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MODELS OF Th({w®, <))

JOHN W. ROSENTHAL

In this paper* we characterize the models of Th({w®, <)). Our main
tool will be the game-theoretic characterization of elementary equivalence
given by Ehrenfeucht in [2] (c¢f. also Fraissé [3]). In particular our work
may be viewed as a generalization of Theorem 13 in [2] which gives a
characterization of the standard, i.e., well-ordered, models of Th({w®, <)).

The main result, Theorem 3 of section 2, is that a model of Th({w?, <))
consists of an ultrashort model of Th({w®, <)) followed by at each point of an
arbitrary linear order ultrashort models of Th({w®, <)) or of Th({. .. +w" +
O+ +w + 1 +w? <), where by an ultrashort model is meant one
such that for any two points x, y there is an upper bound on z such that if
z is between x and y, z may be a lim,. In Theorems 1 and 2 of section 2 we
characterize ultrashort models of these two theories in terms of models of
Th({(w”, <)). In section 1 we characterize models of Th({w”? <)). In section 3
we discuss short models, namely models having no elements which are lim,
for every n. In section 4 we briefly discuss how the techniques of section 2
can be used to classify the completions of the theory of well-ordering and
the element types of Th ((w®, <)).

We will assume the reader is familiar with the results and techniques
in Ehrenfeucht [2]. In particular we will freely use these without further
reference or mention. Several lemmas, in particular Lemmas 6, 7, 8
essentially appear in [4]. We include them for completeness and self-
containment.

Our notation in general will follow that suggested in Addison, Henkin
and Tarski [1]. The games G,are as denoted in Ehrenfeucht [2]. We now
briefly indicate our notation for linearly ordered sets:

Ordinals will be denoted as usual.
Usually if it is clear specific mention of the linear order of a linearly
ordered set will be omitted.
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If A, B are linearly ordered by <,, <pg respectively, then A + B denotes
AU B linearly ordered by <4,z where x<,,5 y<>(xe AryeB)v(x, ve An
x<4¥)vix, ve Bax<gy). (We assume A, B are disjoint. Otherwise, they
should first be made disjoint. Henceforth we will assume as needed that
sets are disjoint).

More generally if A is linearly ordered by <4, and if for each ae 4, A, is

linearly ordered by <, then EMAA,, denotes U,,(AAa linearly ordered by
<sa,where x <s4,y <> (xeAsnyeA,na <, ) vy, veAsax < ).

If A, B are linearly ordered by <,, <z respectively, then A x B denotes
Z;X(BA'

If A is linearly ordered by <4, then A* denotes A linearly ordered by <,.
where x <,. y if y <4 x.

*
Z_;aeAAa = EaeA‘Aa-

* *
ww = Z;n(w wn-

* *
w(l) +w = w(u + ww

If A is a linearly ordered set, a, be A, then

la, b) =b -a=xeAla <x < b}
[0,0) =b={xeAlx < b}
[a, =) =A -a={xeAla <x}.

(a, b), etc. are denoted similarly.

If a, beA, B, then we write [a, b)*, [a, b)®, etc. to distinguish these
intervals in A and B.

n = class of all discrete linear ordered sets with first and last elements.
We identify order isomorphic elements.

n, =n U {g}

n, is partially ordered by < given by A < B iff (3f) (f: A 1-1 order
isomorphically onto an initial segment of B). So wis an initial segment of n,.

If ¢ is any sentence in the first order language for < and y/(x,) is a
formula (perhaps with parameters) then ¢¥*0) is ¢ relativized to y(x,).

Definition: limg(x) =47 (x = x)
limpi (%) =ar (Y9)(y < x — (22)(y < 2 < xalimy(2)))
x =0 =g 1(3y)(y <x)
t=y4 {limy(x,) [ne w}
t =y tU{x0¢O}
1 Models of Th({w” <)). As is well-known:

Proposition 1. {n, <) & Th({w, <)) iff I(7, <) a linearly ovdered set (possibly
empty) such thatn = w + (*w + w) - 7.

Proof: Omitted.

Proposition 2. (n, <) kE Th((w**, <) iff 3(u, <) ETh(w, <)), Yae u, 3, QF
Th((w", <)) such that n = 2igq, tig-
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Proof: Assume (, <) E Th((W"", ).

