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DEFINITIONAL BOOLEAN CALCULI

RICHARD COLE

It is often said that the truths of the propositional calculus follow
(informally, to be sure) just from the meanings of the connectives and
negation. Yet, formal developments of propositional calculi do not per-
spicuously reveal such a relation; an axiomatization may be said to
‘‘contain’’ the properties of the operators therein embedded but they do not
do so in any clear way. What we should like is a formal development of
propositional calculi with intuitive rules of inference and with axioms which
are, or are like, truth tables.

In this paper I shall develop a class of formal systems, to be called
‘‘/definitional boolean systems’’; which can, so to speak, be understood to
reveal that the theorems of a propositional calculus do follow from (what
amount to) definitions of the appropriate operators. Using ‘‘0’’ and ‘‘1*’ for
the truth values ‘‘false’’ and ‘‘true’’ I shall, for example, represent the
sense of negation by:

NO=1
and
N1=0.

We may associate these formulas with the proposition: if the truth value of
a proposition, X, is false (true) then the truth value of the negation of X is
true (false).

Following through for certain other operators, we represent the mean-
ings of:

NO.NO=1 A00. A00=0 KO00.K00=0 C00.C00=1 DO00.D00=1
N1, N1=0 A01.A01=1 KOl. K01=0 CO01.C01=1 DO01.D01=1
A10. A10=1 K10. K10=0 C10.C10=0 D10.D10=1
Al11, A11=1 KI11. K11=1 C11.C11=1 DI11. D11=0

For convenience, I have named these formulas for the expressions to the
left of the identity sign. I shall call these sets the N set, A set, K set,
C set, and D set.
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The reader is no doubt wondering how, if the axioms are not to contain
variables, formulas with variables may be deduced from them. We shall
need just two rules of inference, an identity substitution rule allowing the
substitution of an expression for one proved or assumed identical to it, and
a generalization rule which allows the introduction of expressions contain-
ing variables in the following manner: from a formula assumed or proved
true when ‘“0’’ is substituted for an expression, e, in that formula, and a
formula which is different only in that ‘‘1’’ occurs for e, we may assert
that formula (with the ‘‘e’’). In other words, this rule may be understood
to claim that if a formula is true when one of its expression is false and
also true when that same expression is true then the formula is true.

We proceed to develop a set of definitional boolean calculi.

Tevms, expressions and formulas: A sign, s, is a term if and only if s
is one of the following: 0, 1, x;, X5, . .., %z (% is any natural numeral).
““0’> and ‘‘1°’ shall be called constants; the x’s are variable.

A sign, s, is a function letter if and only if s is one of the following:
N,A,K,C,orD. ’

An expression is any finite linear string of elements which are either
terms or function letters.

A sign, s, is an identity sign if and only if s is ¢‘=’’,

A formula is any finite linear string of elements which are either
terms, function letters, or the identity sign.

Well formed expressions (wie’s):

1. Terms are wfe’s.
2. If uand v are wfe’s then Nu, Auv, Kuv, Cuv, and Duv are wie’s.
3. No other expression is a wfe.

Well formed formulas (wif’s): A formula is well formed if and only if
it has the form “‘u = v’’, where # and v are wfe’s. Note that the formulas of
the N set, A set, K set, C set and D set are well formed.

Instances: An instance of a formula (or of an expression) is that
formula (or expression) with constants occurring everywhere for variables,
the same constant being substituted for each occurrance of the same
variable. If there is no variable in a formula (or expression) we shall say
the formula is its own instance. It is clear that an instance of a wfe or a
wif is well formed.

Atomic wfe’s and atomic wff’s: An atomic wfe is a wfe containing just
one function letter, e.g., DOx,. An atomic wff is a wff with the form
‘‘atomic wfe = constant’’, e.g., Kx3x; = 1. A defining instance is an instance
of an atomic wif, e.g., C11 = 1. The value of a defining instance is its right
most constant, e.g., the value of ““N0 =1 is 1.

Minor expressions: A minor expression of a wfe, E, is an atomic wfe
contained in E, e.g., the minor expressions of ‘‘CCNO1Kx ,x,”’ are NO, 1,
and Kx,%. Note that if a minor expression contains no variables it is the
left most wfe of ‘N0 = 17°.
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Note that elements of the N, A, K, C and D sets are defining instances.
Note also that atomic wff’s ‘‘inconsistent’’ with these, e.g., NO = 0, are
defining instances.

