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CONCERNING THE QUANTIFIER ALGEBRAS
IN THE SENSE OF PINTER

BOLESEAW SOBOCINSKI

1 In (3], ¢f. especially p. 362, section 2.1 and p. 365, section 4.1, C
Pinter formulated and investigated an algebraic system which he called the
quantifier algebras and which, in conformity with the style used in [6],
pp. 529-530, [5], p. 111, section 1, and [4], is defined here as follows:

(A) Any algebrvaic structure

A=A, +x%x,-,0,1,5}, 3

I\A/\Q

wheve a is any ovdinal number, + and x ave tico binary opevalions, and -, S}
(for any ovdinal numbers x, x < a) and 3, (for any ovdinal number k < a)
arve the unavy opevations defined on the carviev set A, and 0 and 1 ave tuwo
constant elements belonging lo A, is a quantifiev algebrva of dimension a, if
it satisfies the following postulates:

Co lhe structurve (A, +, x, -, 0, 1) is a Boolean algebra
QI lakx]):aeA .k, x < a.>.Si(-a) = -Sra

Q2 labk\]:a, beA .k, x < a.=>.S\a + D) = Sya + S\b
Q3 lak]:aeA . k<a.D.Sia=a

Q1 lakAp):ae A .k, A, p<a.D.8\Sta = $)Sha

Q5 l[abk):a,beA .k <a.2.3,(a¢ +b)=3.a+3,0b

Q6 l[akliaeA . k< a.D.a < 3.a

Q7 [akX]:aeA .k, A <a.D.S}3a=3a

Q8 lakx]iae Ak, x<a.xk#x.2.3.Sa=Sa

Q9 l[ak p):aeA .k, A\, p<a.p#x x.D.8 3,4 =13,8«

Moveover, if, besides 0 and 1, the cavviev set A of the stvucture ¥
conlains also the constant elements e, (for any ovdinal numbers k, x < a)
such that ¥ satisfies the following tico additional postulates:

1. An acquaintance with papers [3], [6] and [4] and with the symbolism used 1n [6] is
presupposed.
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Q10 [kA]:k, A <a.D.Srem=1
Q11  [axr]:aeA.k,x< a.D.aXewn=Sira

then the structuve % is a quantifier algebra with equality of dimension Q.

In this note: 1) a problem will be discussed concerning the quantifier
algebras of dimension @ < 1 (this problem was not investigated in [3]) and
2) it will be proved that in the postulate-system of quantifier algebras of
dimension a =1 the postulate CO can be replaced by each of the following
assumptions:

CO* the structure (A, +, %X, -, 0, 1) is a non-associative Newman algebva
and

CO** the structure (A, +,%X, -,0,1) is a dual non-associative Newman
algebra

i.e., by a postulate which is weaker than C0.

1.1 In connection with the formalization of system %, ¢f. [3], p. 362,
section 2.1, and definition (A) given above, it should be noted that since in 9
we have C0 and ‘‘<’’ is not a primitive notion of the investigated system,
we have obviously two inferentially equivalent forms of the postulate @6,
viz:

Q6% |ak]:aeA.k<a.D.a +3a=3a

and

Q6** lakliaed k<a.D.ax3Jwa=a

2 The deductions which follow will be used in the considerations presented
in the next sections.’

2.1 Let us assume CO** and the formulas QI, Q6**, Q7 and @8, each of
them of dimension @ >2. Hence, due to CO**, we have the formulas DfI
and N19 given in [6], p. 537. Then:

Qo* laxliaeA.x<a.D.3,-3a=-3a
PR la k] : Hp(2) . D.

[Za].
Z zjf} [2, since a = 2]
5. -3a = -Si3.a . [1; 2; 3; Q7]
6. -3.a = -SY3a =S} - [1; 2; 3; 4; 5; QI]
=3,8y - 3a =3, -3a. [QS QR1; Q7]
3. -3a=-3a (6]
Z1 [a]l:k<a.D.1=3,1 [Q6**; N19]

2. The deductions presented in the sections 2.2 and 2.3 below are analogous in some
respect to the proofs which are given by Halmos in [1], pp. 38-44.
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Qo**  [k]:k<a.D.0=3,0

PR [k]:Hp(1).D

2 0=1x-1=-1, [DF1; N17]
0=-1=-3,1=3,-3,1=3,-1=3,0 [1; 2; 71; Qu*; Z1; 2]

Thus, {CO**, QI, Q6**, Q7, Q8} — {Q0*, QU**}.