Now 1) (W™, )k @lima0) for each ge Th ((w, <)),

2) WM, O E Vx vy ((lima(x)a lim,(0)a x < ya(V2) (x < 2< y — T imx(2))) —
@*<*0<Y) for each ¢ e Th({w”, <),

and 3) (W' QEVx 3y (y <xalim,(p) 2 1(32)(y < 2 < x4 limy(2))).

So (n, <)& the sentences in 1), 2), 3). Let

p=4aenlln, QElimx) [a]}.
And for each ae p, let

g ={Benla <Ban, QE1B2)(x, < z < x4 limu(2)) [, B},

Then by 1), (u, < F Th({w, <)) and by 2), {uy, < F Th({w” <) and clearly
77 = an,t lla by 3)'

Conversely, assume the conclusion. So player II has a winning strategy in
Gnl(w, <, {u, <) and in G,(w", <), (g <)), Yaepy, for every m = 0.

We give a winning strategy for II in G,((w""", <), {(n, <)). Given a move
of 1, I chooses which ‘w™ segment of model to use by winning strategy in
the first game and then which point in it to use by winning strategy in the
appropriate latter game.

2 Main Theorems:

Definition: A model of Th({w® <)) or of Th({w® ™ <)) which omits t is
called a shovt model.

If (1, <}E Th((w® <) or ETh(w® ™ <)), it is called wultrashort if
vx, yen, (x <y— @n)(V2)(x < z Sy — 1lim,(2))).

Clearly any ultrashort model is short.

Theorem 1, {n, <) is an ultvashovt model of Th({w®, <)) iff 3 for each new a
model (n,,, <) E Th({w” <)) such thatn = 2iney M-

Theorem 2. {n, <) is an ultrashort model of Th({w® **, <)) iff
31) for each ne w a y, en, such that infinitely many y, # 0,
2) for each ye p, a model {nn,y, <) kE Th({w”", <)),
3) an' an ultrashovt model of Th((w®, <)) such thatn = 2, Liyep iy +1'

Theorem 3. (n, <) is a model of Th({w®, <)) iff
3 1) linearly ovdered set u (possibly empty),

2) for each ye u, an ultrashort model (n,, <) of Th({w®, <)) o7 of Th (R
),

3) an ultrashort model (n', <) of Th({w?, <)) such thatn =n' + qut Ny-

The proofs of these three results will be by a sequence of lemmas. We
first consider the — directions.

Lemma 1. {(w® <) and hence any model of Th({w®, <)) satisfies the following
sentences:

a) (3(Vy)(y =x)
b) (V)3 (y > xalimy(y)a 1(F2)(x < 2 < y alim,(2)))
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c) (V) (V) (v > xalimu(y) A 1(32) (x < 2 < yalimp(2))) — @) for every
@ e Th{{w” <))

d) (Vx)(F) (¥ sxalim,(y) A (V2)(y <z <x — Tlimy(2)))

e) (Vx)(Vy)((x <y alimy(x) A lim(y) A 1(32) (¢ < 2 S YA limg(2))) —

@ = oM ima(0)) 0y every ¢ e Thin).

Lemma 2. (w®™*% <) and hence any model of Th({w® ', <)) satisfies the
following sentences:

a) (Vx)(3y)(y < x),
b)-e) of Lemma 1,

Proofs: Routine.
Lemma 3. — of Theorem 1.

Proof: Let (n, <) be an ultrashort model of Th({w®, <)). Let x,=0. By
induction define x,,, = least lim,, > x,. Such exist by 1b). By lc), {[x;, xi,1),
<) E Th((w’, <)). By the definition of ultrashort, n = 23, (¥, ¥iy1)-

Lemma 4. — of Theorem 2.

