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ALGEBRAIC LOGIC WITH GENERALIZED QUANTIFIERS

CHARLES C. PINTER

1 Introduction The notion of languages with generalized quantifiers was
introduced by A. Mostowski in [5]. Recently, this subject has attracted a
great deal of attention and is currently undergoing a rapid development. In
particular, the study of logic with the quantifier "there exist uncountably
many" has become an important part of current investigations in model
theory and set theory.

The object of this note is to describe the algebraic logic for calculi
with generalized quantifiers. It is shown that the algebraic version of
generalized quantifiers is a perfectly natural generalization of the usual
notion of quantifiers in cylindric and polyadic algebras, and occurs
naturally in Boolean algebras. We investigate the algebra of the structures
which arise when generalized quantifiers are added to cylindric algebras,
and characterize those cylindric algebras which admit generalized quan-
tifiers. Finally, we give a few applications to the logic L(Qi). Our notation
and terminology is that of Henkin, Monk, and Tar ski [3], except that we will
say "quantifier" instead of "cylindrification".

2 Algebraic Formulation of Generalized Quantifiers Looking at the various
extensions of quantification which have recently been studied (for example
[1]> [4], [5], [6]), a clear notion of generalized quantifiers is seen to emerge.
Algebraically, this notion may be formulated in the following terms:

2.1 Definition Let A be a Boolean algebra. By & generalized quantifier on
A we mean a function q: A —»A having the following properties:

Ql q(x +y) =qx +qy
Q2 qfr qy) =q# q;y
Q3 qO = 0
Q4 ql = 1.

One immediately observes that quantifiers in the usual sense satisfy
Q1-Q4. However, they also satisfy the inequality x ^qx9 which does not
hold for any other generalized quantifiers.
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2.2 Theorem If q is a generalized quantifier on A, then the following hold
for all xf y eA:

(i) if x ^ y, then qx ^qy;
(ii) qqX = qx;
(iii) qx - qy ^ q(x - y);

(iv) q(-qΛr) = -q#.

Proof: (i) follows immediately from Ql, and (ii) follows from Q2 and Q4,
by letting x = 1. Now, q* ^ q(# + y) - q [(x - y) + y] = q(x - y) + q{y); thus,
by Boolean algebra, qx - qy < q(x - 3;). Finally, we use Q4, (ii) and (iii) to
prove (iv): -qx = ql - qq# ^ q(l -q#) = q.(-q.Λr). On the other hand, q(-q#) *qx =
q(-q#.q#) = qθ = 0, SO q(-q#) < -q#. Q.E.D.

In [2], Halmos proved that the range of every quantifier on A is a
"relatively complete" subalgebra of A, and that, conversely, every
relatively complete subalgebra of A is the range of a unique quantifier on
A. In fact, each quantifier is effectively determined by the relatively
complete subalgebra which it determines. We will now show that a similar
result holds for generalized quantifiers. The next two theorems should be
compared with Halmos ([2], Theorems 4 and 5).

Let R designate the range of q, and let

/= {xeA : qx = 0}.

The following facts are immediately verified:

2.3 Theorem

(i) R is a Boolean subalgebra of A.

(ii) I is a Boolean ideal of A, and R Π I = {θ}.
(iii) For every x eA, qx is the least y e R such that x - y e I.

We also have the converse of 2.3, namely,

2.4 Theorem Let R be a Boolean subalgebra of A and la Boolean ideal of
A such that R π / = {θ}. Suppose that for every xeA, there is a least yeR
such that x - y e I. Then there is a unique generalized quantifier q on A
such that R = range q, / = {x : qx = 0}, and q is given by 2.3 (iii).