2.2 Now, let us assume C0 and the formulas QI,Q5,Q6,Q7 and @8, each of
them of dimension @ > 2. Since we have C0, both forms of @6, i.e., @6* and
Q@6**, are valid, and since CO** is a proper subsystem of CO, cf. (6],
p. 536, section 2, we have Q0* and QO**. ¢f. section 2.1 above. Then:

z2 [akliaeAd.x<a.D.3a =133«
PR [@ x]:Hp(2).D.
[=a].

3. x<a. . -

" P } [2, since a = 2]

5. da = Sy3a = 3,533 =3, 3.a. [1; 2; 3; 4; Q7; Q8; Q7]
3a =3,3a (5]

Z3 l[abkl:a,beA . k<a.a <b.>.3.a < 3b
PR labk]:Hp(3).D.

4. a < 3. [1; 2; 3; Q6; BA]
5. a+3.b=30b. [1; 2; 4; BA]
6. 30 =330 =3, +3b) =3 + 33D (1; 2; Z2; 5; Q5]
=3q + 3. [z2]

Aa < 3D [1; 2; 6; BA]

Q5*  |abr]ia,beA . k< a.D.3(ax 3D)=3wax b
PR [abk]:Hp(2).D.

3. ax3b < JaxIb. [1; 2; Q6; BA]
4, A (ax 30 < I (Feax b)) = 3 - (-3 +- 3.0)  [1;2;3;23, BA]
= 3x - (3 - @) + (34 - D)) [Qu*]

=3, - 3, (-3a +- 3.b) [@5]

= -3, (-3 + - 3:D) Qo *]

= -((3x - Jea) + (3x - 3.D)) [@5]

= -(-F.a + - 3:b) = ,ax 3.b. [Qo*; BA]

5. a—(><3b)+ (ax - 3.b) < (¢ +3D)+-3.b. (1; 2; BA]
6. <3, ((@x 3.b) + - 3.b) [1;2; 5, 23]
= J.(ax 3.0) + (3, - 3.D) [@5]

=3.(ax 3D +- 3b. [Qo*]

7. J.ax 3.0 < (3. (@x D) + - 3.0) x 3,0 [1; 2; 6; BA]
= (3. la x 3.0) x 3,.0) + (-3,.b x 3,.D) [BA]

< A, (ax 3.0). (BA]

3 (@x3.b) = 3a x b [1; 2; 4; 7; BA]

Thus, {C0, Q1, Q5, Q6, Q7, 8} — {Q0*, QU**, Q5*}.

2.3 Finally, let us assume CO and the formulas @I, @5*, Q6, @7 and @8,
each of them of dimension a = 2. Since we have C0 both forms of @6, i.e.,
Q6* and Q6** are valid and since CO** is a proper subsystem of C0, cf.
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section 2.2 above, and in the field of C¢o** the formulas Q0* and QO** follow
from @1, Qo**, ()7 and ()8, we have these formulas at our disposal. Then:

z2 lark):aeA . k<a. . 3a=33a

[Cu; Q7; 8, since a > 2. Cf. a proof of Z2 in section 2.2|
Z3 labr)ia, beA . k<a.a < b.>. 3a - 3.b
PR labk]:Hp(3). 7.

4. axb=a. [1; 3; BA|
5. bx3,b=0. [1; 2; Q6**; BA]
6 J.ax 3,0 =3, (ax 3.0) =3, ((«xb)x 3.D) [1; 2; Qo*; 4]
=3 (a> (bx 3D)) = 3. (axb)= 3. [BA; 5; 4]

3. - 30 [1; 2; 6; BA]

Q5 labkl:ia, beA . x<a. .3 (¢ +b)=3a+3b

PR [abx]:Hp(2). .