Proof: Let (n, <) be an ultrashort model of Th((w® " <)). Let y, = Zo€ 7.
By induction define y,, = greatest lim,,; <¥,. Such exist by 2d). By induc-
tion define x,,, = least lim, > z,. Such exist by 2b). By 2a) infinitely many
of y; are distinct. Let pu,= {aly,Hl <a < y,alimp(a)}. So infinitely many
. # 0 and by 2e), y,en,. For each Ve, let m,, = [y, ¥') where y' is least
limy > 9. By 2¢) (,y, QETh(W" <). Also [Ypu, ¥n) = Ey%nn,y. And

(0; yo) = E:m, [yn+1, yn) = Z:lkew quun T'n,y' Let Np = [Zn; zn+1)~ BY 2C), <77m <>‘=
Th (", <)). And [z, ©) = 2ipew #xn. SO0 by Theorem 1, ' = [z, ) is an
ultrashort model of Th({w® <)). Now 1 =(0, o) +[2, ®) = Z):m, Ey%n,,,y +n'.

Lemma 5. — of Theorem 3.

Proof: Let (n, <) be a model of Th({w®, <)). On7n define a = b if (In)(3x)
(a<x<b— 1lim(x)) for a <b. If a> b, define a = b if b = a, And define
a=a. So= 1s an equivalence relation.

By 1la), 7 has a least element 0. Let p =1 - {O} As in Lemma 3, 0=
2iicwn; where (n; <) ETh((w’ <)) and hence is an ultrashort model of
Th ({(w®, <)) by Theorem 1. If xepu then either x realizes t or not. If so
arguing similarly to Lemma 3 we find ¥ = 2Jiq nix Where (;,, <k
Th w?, <)) and hence x is ultrashort model of Th({w®, <)). On the other
hand if x does not realize t, x has no least element and arguing similarly
to Lemma 4 we find x = Z;nc(u Zye;tn «NMnmxy +1' wWhere pu,.eno, infinitely
many are # 0, (1,,xy, <) F Th(w" <)), (n', <) is ultrashort model of Th({(w"
<)). And hence x is ultrashort model of Th(w®*® <)) by Theorem 2. As
n= 0 +E,“# X, we are done.

Lemmas 1-5 may be viewed as giving a means of partitioning models of
these theories. The theorems assert any model which can be partitioned in
such a manner is a model of the theory in question.
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Lemma 6. If player Il has a winning stvategy in Gn(ax, <), (B, <) for
every x € v, then 11 has a winning strategy in G, ((E,‘EY Oy, <>, <Zx£y By, <>)

Proof. Player II’s winning strategy is: If on some move player I chooses a
point in @y (or B, then player Il uses his winning Strategy in G, ({ox, <),
{Bx, <)) to give his move.

Corollary. If a, = By, VX€ vy, then Z,“y Qy = Z‘/m, Bx.

Lemma 7. If player Il has a winning stvategy in Gn((y, <, (6, <)) and if
player 1 has a winning strategy in G, (ax, <), (By, <)) for every xe vy, ved,
then 11 has a winning stvategy in

G, (<Exsy Ox, <>), <Eyf5 By, <>> .

Proof. Player II’s winning strategy is: If on some move player I chooses a
point ye ax, then player II uses his winning strategy in G, ((y, <), (5, <))
assuming a move by I of x to give a point x'¢ 6 and his winning strategy in
G, lax, <), {Bx, <)) assuming a move by I of y to give a point y'e B..
1I then plays as his move y'.

Similarly if player I chooses a point ye Bx, then player II selects a
point x' ¢y and then a point y'e a,. II’s move then will be y'.

Corollary. If y =5, a, = By, VX 0 VYe 9, thenz/,“yax £ Z‘ly(a By.
Corollary. If y =6, a =8, thena x y = x 6.

Lemma 8. If player 11 has a winning stvategy in G, (ai, <), (Bi, <) fori=
1, 2, then 11 has a winning strategy in G,y (@) + 1 + @, <), (B + 1 + By, <))
after the initial move 0<>0. (Note 1 = {0}.)

Proof: Player II's winning strategy is on each segment to use his given
winning strategies. IL.e., if I chooses a point in an @, player II responds in
other o using winning strategy in G, ((a;, <), (@, <)). And similiarly for 8.

Lemma 9. Player II has a winning stvategy in G, (@, <), (B, <)) if a, Ben,
a, B=2"-1.

Proof: By induction on #. = 1 is trivial. Assume the result for »n = k.
Let a, Ben, a, 8 =28 - 1. We give player IP’s winning strategy for
Gri1 (o, <), (8, <)). Without loss of generality player I’s first move is in a.
Say it is x,.

