
554

Notre Dame Journal of Formal Logic
Volume XIV, Number 4, October 1973
NDJFAM

A STRONGER THEOREM CONCERNING THE NON-EXISTENCE
OF COMBINATORIAL DESIGNS ON INFINITE SETS

WILLIAM J. FRASCELLA

The aim of the present paper is to show that certain combinatorial
designs on infinite sets cannot exist. To be precise we introduce the
following terminology. If M is a set and p a cardinal number —M (the
cardinal number of M) then [M]P is the collection of all subsets of M having
cardinality p.

Definition 1. A family F is called a p-tuple family of M if and only if
(i) F c [M]P and (ii) x, y e F and x c y implies x = y.

Definition 2. Let F and G be two families of subsets of M. G is called a
Steiner cover of F if and only if for every x e F there is exactly one y eG
such that x c y.

It is now possible to state the main result of the present paper.

Theorem 3. Let a, β and γ be ordinal numbers such tJiat

(i) a < β < γ
(ii) cf(ωy) ^ωa

(iΐi) tfjj^tfy.

Then, in every set M of cardinality #γ there exists an $a-tnple family F of
M such that there does not exist a family G c [M] β which is a Steiner
cover of F.

N.B. It should be noted that this result subsumes the main result of [l]
(denoted there as Theorem 6) and [2] (denoted as Theorem 4) as special
cases. It should also be noted that the proofs offered for both of these
results contain er rors . This fact was kindly pointed out to me by
Professor E. C. Milner of the University of Calgary, Alberta, Canada,
whom the present author wishes to take this opportunity to thank.

We begin with some preliminaries.

Definition 4. Let F and G be families of subsets of M and n a non-zero
cardinal number. G is called an n-spoiler of F if and only if for every x e F
and every 3; e [M]n there is a z e G such that 2 c x u v.
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Lemma 5. Let k and n be infinite cardinal numbers and let F be a k-tuple

family of an infinite set M. Suppose there exisfs_ subfcimiUes Flf F2 ^ F

such that (i) F2 is an n-spoiler of F1 and (ii) nkF2 < Fγ. Tlien, F does not

possess a Steiner cover contained in [Λl]".

Proof. To the contrary suppose there is a Steiner cover G of F which is

contained in [λl] . We will arrive at a contradiction by showing

(*) ( xoe Fι) (VV 6 F2) [Λ'O and x1 are not subsets of the same fnember of G]

If we can establish (*) we can derive a contradiction as follows. Let y0 be

that unique member of G such that Λ'O C y0. Since Λ*0 e Fl9 yoe [M]" and F2 is

an λz-spoiler of Fι it must be that there exists some ,v*eF 2 such that

.v* ^ Λ'O y0. But Λ'o c v0. Hence Λ'* - Λ'O L VO = Vo

 T n i s forces Λ'O and x*

(a member of F2) to both be subsets of the same member y0 of G, thus

contradicting (*).

To see that (*) holds let Gr be defined as the set of all those members

of G which contain, as a subset, at least one member of F2. Now each mem-

ber of G' is a set of cardinality n and therefore can contain at most nk sub-

sets of cardinality k. Thus, since each member of G' must contain as a

subset a member of F2 it follows that the total number of members of F

which are contained in some member of G' cannot exceed ;/ F2. But by (ii)

it then must be the case that there is some member xQ of Fγ not contained

in any member of G'. Such an ,v0 will satisfy (*). This completes the proof

of Lemma 5.

Proof of Theorem 3. On the strength of hypotheses (i)-(iii) it is possible to

construct an increasing sequence of ordinal numbers {a,}, cf(<o such that

(1) NΛ = Σ fcα,

and

(2) ^3 < NV < ^ for all £ < cf(ω }).

Thus we can find sets {Mc]-- cf((Λ > such that

(3) M = \J{ΛL | ί < cf(ω})}

(4) Tl, = SQ,

and

(5) M,γ <λl*2 = 0 w h e n e v e r ^ * ί2.

For each £ < cf(ωy) let Fl be any collection of pairwise disjoint subsets of

Λ/c such that

(6) Fl -[λl,f°

and

(7) ¥l = JΠ = KQs.

That such Fl exist is guaranteed by the fact that Sα^ SQ. = SQ,.



556 WILLIAM J. FRASCELLA

Definition 6. Two elements p and q of Mξ are said to be independent if and
only if they are not members of the same element of Fξ .

Definition 7. For each ξ < cf(ωy) let

Pζ = {{p, q}t [Mξ f i p and q are independent}.

Clearly for each ξ < cf (ωy)

(8) Tξ ^ Wξ = KQξ .

Definition 8. For each ξ < cf(ωy) let

Fξ = {x U x' I xe Pξ and x' e F'ξ+1}.

Lemma 9. For each ξ < cf(ωy), Fξ is an #Q-tnple family of M.

Proof. If ye Fe then we have ~y = Sα + 2 = Sα. Let AT U ΛΓ' and 3; u y' be
elements of Ff. Now suppose ( x i #') c (y L 3;'). But this would imply
ΛΓ' C yf and ̂  c j ' . Since x', j 'e i^I+i and * and v are finite sets of the same
cardinality it must follow that xr = yf and x - y. This proves Lemma 9.

Lemma 10. For each ξ <cf (ωy), Ff - #Qf+1.

Proof. By (8) we have Ψξ = Ψξ F ] + 1 - Ψξ $Qξ+1 = ^ + 1 .

Definition 11. F * - | J {F, | ξ < cf(co} )}.

Lemma 12. F* is an #a-tuple family of M.