A consistent set of defining instances: A set of defining instances is
consistent if and only if it is false that the set contains two defining in-
stances with the same left most wfe’s but different right most constants.
{N0 =0, NO = 1} is an inconsistent set.

The value of an instance of a wfe: ‘“The value, with respect to defining
instances f,, fs, . .., fz, of a wfe, F’> means the result of the following
calculation (if it has a unique result): the first step of the calculation maps
the wfe, E, onto a wfe produced by substituting the values of the minors of
E for these minors. The n’th step of the calculation maps the result of the
n - 1’th step, E', onto a wfe produced by substituting for the minors of E'
the values of these minors. In calculating the value of an instance of a wfe
it is necessary to use the defining instances of that wfe, i.e., those
formulas which give the values of atomic wfe's containing constants. If the
set of defining instances of a wfe does not contain the set of all minors of
expressions which are results of steps of a calculation of the value of a wfe
then ‘‘the value of that wfe’’ is undefined. Futhermore, since the result of
such a calculation must be unique, if a set of defining instances contains two
formulas, one giving 1 and the other 0 as the value of a minor, then the
value is also undefined. If the defining instances belong to the union of the
N, A, K, C and D sets, then we shall call values of instances of wfe’s
normal values.

Identities: We shall call an instance of a wff true with respect to a set,
S, of defining instances if and only if the value of the wfe to the right of the
identity sign with respect to S is the value with respect to S of the wfe to
the left of the identity sign. A wiff, F, is an identity with respect to S if and
only if all its instances are true. We shall not call F an identity if the
value of a wfe in F is not defined. If the set S is a subset of the union of the
N, A, K, C and D sets then if F is an identity with respect to S, F is a nor-
mal identity.

Rules of Inference: We shall want a rule of inference which will allow
substitution of equals for equals.

R1. us =w, f g where uz and u1 arve wfe’s and f and g ave wff’s such
that
(1) if f contains neither us nov u, then g is f,
(2) if f contains uz (1) g is a formula produced by substituting uz (u1) in
f in one of its occurvences.

Some people may prefer to regard R1 as a schema for an infinite class
of inference rules since, (1) consequences drawn by means of it do not
depend upon the order of the wfe’s in ‘“‘uy = u,’’ and (2) though it allows a
substitution in only one occurrence there are potentially infinitely many
places (the first occurrence from the left, the second, etc.) where the
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substitution may be made. It is clear that successive applications of R1
will allow a substitution in every place or any desired number of places
where that substitution is justified. R1 is sufficient to generate the
following derived rules:

DR1.1 u=vru=ualso,u=v+v=2v
DR1.2 u=vtrv=u
DR13 u=v,v=wru=w

One might say, the properties of equivalence are packed into R1.
Suppose u is contained in a wff, f, and that v is a wfe. Let ‘‘f,_,”
denote the wff obtained by substituting v for « in f.

R2. fa:o, fu:l"'f-
This is the generalization rule.

Metatheorem 1. If f and g are identities with rvespect to the set, S, of
defining instances, and if h is either an R1 ov an R2 consequence of f and g,
containing no function lettevs not in S, then h is an identity with vespect to
S. (““Identityhood”’ is hereditary.)

Proof: a. We prove metatheorem 1 for R1. We suppose that fand g
are identities with respect to S. Suppose f is ‘‘u; = u,’’. If g contains
neither %, nor #, then % is an identity with respect to S since g is. Suppose
g contains #, (#;). Then the value of an instance of #; (#;) equals the value
of an instance of u, (#,). Then an instance of % is true if and only if an
instance of g is true. Since g is an identity with respect to S so is 4.

b. We prove metatheorem 1 for R2. We suppose that f and g are iden-
tities with respect to S. If fis ‘““h,=¢’ and g is ‘“,=;"’ where u is a variable
the union of the instances of f and g are exactly the set of instances of %.
Since f and g are both identities with respect to S so is 4. Suppose fis
“hu=o’’ and g is ‘‘h,=1"’ where u is not a variable. If u is a constant then %
is either f or g and is an identity with respect to S if f and g are. If u is not
a constant then either its instances all have the same value or else some
have the value ‘‘0’’ and some the value ‘‘1’’. In either case if f and g are
identities with respect to S then so are their instances, and the instances of
% may be derived from the instances of f and g by use of R1. Then if f and
g are identities with respect to S so are the instances of 2. Then % is an
identity with respect to S.