Case 1: x,< 2¢ - 1. By induction, as a - x,, 8 - x, > 2% - 1, player II has
winning strategy in G, (@ - %4, <), (B - %4, <)). Also II has winning strategy
in Gy (%, <), (3o, <)). So by Lemma 8 if II responds with x, in 3, then II
has winning strategy in Ge.: ((2, <), (8, <)).

Case 2: a - x, < 2% - 1. Player II responds with B8 - (@ - ¥,), i.e., with the
point a - x, <the last element of 8. This case is similar to 1.

Case 3: Neither Case 1 nor Case 2. Player II responds with 2% - 1 (or any
other element y,e B such that y, = 2k - 1, 8=y 2 2f - 1). By induction
player II has winning strategies in G, ((x,, <), (vo, <) and G, ({a - x,, <),
(B =94, <)). So by Lemma 8 we are done.
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Notation: If @, Ben,, we write a = Bto denote a =B ora, B 22" - 1,
Lemma 10: Player II has a winning stvategy in
Gn (<Exea Oy, <>; <Z;XEB Bx, <>)

where

i) a, Ben, a3 B,
11) <ax, <>, <By, <> E Th((w”‘, <>), Vxe a, y€ 6

Proof: By Lemmas 7 and 9.

Remark: By combining the techniques of Lemma 8 and Theorem 12 in [2],
one can, in fact, obtain:

Lemma 11. Player 11 has a winning stvategy in
Gn((Exea Olx, <>1 <Z>XEB Bx, <>)
wheve

i) m<m,
ii) a, Ben, a =, B,
iii) (ay, <), (By, ) ETh((w", <)), Vxea, yeB.

Lemma 12. Player 11 has a winning stvategy in
* , *
Ga (Eosiskwlo i, osiskzxfpi Tlx,i)
where

i) k<m,
il) p; eng, ni€w,
iii) (i, O E Th({w?, <),
iv) iz p; (n; = p; with Lemma 11).

Proof: By Lemmas 6 and 10.
Lemma 13. Player 11 has a winning stvategy in

G, (E:siskwi- i, E:sisk’zxw,‘ Tlx,z')
whevre

i) k, Rew, k, k' =n,

ii) niew, piemng, e # 0, Ler %0,
iil) (i, O FTh(w, ),
) Vi<nm, niz .

Proof: By induction on .

Case 1: »n =1 trivial.
Case 2: Let nw>2. Assume the result for n- 1. Let k k', etc. be as
above. Let

* . *
a = Eosiskw’- ni, B = Z}osisk'zﬂw Nx,i

Case a: On move 1 player I chooses an element ae a.
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Case ai: a <w" Say
* .
a= Eosigw’. k; wherel <mn, k; <w, k1 + 0.
As <n0,k’7 <> = Th«wk,’ <>)r
3b € Mo, p Such that (@, < =, <.
Also (wk- (@ + 1), <) =k <) and Mo e - B0 + 1), =¥, .

Let b be II’s move. Then{a - (@ + 1), <) and (8 - (b + 1), <) meet the condi-
tions of the lemma for » - 1. So by Lemma 8, II has winning strategy in

Gx (o, <), (B, ).

Case aii: a -a <w” Say
—a =2 i .
a-a=~Ligg;qw. k; where Il <mn, k; <w.
By the definition of a, B, <n;, k; =n; ifi <. Let
* .
a'=a - (El<iskw’- ni +wh (g - kl)) .
Soa' <w!. Say

* )
. .
a = Z;osi<lwl- Jie

Let
n; —kl if nl-k1<2”~ 1,
k| € ; be defined by kf =< u, - ky if ky < 2" - 1,
2” - 1 otherwise.
Let

% *
b= El<isk'2x6p,’ MNx,i +Ex<kl'77x,l +Eo<i<12x<]‘,~ Mi, x
. *
where (u; ., <) F Th((w?, <)) and Zosid 2«7’,' Wi x is an initial segment of My 1+

Then {a, <), (b, <) satisfy the conditions of the lemma for % - 1, and
(@-(a+1),<,(B-(0®B+1),<) satisfy the conditions of Lemma 12 for
n - 1. So by Lemma 8, II has winning strategy in G, ((a, <), (8, <).