Proof. It is sufficient to show that any two distinct members of F*, say
xι and x2, are not nested. Suppose xte F^ and x2eF*2. Without loss of
generality we may assume ξx - ξ2- If ξi - 2̂? χi and x2 cannot be nested
since iΓ^ 1 is an Sα-tuple family of M. Now suppose ξx < ξ2- Then there are
at least two elements of xλ which lie outside x2 {viz. the members of
xx Γ\ M f i ) ; moreover, there are at least Sα elements of x2 which lie outside
X\ {viz. the members of x2 Γ Mξ +1). Thus xx and x2 cannot be nested. This
proves Lemma 12.

Lemma 13. F * = S y .

Proof F * = Σ Ψl = Σ Sα + 1 = S y .
^ c f ( ω y ) ^ ξ<cKωγ)

 af

Definition 14. FΦ - \y c M|(y ΠM^) e Fi for each £ < cf(ωy)}.

Lemma 15. F^ is an $a~tuple family of M.

Proof. Every element y of F# may be written as y = [J{y.c\ξ, < cf(ωy)}
where y?.eFξ for each ξ < cf(ωy). By (6) we know yJ = ̂ Q. Hence J =
^o cf(α)y) = tfα: the last equality being justified by hypothesis (ii).

Now let y and y' be two distinct members of F#. There must exist a
ξ o <cf(ω y ) such that (y Π Mξo) Φ (y' Π Mξo). But the sets (yΓM*Q) and
( / n Λ/̂ p) both are members of the family F^ o whose members are pairwise
disjoint. Hence (3; Π Λί^0) Π (^f 1 M;J = 0. Thus there are members of y
which lie outside y' and vice versa. Thus v and yr are not nested. This
proves Lemma 15.
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Lemma 16. F# > N
y
.

Proof. Since the sequence {a^} is increasing it follows from a theorem of
J. Kδnig that

W = Π F? = Π Nα_ > Σ ^ α A - ^ y .
£<cf(ωy) f<cf(ωy) " £<cf(ωy)

Definition 17. F = F * U F#.

Lemma 18. F zs an $a-tuple family of M.

Proof. It is sufficient to show that any two distinct members of F, say x1

and #2, are not nested. Clearly, if xu x2e F* or xu x2e F# then they could
not be nested since F* and FM are both #Q-tuple families. Now suppose
xγe F * and x2eF$. We may assume further that x1eFξQ. Clearly xλ is a
subset of M ô L MξQ+1 which makes it impossible for x2, which intersects
each of the Mξ, to be a subset of xλ. To show x1 is not a subset of x2 we may
write x1 = {/?, (7} U x0 where {/>, #}e Pξo and #oe F/ o + 1 . If xγ c χ2 then it would
follow that { A #} c (χ2 n Λ/^Q). But (ΛΓ2 Π jW>0) is a member of F^ o, since # 2

is a member of F#, and thus the fact that p and q are independent is con-
tradicted. Thus x1 and x2 are not nested. This proves Lemma 18.

Lemma 19. F* is an ttβ-spoiler of F#.

Proof. Let xe F# and ye[M] '3. It is now necessary to produce a ^ e F *
such that z ^ x L y. Since y = #p > ^ Q and cf(cϋv) - ωa (hypothesis (ii)) there
must exist an ξ0 < cf(ωy) such that (3; π MξJ > Nα. Thus there must exist
two distinct elements p and q of 3? Π M^o which are independent (i.e., that
{A #}€ ̂ fo) This is so since a subset of MAQ, every two elements of which
are not independent, can have cardinality at most Kα: such a subset would
have to be completely contained within a single member of Fξ0. Let z =
{p, q} U (x Γ, Mξ0+1). Since xe FH, (x Π M^0+1)e F i 0 + 1 which implies that ze Fξo

and hence ze F*. Now since {/>, ̂ } c (y n M^o) C3; and (x Π M ί o + 1) c ^ it
must be that £ c # \j 3?. This completes the proof of Lemma 19.

Lemma 20. *$ α F * < W .

Proof. Using^Jiypothesis (iii) and Lemmas 13 and 16 we have ^ α F * ^
S y Sy - Sy < f f .

Lemmas 18, 19 and 20 together with Lemma 5 establish that the
tfQ-tuple family F, given in Definition 17, does not possess a Steiner cover
contained in [M] ^. This completes the proof of Theorem 3.

With the aid of Theorem 3 it is possible to exhibit a whole range of
situations where Steiner covers are not available.

Definition 21. Let p be some fixed cardinal number. Then for any ordinal
number a the cardinal number 1a(P) is defined inductively by the following
conditions: (i) if a = 0 then 2a(P) = P\ (ϋ) if α = /3 + 1 then 1a(p) = 2 V ^ ; and
(iii) if a is a limit ordinal then aα(/>) = Σ *2$(p).
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Corollary 22. Let VsQ and $β be any cardinal numbers such tliat S α < ^ .
Then there exists an infinite set M and an $a-tuple family F of M which
does not possess a Steiner cover G c [ M ] ^ .

Proof. Let M be any set of cardinality 3 ω Q (^) and let γ be such that
3 ω a ( ^ ) = Ky. Since cf(ωy) ^ ωa and #*<* < 2^" < lω Q(« 5) - ^ y it follows that all
the hypotheses of Theorem 3 are satisfied. Corollary 22 is thus proved.

Theorem 6 of [l] is the special case of the above corollary where a = 0
and |3 = 1 while Theorem 4 of [2] follows a fortiori from Theorem 3 of the
present paper.
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