , cf. [3], pp. 361-362, sect ions 1 and 2,

which led P i n t e r to construct the quantifier a lgebras shows c lear ly that for

dimensions 0 and 1 these a lgebras should be reducible to the Boolean

algebras and to the monadic a lgebras in the sense of Halmos, respect ive ly .

3.1 It is self-evident that in the case a = 0 the formulas Ql, Q2, Q3, Ql,

Q5, Q5*, Qβ, Q7, QS, Q9, Q10 and Qll become void, and there fore , the

quantifier a lgebras (even with equality) of dimension a = 0 a r e reduced to

the postulate Co, i .e . , to the Boolean a l g e b r a s .

3.2 On the other hand, in the case a = 1, the postulates Q8 and Q9 a r e void

and the operat ions S and e d i sappear , i .e . , the postulates Ql, Q2, Q3, Q7,

Q10 and Qll a r e reduced to the valid Boolean formulas automatical ly . Thus

t h e r e r e m a i n s only the postulate CO, i .e . , a Boolean a lgebra, and the

postulates Q5 (or Q5*) and Qβ of the following forms in which the index 0,

i .e . , the ordinal number < 1 , is omitted:
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Q5° [a]:aeA . = ) . 3 ( α + b) = 3a + 3b

Q5*° [a]:aeΛ ,o.3(ax 3b) = 3a x 3b

Q6° [a]:aeA .^>.a ^ 3a

Obviously, the formulas Q5°, Q5*°, and Q6° can be considered as
well-known formulas from the field of the monadic algebras of Halmos,
cf. [1], p. 21, but neither the set {CO, Q5°, Q6°] nor {CO, Q5*°, Q6°)
constitutes an adequate postulate system for those algebra. Namely, the
example given in [1], p. 41, which is presented here in the form of an
algebraic table:

+ 0 1 x 0 1 a -a a 3a

mi o o i o o o o i o 1

1 1 1 1 0 1 1 0 1 1

verifies CO, Q5, Q5* and Q6, but obviously falsifies the formulas

Q<9*° [a]:aeA.^>.3 - 3a = -3a

and

Q<9**° 0 = 30

which are valid in monadic algebras. From this it follows that, in order to
establish a postulate-system for quantifier algebras which would be
adequate for dimension a ^ 0, some additional postulates should be added to
the postulate-system given in [3], cf. definition (A) above, and also to the
postulate-system which was established in section 2.4 of this paper.
Obviously, since both foregoing postulate-systems are adequate for quan-
tifier algebras of dimension a ^ 2, the additional postulates have to be
independent in the case of dimension a = 1, but superfluous, if a quantifier
algebra is of dimension a ^ 2. As we know, a similar situation exists in the
field of cylindric algebras in regard to their postulate Cl, cf. [2], p. 178,
and [6], p. 530.

3.3 In section 2.2 above it has been proved that in quantifier algebras of
dimension a ^ 2 the formulas QO* and QO** are the consequences of the
original postulate-system of Pinter. But we cannot complement this set of
postulates by adding, as a new axiom, QO** to it, since the set {CO, Q5°,
Q6°, Q0**°] does not constitute an adequate postulate-system for the
monadic algebras. The following algebraic table:

+ 0 a fl 1 x 0 a β 1 a -a a 3a

0 0 a β 1 0 0 0 0 0 0 1 0 0

M2 a a a 1 1 a 0 a 0 a a β a 1

β β 1 β 1 β 0 0 β β β a β β

1 1 1 1 1 1 0 a β 1 1 0 1 1

verifies CO, Q5°, Q6° and Qtf**°, but falsifies Qθ*° for a/β: (i) 3 - 3/3 = 3 - ,3 =
3a = 1, (ii) -3β = -β = a; and falsifies Q5*° for a/a and b/β: (i) 3(a x 3/3) =
3(a x ,3) = 30 = 0, (ii) 3a x 3,3 = 1 x β = β. On the other hand, it has been
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proved in [4], p. 421, section 2.1, that the set {CO, Q5°, Q6°, Qθ*°] con-

stitutes an adequate postulate-system for the monadic algebras. Therefore,

in order to make the first postulate-system mentioned in section 2.4 above

sufficient for a ^ 0 we have to add QO* to it as an additional postulate.