Case aiii: Neither case ai nor aii. Say

* .
a =Ly qw'. k; where &y # 0.
Sol=n. Let
%k
b= Ex<2n-1_1 Mn-1,x + Z>z'<n—:t Zx<k,> Mi, x

where b is initial segment of B, (u;., < ETh((w?, <) for i <n. Then
{a, <, (b, <) satisfy the conditions of the lemma for n - 1, and {a - (@ + 1),
<), (B - (b +1), <) satisfy the conditions of the lemma for n - 1. So by
Lemma 8, II has winning strategy in G, ({a, <, (8, <).

Case b: On move 1 player I chooses an element be 8.

Case bi: There is nolim, <b. Say

b = Dt Zieeu; Ny Where (., < F Th((wh, <), 1 < n.
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Let

. = i i< 2" - 1,
' 712" - 1 otherwise.
Let a =Z\1;,<lw". n;. Then if a is II's move, II has winning strategy in
G, ({a, <), (B, <) by induction (as {a, <), (b, <) satisfy conditions of Lemma
12 for n - 1and (a - (a + 1), <, {8 - (b + 1), <) satisfy conditions of lemma
for n - 1).
Case bii: There is no lim, > b. Say

B-b-= Z:sislzxep,,"nx,i where [ < n.

By definition of B, p; = y; if i <1, y; < p,. Let
b'=0b - (E?;isk’zxeu,’ Nx,i +Z> ’nx,l) .

Ay
So &' has no lim;. Say
% . _ _ .
b' = osi<12xeﬁ,~77x,i where [I; € no, (75, < F Th{{w?, ).
Let
Ky - u'z'ifuz' p <2 -1,
k) <n; be defined by k; = <{ny - p; if p; < 2" - 1,
2" - 1 otherwise,
Let
a =20 e’ i+l ki + D i@t i
o (g if gy <2m-1,
where j; = {2” - 1 otherwise.

Then {(a, <), (b, <) satisfy the conditions of the lemma for # - 1, and
{a-(a+1),<),{B-(+1), <) satisfy the conditions of Lemma 12 for » - 1.
So by Lemma 8, II has winning strategy in G, ({a, <), (8, <)).

Case biii: Neither case bi nor bii. Say

b ’:Z}:Sislzxcﬂiﬁi,x where /-Ii €ENyg, 1) # 0’ <ﬁi,x; <> e: Th«wi’ <>)
Sol=n. Let

- [Illfjjl<2n’1 . _
ki = {2" - 1 otherwise fori<n-1.

Let
a = wﬂ—l'(2”_1 - 1) +2:si<n-1 wi, ki.

Then {(a, <), (b, <) satisfy the conditions of the lemma for n -1 and
(@ -(a+1),<), 8- (b+1),< satisfy them for »n - 1. So as usual, II has
winning strategy in G, ((a, <, {8, <)).

Proof of Theorem 1: « Clearly n is an ultrashort model. We will, thus, be
done when we show by induction on #:
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Lemma 14. Player 11 has a winning stvategy in
Gulw®, <, (Tnewtar <))-
Proof:

Case 1: n =1 is trivial,
Case 2: Let n=2. Assume the result for - 1. Let

@ =W B =2l
Case a: On move 1 player I chooses an elementae a. Say
a =Dineicwi. ki where ki <w, ki # 0.
Let
b=y +2yck-1 My * Z:si<12y<k,-77i.y where (1;,, < F Th((w’, <),
Dyckp-1 My + Diociciiiy<k;Miy iS initial segment of ny,;.

Let b be I's move. Then by Lemma 12 or 13, player II has winning
strategy in G,., ({a, <), (b, <)). (a-(a+1),<), (B~ (b+1), <) satisfy the
induction hypotheses for » - 1. So by the lemma, we are done in this case.
Case b): On move 1 player I chooses an element be 3. Say

b=mn+ Z;:sislzy<y1~ni,y where y; €ng, My, < = Th((w!, ).

Let
By = 2% - 1if y; > 27 - 2,
u; + 1 otherwise;
n s n
ki = 2 llf“,’>2 1 for 7 < n.
u; otherwise
Let

* .
a= Eosislw’. k;.