Corollary 1.1. “‘Normal identityhood’’ is heveditary for R1 and R2.

Corollary 1.2. If X is a system with the above defined wffs and vules
of inference, and with axioms all of which ave identities with respect to a
consistent set, S, then some wff is not a theovem of X (X is consistent).

Proof: Suppose # =c is a defining instance for the axioms of X. The
formula: # = c¢', where ¢' is 0(1) if ¢ is 1(0) is not an identity since S is
consistent. Then# =c' is not a theorem.
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Corollary 1.3. If {a} is a consistent set of defining instances and a, is
not in {ak} but is consistent with its members then an is not a consequence
of the members of {ap}. (A comsistent set of defining instance axioms arve
independent.)

Proof: If a,is u = c' where a, is u = c then a, is not a consequence of
ayU{a} (Cor. 1.2.) Then a, is not a consequence of {a;}.

Definitional Boolean Calculi. Suppose F,, Fp, ..., F, are function
letters. By ‘‘the definitional boolean calculus, § F,, Fp, . . ., F}’’, we mean
that system containing wfe’s, wff’s, rules R1 and R2, and as axioms, the
union of the F,, Fy, ..., and F sets.

The system NC. We shall show the system NC contains a propositional
calculus by showing that representations of Mendelson’s axioms' are
theorems in NC and that a representation of modus ponens is a derived rule
of inference in NC.

We map each wff of Mendelson’s system, L, onto a wff of NC in the
following way: we put each wff of L into Polish notation, substitute the
variable x; of NC for the letter A; of L, and append ‘‘=1’’ to the wfe so
obtained. The counterparts of Mendelson’s three axiom schema in NC are:

Al CuCwvu =1
A2 CCuCvwCCuvCuw =1

and
A3 CCNuvNuCCNvuv =1

where u, v and w are metatheoretic variables for wfe’s.

Lemma 2. Suppose u is a wfe. The following ave theorem schema:

a. Clu =u C10, C11, R2
b. Cou =1 €00, CO1, R2
c. Cul =1 (01, C11, R2
d. Cue =1 (€00, C11, R2
e.1 =1 NO,NO,RI
f. 0 =0 NI1,N1,RI
g. u =u e, f,R2

h. CN10=1 €00, N1, R1
i. CNOO=0 C10, No, R1
j. CNuO=u h,i, R2

DR 2. If u and v are wfe’s thenu = 1, Cuv = 1rzv = 1. (Modus Ponens).

Proof: 1. u =1
2. Cuv =1

1. In Mendelson’s system, Introduction to Mathematical Logic, Van Nostrand, 1964.
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3.
4.
5.
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Clw=v Lemma 2a
Clv=1 1,2RI1
v =1 3,4RI

Metatheorem 2.1. IycA4l

Proof: 1. COCv0 =1 Lemma 2b
2. Nv1 =1 Lemma2c

3.
4.

CiCvl =1 Cl1, 2, R1
CuCwu=1 1, 3, R2

Metatheorem 2.2, tjcA2

Proof:

1.

—
o

11.
12.
13.

© 0 -3 U B W

COCow =1

Cov =1

Cow =1

CCOvCOw =1
CCOCowCCOvCOw = 1
Clv =v

Clw=w

Cow = Cow

Cow = CCloClw
Cl1Cow = Cow
CCowCovw = 1
CC1CowCCIlwClw =1
CCuCvwCCuvCuw = 1

Metatheorem 2.3. ¢ A3

It is,

W 0 =IO U i WN =

CNv0 =v

Cov=1

CCNvOv = 1
CCNvNO1 =1
CCNuNOCCNvOv = 1
CNvN1 = v
CvCCNvlv =1
CCNuvN1CCNvlv =1
CCNuNuCCNvuv = 1

in a way, unnecessary work to have proved DR2, and meta-
theorems 2.1, 2.2 and 2.3. Though these proofs help to show what can be
done in NC, and to suggest what can be done in other definitional systems, a
much stronger result is possible from which it follows that NC contains a
propositional calculus. It is clear that the tautologies of any propositional
calculus using one or more of negation, conjunction, disjunction, implica-
tion and stroke map onto wife’s. It is easy to see that mappings of
tautologies of a propositional calculus are normal identities, since the test
for tautologousness exactly parallels the method for determining normal
Then if we can show that a definitional

identityhood of a wff: wfe = 1.