Thus, the structure 11 is a quantifier algebra of dimension a ^ 0, if it

satisfies the set {CO, QO*, Ql, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9] of postu-

lates. Clearly, with such a postulate-system for a = 0, 31 is reduced to a

Boolean algebra, for a = 1 to a monadic algebra, and in the case a ^2

postulate QO* is a consequence of the remaining axioms, cf section 2.1

above.

3.4 Since the set {CO, Q0**°, Q5*°, Q6°} is the standard postulate system

for monadic algebras, cf. [1], p. 40, it is obvious that, in order to obtain the

same result for the second postulate system given in section 2.4, it is

sufficient to add QO** to that system. But there is also another possibility.

3.4.1 Namely, it is easy to prove that not only in the field of CO, but also in

the field of CO** or CO* {Qθ**°, Q5*°, Q6*°] ̂  {Q0*°, Q5*°, Q6*°}.

Proof: Obviously, it is sufficient to prove that in the field of CO** {Q0*°,

Q5*°, Q6**°] implies Q<9**°. (If instead of CO** we accept CO*, Q6*° should

be assumed, cf. section 1.1 above.) Since we accepted CO**, we have Dfl

and N19, cf. [6], p. 537. Then:

QO** 0 = 30

PR
1. 1 = 31. [Q6**°; N17]

2. 0 = 1 x - 1 = - 1 . [Dfl)N17]

0 = - 1 = - 31 = 3 - 31 = 3 - 1 = 30 [2; 1; Q0*°; 1; 2]

If instead of CO** system CO* is accepted, the proof that in the field of

CO* {Q0*°, Q6*°}~ {Q0**Λ

( is analogous. And since CO* and CO** are the

proper subsystems of CO, the foregoing deductions hold in the field of a

Boolean algebra. Thus, it is obvious that we can reach our aim by adding

Q0*, as a new postulate, to the second postulate-system of the quantifier

algebras.

3.5 Recapitulating the discussions presented in this section, we can state

that, in order to obtain an adequate postulate-system for quantifier

algebras of dimension a ^ 0, it is sufficient to accept one of the following

sets of axioms:

(a) {CO, QO*, Ql, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9]

(b) {CO, QO*, Ql, Q2, Q3, Q4, Q5*, Q6, Q7, Q8, Qθ]

(c) {CO, QO**, Ql, Q2, Q3, Q4, Q5*, Q6, Q7, Q8, Q9)

Each of these sets of postulates is such that in the case of a = 0 it

gives a Boolean algebra, in the case of a - 1 a monadic algebra, and in the

case of a ^ 2 the postulates QO* and QO** are the consequences of the

remaining axioms belonging to the appropriate set of postulates.
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4 Since in the field of CO the postulate Q6 is either Q6* or Q6**, cf.
section 1.1 above, it follows automatically from Lemma I, proven in [4],
pp. 419-420, section 1, that if Q6* is accepted as a form of Q6, then in the
sets (a), (b) and (c) for a ^ 1 the postulate CO can be replaced by a weaker
postulate, viz. CO*; and if Q6** is accepted as a form of Q6, then in the set
(c) for a ^ 1 the postulate CO can be replaced by CO**. Moreover, it follows
immediately from the deductions presented in sections 2.1 and 3.4.1 above,
and in [4], pp. 421-422, section 2.2, that if Q6** is accepted as a form of
Q6, then φ#** is a consequence of the postulate system (a) or of (b) in each
of which a ^ 1 and in each of which the postulate CO is replaced by CO**.
Hence, again due to Lemma I, we know that if <?6** is chosen as a form of
Q69 then in sets (a) and (b) for a ^ 1, the postulate CO can be replaced by a
weaker assumption, namely CO**. Naturally, such replacements cannot be
done in a system of quantifier algebras whose dimension is a = 0, since
they would reduce such a system automatically either to a non-associative
Newman algebra or to a dual non-associative Newman algebra, but not to a
Boolean algebra, as required.

4.1 It is self-evident that all conclusions established in this paper are
applicable a fortiori to the quantifier algebras with equality.
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