3. 3,.a+ 3.0 =-(-3ax -3,.b) [1; 2; BA]
= ~((3, - 3.a) x (3. - 3D)) [ Qo*|
= -3,(-F.a % (3, - 3,0)) [Q5*]
= 3. - 3, (-3 > (3, - 30)) Qo]
=3, - ((3;\ - 3/\”) X (3;\ - 31\[))) \Q‘S*]
=3, - (- 3ax-30D) [ Qu*]
= 3,(3.a +3.0). (BA]

4. a+b - 3a+3,0. [1; 2; Q6; BA]

5. 3, (@ +0) - 3,3« +30)=3a+30D. [1;2;4: 73; 3]

6. da - Aa +D). [1; 2: BA; 73]

7. 3,0 < Ada +0). [1; 2; BA; 73]

.« +0)=3.a+3D [1;2;5;6;7: BA|

Thus, {C0O, @1, Q5*, Q6, Q7, Y8} — {Q0*, QU**, @5},

2.4 The deductions presented in sections 2.2 and 2.3 above show at once
that if system ¥ has dimension a = 2, then its set of postulates {C0, @1, Q2.
@3, Q1, Q5. Y6, Q7. Y8, Q9| is inferentially equivalent to the set {Cu, @1,
QR2, V3, QI, Q3*, Y6, Q7, Y8, QI

3 An analysis of the arguments, ¢/. |3], pp. 361-362, sections 1 and 2,
which led Pinter to construct the quantifier algebras shows clearly that for
dimensions 0 and 1 these algebras should be reducible to the Boolean
algebras and to the monadic algebras in the sense of Halmos, respectively.

3.1 1t is self-evident that in the case a = 0 the formulas @I, @2, Q3, @/,
W5, QO*, 6, Q7, @S, Q9, @10 and (Y11 become void, and therefore, the
quantifier algebras (even with equality) of dimension a = 0 are reduced to
the postulate Co, i.e., to the Boolean algebras.

3.2 On the other hand, in the case @ = 1, the postulates @& and (9 are void
and the operations S and e disappear, i.e., the postulates @1, @2, @3, Q7,
@10 and @11 are reduced to the valid Boolean formulas automatically. Thus
there remains only the postulate Co0, i.e., a Boolean algebra, and the
postulates @5 (or @5*) and @6 of the following forms in which the index 0,
i.e., the ordinal number <1, is omitted:
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Q5° lal:aeA.D. 3@ +b)=3a +3b
Q5* [al:aeA.D.3@x 3b) = 3a x b
Q6° [al:aeA.D.a < 3a

Obviously, the formulas @5°, @5*°, and @6° can be considered as
well-known formulas from the field of the monadic algebras of Halmos,
cf. [1], p. 21, but neither the set {C0, @5°, Q6°} nor {Co, Q5*°, Q6°}
constitutes an adequate postulate system for those algebra. Namely, the
example given in [1], p. 41, which is presented here in the form of an
algebraic table:

+|0 1 xlO 1 al—a a | 3a
M1 0| o0 1 0 |0 0 0 1 0 1
1 1 1 1 0 1 1 0 1 1

verifies C0O, 5, @5* and @6, but obviously falsifies the formulas
QO*°  lal:aeA.D.3-3a=-3a

and

QO**° 0 =30

which are valid in monadic algebras. From this it follows that, in order to
establish a postulate-system for quantifier algebras which would be
adequate for dimension a >0, some additional postulates should be added to
the postulate-system given in [3], ¢f. definition (A) above, and also to the
postulate-system which was established in section 2.4 of this paper.
Obviously, since both foregoing postulate-systems are adequate for quan-
tifier algebras of dimension a > 2, the additional postulates have to be
independent in the case of dimension a = 1, but superfluous, if a quantifier
algebra is of dimension @ >2. As we know, a similar situation exists in the
field of cylindric algebras in regard to their postulate C1, cf. [2], p. 178,
and [6], p. 530.

3.3 In section 2.2 above it has been proved that in quantifier algebras of
dimension a =2 the formulas Q0* and QO0** are the consequences of the
original postulate-system of Pinter. But we cannot complement this set of
postulates by adding, as a new axiom, Q0** to it, since the set {Co, Q5°,
Q6°, Q0**°} does not constitute an adequate postulate-system for the
monadic algebras. The following algebraic table:

+ | 0 a 3 1 x 0o a 3 1 a |-a a | Ja
0 0 «a 3 1 0|0 0 0 0 0 1 0 0
M2 ala a 1 1 al0 a 0 «a a 3 a 1
313 1 3 1 310 o 3 3 3 | a 31 3
1 1 1 1 1 1 0o a 3 1 1 0 1 1