Proof: For each xeA9 let qx be the least yeR such that x - yel. Q3 is
immediate, and Q4 holds because R Π / = {θ}. Now, property 2.2 (i) is
immediate, and from it we deduce that qx + qy ^ q{x + y). For the other
half of equation Ql, we note that x - (q# + qy) ^ x - qxe /, y - (qx + qy) ^ y -
qy e I, a n d t h e r e f o r e (x + y) - (qx + qy) = [x - (qx + qy)] +[y - (qx + q y)] e /;
thus, q(x + y) ^ q * + q;y, so we have Ql. Now, by the way q is defined,
qx - qqΛΓe /; but qx - qqxeR, so qx - qqΛ: = 0, that is, qx ^ qqΛΓ. On the other
hand, qq# is the least yeR such that qx - yel, hence q q x ^ q * . We have
established that qq# = qx, hence q is the identity function on R; it follows
that q(-qΛτ) = -qx. This last formula, together with Ql, gives Q2. Q.E.D.

The relationship between generalized quantifiers and quantifiers in the
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usual sense is, once again, made plain. Indeed, a generalized quantifier q
is a quantifier in the usual sense if and only if I = {θ}.

The following characterization of generalized quantifiers will be
needed in the next section. (Let us call a function / idempotent ifff =/ . )

2.5 Theorem Let A be a Boolean algebra, and f: A —> A a function. Then
f is a generalized quantifier ifff is additive, idempotent, and its range is a
Boolean subalgebra of A.

Proof: The necessity of the condition is obvious. Now suppose/ is additive
and idempotent, and range / is a Boolean subalgebra of A. Ql is satisfied
by hypothesis. Now, -fx e range/, so

2.6 f(-fx) = -fx.

From Ql and 2.6, one easily deduces Q2. We get Q3 from Q2 and 2.6 as
follows: /0 =f(fx--fx) =fx--fx = 0. Finally, we deduce Q4 from Q3 and
2.6. Q.E.D.

As an application of Theorem 2.5, we note that every idempotent
endomorphism is a generalized quantifier. For example, in polyadic
algebras, every substitution S(κ/λ) and every constant is a generalized
quantifier. It is therefore useful to observe (apparently this has not been
noticed before) that by Theorem 2.4, there is an effective way of con-
structing substitutions and constants if one is given their kernel and range.
(It may be worth adding that: if q is any generalized quantifier and J =
{x : qx = l}, then q is an endomorphism iffJ is a dual ideal.)

3 Cylindric Algebras and Generalized Quantifiers One of the most im-
portant extensions of first-order logic is the logic L(Qi) which is formed by
adding, to the first order logic with identity L, the additional quantifier Qx

with the interpretation " there are uncountably many". In this section we
introduce an expansion of cylindric algebras, which has the same relation
to L(Qi) as cylindric algebras have to L.

3.1 Definition By a cylindric algebra of dimension a with generalized
quantifiers, we mean an algebraic structure

% = (A, +, , 0, 1, cκ, dκλ, q κ ) κ , λ < α

where (A, + , * , - , 0, 1, cκ, dκ λ)κ λ < α is a cylindric algebra, and the operations
qκ satisfy the following conditions for all K, λ < a and all x, y eA:

Gl qκ(x +y) = <iκx +qκy

G2 q κ d κ λ = O

G3 q κ c κ = c κ

G4 c κ q κ = q κ

G5 q κ c λ AΓ^c λ q κ # + q λ c κ # .

By G3 and G4, it is immediate that q κq κ = qκ and range qκ = range c κ .

Thus, by Theorem 2.5, the operations qκ are generalized quantifiers.
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3.2 Lemma Let % be a cylindric algebra with generalized quantifiers. The
following hold for all xeA and K, λ < a:

(i) c λ q κ ^^q κ c λ ΛΓ;

( i i ) q K ( # - d κ λ ) = qκx, if K Φ λ ;

( i i i ) q κ . £ = « £ ;
(iv) s«qκ = qκ;

(V) q λ s^ = q κ sλ.

Proof: Because qκ is additive and x d κ λ ^ dκλ, we have, for K Φ λ,

3.3 qκ(^ 4 λ ) ^ q κ d κ λ = o .

