Notre Dame Journal of Formal Logic Volume XV, Number 1, January 1974 NDJFAM

S3.02 = S3.03

GEORGE F. SCHUMM

Sobociński [1] asks whether S3.03 properly contains S3.02. To answer in the negative, it is enough to show that Ct1t2 is a thesis of S3. Suppose for *reductio* that it is not. Then there is a Kripke model $\mathfrak{U} = \langle W, R, N \rangle$ for S3 and a valuation V on \mathfrak{U} such that

 $V(C \subseteq \subseteq \bigcirc p L p p C L M L p p \subseteq \subseteq \bigcirc p L p p \subseteq L M L p p, w) = \mathbf{F}$

for some normal world w of \mathfrak{A} . Hence

$$V(\mathbb{SSS}pLppCLMLpp, w) = \mathbf{T}$$
(1)

$$V(\mathbb{SSS} pLpp\mathbb{S}LMLpp, w) = \mathbf{F}.$$
(2)

From (2) and the fact that w is normal, it follows that

$$V(\mathbb{SS} pLpp, x) = \mathbf{T}$$
(3)

$$V(\mathbb{C}LMLpp, x) = \mathbf{F}$$
(4)

for some world x of \mathfrak{A} where wRx. In light of (3), we know that x is normal. Thus (4) yields

$$V(CLMLpp, u) = \mathbf{F}$$
⁽⁵⁾

for some world u of \mathfrak{A} where xRu. But now wRu by the transitivity of R, and so from (1) and the fact that w is normal we obtain

$$V(C \mathbb{C} \mathbb{C} p L p p C L M L p p, u) = \mathbf{T},$$

whence, by (5), it follows that

$$V(\mathbb{S}\mathbb{S} \not pL \not p \not p, u) = \mathbf{F}.$$

We know that u is normal since (5) also entails that V(LMLp, u) = T. Therefore

$$V(C \otimes p L p p, z) = \mathbf{F}$$

for some world z of \mathfrak{A} where uRz. However xRu and so by the transitivity of R we have xRz. Consequently, by (3) and the fact that x is normal,

$$V(C \otimes p L p p, z) = \mathbf{T}$$

and we have a contradiction.

Received July 30, 1973

GEORGE F. SCHUMM

REFERENCE

 Sobociński, B., "Modal system S3 and the proper axioms of S4.02 and S4.04," Notre Dame Journal of Formal Logic, vol. 14 (1973), pp. 415-418.

Ohio State University Columbus, Ohio