verifies C0, @5°, @6° and QO**°, but falsifies Q0*° for a/3: (i) 3-33=3-3=
da =1, (ii) -33 = -3 = @; and falsifies Q5*° for a/a and b/3: (i) I(ax 3B3) =
J(a@x 3)=30=0, (ii) Jax 33 =1x 3 = 3. On the other hand, it has been
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proved in [4], p. 421, section 2.1, that the set {C0, Q5°, Q6°, QU*°} con-
stitutes an adequate postulate-system for the monadic algebras. Therefore,
in order to make the first postulate-system mentioned in section 2.4 above
sufficient for @ 20 we have to add Q0* to it as an additional postulate.
Thus, the structure A is a quantifier algebra of dimension a =0, if it
satisfies the set {C0, QU*, QI, Q2, Q3, @4, Q5, Q6, Q7, Q8, Q9} of postu-
lates. Clearly, with such a postulate-system for o =0, % is reduced to a
Boolean algebra, for @ =1 to a monadic algebra, and in the case a =2
postulate QO0* is a consequence of the remaining axioms, cf. section 2.1
above.

3.4 Since the set {C0, QU**°, @5*°, Q6°} is the standard postulate system
for monadic algebras, ¢f. [1], p. 40, it is obvious that, in order to obtain the
same result for the second postulate system given in section 2.4, it is
sufficient to add QO** to that system. But there is also another possibility.

3.4.1 Namely, it is easy to prove that not only in the field of C0, but also in
the field of Co** or CO* {QU**°, Q5*°, Q6% Z {Q0*°, Q5*°, Q6*°T.

Proof: Obviously, it is sufficient to prove that in the field of Co** {Q0*°,
Q5%°, Q6**°} implies QU**°. (If instead of CO** we accept CO*, Q6*° should
be assumed, c¢f. section 1.1 above.) Since we accepted CO**, we have DfI
and N19, cf. [6], p. 537. Then:

Qu** 0 =130

PR

1. 1=31. [Q6**°; N17|

2. 0=1x-1=-1. (Df1; N17]
0=-1=-31=3-31=3-1=30 [2; 1; Qo*°; 1; 2]

If instead of CO** system CO* is accepted, the proof that in the field of
Co* {Q0*°, Q6*°1 — {Q0**} is analogous. And since CO* and CO** are the
proper subsystems of C0O, the foregoing deductions hold in the field of a
Boolean algebra. Thus, it is obvious that we can reach our aim by adding
Q0*, as a new postulate, to the second postulate-system of the quantifier
algebras.

3.5 Recapitulating the discussions presented in this section, we can state
that, in order to obtain an adequate postulate-system for quantifier
algebras of dimension a =0, it is sufficient to accept one of the following
sets of axioms:

() {Co, Qu*, Q1, Q2, Q3, @1, Q5, Q6, Q7, Y8, QI}
(b)  {Co, Qo*, QI, Q2, Q3, Q4, Q5*, Q6, Q7, @8, QI}
(c) {Co, QU**, Q1, Q2, Q3, R4, Q5*, Q6, Q7, 8, QI9}

Each of these sets of postulates is such that in the case of @ =0 it
gives a Boolean algebra, in the case of a = 1 a monadic algebra, and in the
case of @ =2 the postulates Q0* and QO0** are the consequences of the
remaining axioms belonging to the appropriate set of postulates.
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4 Since in the field of Co the postulate Q6 is either Q6* or Q6**, cf.
section 1.1 above, it follows automatically from Lemma I, proven in [4],
pp. 419-420, section 1, that if Q6* is accepted as a form of @6, then in the
sets (a), (b) and (c) for @ =1 the postulate CO can be replaced by a weaker
postulate, viz. CO*; and if Q6** is accepted as a form of @6, then in the set
(c) for a =1 the postulate CO can be replaced by CO**. Moreover, it follows
immediately from the deductions presented in sections 2.1 and 3.4.1 above,
and in [4], pp. 421-422, section 2.2, that if Q6** is accepted as a form of
@6, then QU** is a consequence of the postulate system (a) or of (b) in each
of which @ =1 and in each of which the postulate Co is replaced by Co**.
Hence, again due to Lemma I, we know that if @6** is chosen as a form of
@6, then in sets (a) and (b) for @ = 1, the postulate CO can be replaced by a
weaker assumption, namely CO**, Naturally, such replacements cannot be
done in a system of quantifier algebras whose dimension is a = 0, since
they would reduce such a system automatically either to a non-associative
Newman algebra or to a dual non-associative Newman algebra, but not to a
Boolean algebra, as required.

4.1 1t is self-evident that all conclusions established in this paper are
applicable « fortiori to the quantifier algebras with equality.
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