Then by Lemma 12 or 13, player II has winning strategy in G,., ({a, <),
(5, <), {a-(a+1),<),(8-(b+1), < satisfy the induction hypothesis for
n - 1. So as usual this case is done.

Lemma 15: Player II has a winning stvategy in

Gn (<E’:ew wi' iy <>> <E’i‘;w2xeyi nx,i) <>)
wheve

i) niew,
ii) Im such that Vi =m, n; = 1,
iii) vi<wmn, p; 3 ni,
iv) pien,,
v) infinitely many u; # 0,
Vi) (e O FTh((, ).

Proof: Similar to Lemma 13.
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Lemma 16. Player 11 has winning strategy in

Gn (<w¢o‘+a,> <>’ <E:‘>:(,;Exeyi nx,i + Zicwni, <>)
where
i) uieno,
ii) infinitely many u; + 0,
i) (,:, O F Thiw, ),
iv) &;, QE Th{wi, ).

Proof: Similar to Lemma 14. It uses primarily Lemmas 14 and 15 and
Theorem 1.

The proof of Theorem 2 now follows immediately from Lemma 16 as
S 2dxep; Nxi + 2licwM; 1S clearly ultrashort.

Lemma 17. (0 + Dy Ny <) = {0® + Drq by <) wheve

i) (n', < is ultrashort model of Th({w% <)),

i) (ny, < is ultrashort model of Th({w®, <)) o7 Th({w®*< <)),
i) = gw‘“‘if@?x, < E Th(w®, <‘>),
T (g, < F Th((w®™ ).

Proof: By Lemma 6.
Lemma 18. Player 11 has a winning stvategy in

Gy ({w"+ 2wl my, <), (W4 e bix + Dren . 714D, wh <))
where

i) myzn, if 1l <n, my,neow,

ii) gy = w?o0r 0’ Vx e,
iii) u is arbitrary lineav ordev (possibly empty),
iv) 7ew, I =n,

v) 2m such thatVi zm, v; = 0ov Vi =2m, ; = 1.

Pyoof: Similar to Lemma 13.
Lemma 19. Player 1l has a winning stvategy in
G, (W, <), (0 + Dyey 1y <))
wheve
i) pe=w? orw?t?,
ii) u is arbitvavy lineay ovdev (possibly empty).

Proof: Similar to Lemma 14. It uses primarily Lemma 18.

The proof of Theorem 3 now follows immediately from Lemmas 17
and 19.

3 Short models. By techniques similar to those in section 2 one can prove:

Theorem 4. (n, <) is a short model of Th({w®, <)) iff
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21) an ultrashort model (n', <) of Th({w® <)),

2) a linear ovdevr u possibly empty,

3) for each xey, an ultvashovt model (n,, <) of Th({w® ™ <)) such that
n=n' +Exeu Mx.
Theorem 5. (n, <) is a short model of Th({w” ™ <)) iff

=1) a linear ovder y,
2) for each xep, an ultvashort model n, of Th((w® ™ <)) such that n =

xcep Txe
Theorem 6. (n, <) F Th({w®, <)) iff

31) a shovt model (n', <) of Th({w®, <)),

2) a linear ovder u possibly empty,

3) for each xeu, a shovt model (1., < of Th{{w®, <)) o7 of Th({w” ™" <))
(the latter occurring only if x does not have an immediate predecessor)
such thatn =n' + Zx(p. Nx.

4 Other Results. Using the lemmas of section 2 and similar results one
can obtain Ehrenfeucht’s classification of the completions of the theory of
well-ordered sets. Using the result and the fact that {a, a,. . . a. <) = {8, b,
e 0, <A (apyy - @, ) =(biyy - b, O, Visn+lifa, <. .. <a,b <.
< b,and @y = by =0, a,y = @, b,,;, = 3 one can then classify the element types
of Th({w®, <)), or any other completion of the theory of well-ordering.

In particular the following are the distinct completions of the theory of
well-ordering:

{Th((w”. M+ Do 14, <N new mew, m 0, niewU {w +w* +w}}

U {Th((w“’ + 20 i, i, <>)|n,~ew U {w + w* + w}}
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