Lemma 2b

Lemma 2b

Lemma 2b

C11, 2, 3, R1 (twice)
C11, 1, 4, R1 (twice)
Lemma 2a

Lemma 2a

Lemma 2g

6, 7, 8, R1 (twice)
Lemma 2a

Lemma 2d

9, 10, 11, R1 (twice)
5, 12, R2

Lemma 2j
Lemma 2d

1, 2, R1

Lemma 2c

3, 4, R1

1, N1, R1
Metatheorem 2.1
6.7, R1

5, 8, R2
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boolean system, X, contains all those normal identities which contain
function letters representing functions adequate for a propositional calculus
then X must contain a propositional calculus. Suppose system X contains
function letters adequate for a propositional calculus. We show first:

Metatheorem 3. H 0=0and K1=1,

This has been shown for NC. Each of the N, A, K, C and D sets contain
pairs of formulas one setting a wfe equal to 0 and one setting a wfe equal
to 1. Using R1 on itself twice we get 0 =0and K1 =1.

Metatheorem 3.1. Suppose f is a normal identity containing no function
letter X does not contain. Then all instances of f are theovems of X.

Proof: Suppose f' is an instance of f and f' is # = v. Consider the
method for determining f' a normal identity. It involves two calculations,
one of which reduces u to a constant, ¢, and the other of which reduces » to
that same constant. Using these calculations we can construct proofs
proving # =¢ andv = c, hence # = v, in the following manner:

1) ¢ = c is the first step of the proof.

2) We move from the ;—1’th step to the i’th step of the calculation by
substituting a constant for a wfe containing constants. We may make steps
in the proof correspond, in reverse order, to steps in the calculation by
reversing this process, substituting a wfe in the left wfe of a prior step for

the constant asserted (by an axiom) equal to it. That is, if s;, Sz, . . ., Su
are steps in the calculation and p,, p., . . ., p» are sequences of sequential
steps in the proof:
spisc corresponds to p)c=c
s; is the result of Pn-i) Those steps re-
substituting a con- sulting in w =c where
stant for a wfe. w is the result of the

reverse substitution.

Methatheorem 3.2. Suppose f is a normal identity containing wno func-
tion letter X does not contain. Then f is a theorem of X.

Proof: 1t is sufficient to show that f follows from its instances. Let
Sf(uy, ua, . . ., u;) stand for that formula derived from f by either sub-
stituting a constant #; for a variable letter x; everywhere in f or by
substituting x; for x; everywhere in f. Order the instances of f in the
following manner:

f(0,0,...,0) where the next member of the sequence is obtained by the
f(0,0,...,1) binary addition of 1to the sequence within the parentheses
. of the prior member.

AL, 1)



350 RICHARD COLE

From successive pairs we may prove:

70,0,...,0,x,
f0,0,...,1,x,)

: 1)
A1,1, .., 1, 1)

or reduce the 2” instances to 2"”* theorems of X.

Proceeding in the same way, from successive pairs of (I) we may
prove the 2"~ theorems:

f(o) 0) LR ] 0’ xn—x, xn)
f(17 15 LRI ’ 1; Xn—-1s xn)
and finally we may prove f(x, x5, . . . , x,) Which is f.

This proves the metatheorem. Notice that a rule weaker than R2
suffices, since R2 allows introducing any wfe for constants though it is
necessary ‘'only to allow the introduction of variables.

Concluding Remarks. Naturally, it is of interest to know why any of
this is of any interest. Apart from the mathematical attractions of the
system, the power of the two inference rules, R1 and R2, are revealed. It
is nice to know how far one can go just with substitution and a simple,
intuitive rule like R2. But more importantly, it is interesting to learn that
the theorems of a boolean calculus (which includes the propositional
calculus) do really, in an important sense, follow just from the matrix
definitions of boolean functions, expressed as propositions.
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