NθW,qκ# = qκ[(x - dκλ) + (tf cU)] = q κ (* - dκλ) + qκ(# dκλ) = qκ(# - dκ λ), 3.3

having been used in the last equation. We therefore have (ii). By G3 and
G4, range q κ = range c κ = range s£ (for K Φ λ), hence (iii) and (iv) are im-
mediate. Using G5 and 3.3, we have:

qλ s λ* = cU cκ(# 4λ) ̂ q κ c λ ( * dκλ) + c κ q λ ( # . d κ λ ) = q κ c λ U dκλ) = q κ s ^ ;

thus, we have (v). Finally, x < cλx, and therefore cλqκx ^ cλc{κcλx =
cλ<iκsκcλχ = cλc\λsλcλx = qλsλcλ^ = %sκcxx= <\κcλχ- Q E D

By 3.2 (i), condition G5 may be written in the more " symmetr ica l "
form

G5' qκcλΛΓ + cκqλΛΓ = qχcκX + cχqκχ.

A complete set of axioms for L(Qχ) is given in [4], These axioms may
be written in algebraic form as follows:

Kl q κ (d κ λ +d κ μ ) = 0, if KΦ λ, μ

K2 -cM-X+y) ^~qκX +qκy
K3 qκΛΓ = q λ S ^ , if λ ft AX
K4 q κ c λ ^^c λ q κ Λ: +qλcκX.

In addition, G3 and G4 are implicit in the manner of treating bound
variables.

It is easy to see that K1-K4, together with the implicitly given G3 and
G4, are equivalent to G1-G5. The fact that Gl and G2 can be derived from
K1-K4 is proved in [4], Lemma 1.9. In the other direction, Kl is an
immediate consequence of Gl and G2; K2 may be written in the form
qK* ' ^K^ ^ CΛX ~ y)> a n d t n i s follows from Gl by Theorem 2.2 (iii); and K3
follows from Lemma 3.2 (v).

4 Characterization of Cylindric Algebras Which Admit Generalized Quantifi-
ers Let $ί be a cylindric algebra with generalized quantifiers, and for each
K < a, let Iκ = {x : qκx = 0}. By the results of section 2, Iκ is a Boolean ideal
of A and the following conditions hold:
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Dl (range cκ) Π Iκ = {θ}
D2 for every x e A, there is a least y e range cκ such that x - ye Iκ

D3 d κ λ e/ κ

D4 cλx elκ^> cκx e /λ, for every x e 7λ.

(The last two conditions hold by G2 and G5, respectively.)

Conversely, we also have the following:

Let $| f = (A, + , - , - , 0, 1, cκ, d κ λ ) K ) λ < α be a cylindric algebra with a family
{Iκ)κ<oί of Boolean ideals satisfying D1-D4. If we define qκ by

4.1 qκx = the least y erange cκ such that x - yelκ,

then $1 = (A, +, , -, 0, 1, c κ , dκλ, qK)K,\<a is a cylindric algebra with gen-
eralized quantifiers.

By the results of section 2, it remains only to verify G5. But this
follows easily when we apply D4 to the formula x - qλcκx - c λ q κ # .

5 Some Applications to the Logic L(Q1) If K2 is written in the form
°ίκχ ~ ^KV ̂  CΛX " y)> we can see that x - y = 0 implies qκx - qκy = 0; that
is, x^y implies qKj*r^qK;y. From this relation, together with K4, one
immediately deduces K3, as in our proof of Lemma 3.2 (v). It follows that
in Keisler's axiomatization of MGh), the axiom

(Qx)φ(x) ** (Qy)φ(y)

is redundant.

In the proof of Lemma 2.5, we showed that the formula q κ l = 1 can be
deduced from Gl, G3, and G4. Thus, in L(Qi), the formula (Qx)(x = x) is a
consequence of the axioms given by Keisler. It follows that there are no
countable standard models for L(Qi). (In [4], it is mistakenly asserted that
such models may exist.)
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