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A CHARACTERIZATION OF A SPHERICAL m-ARRANGEMENT

MICHAEL C. GEMIGNANI

In [1] a simplified definition of an open m-arrangement was presented.
The purpose of this paper is to present a simpler characterization of a
spherical m-arrangement than that presented in [2], a characterization
which because of its similarity to the characterization of an open m-ar-
rangement in [1] leads us to define a new type of structure, an (u,m)-
arrangement, of which open m-arrangements and spherical m-arrangements
are but special cases. The principal result to be proved in this paper in
the following:

Theovem 1: Let X be a topological space with geometry G of length
m~1=0. Then X and G form a sphevical m-arvangement if and only if
the following conditions ave satisfied:

i) Each 0-flat consists of precisely two points.

ii) If fis a k-1-flat and g is a k-flat with f C g, then [ disconnects g into
two non-empty convex components which ave open in g,0 <k < m.
iii) Each 1-flat is connected.
iv) (If fis an m-1-flat, then we call the components of X-f half-spaces of X.)
The collection of half-spaces of X forms a subbasis for the topology of X.

Proof: We note first that i) and ii) are the same as 1) and 5) in the
definition of a spherical m-arrangement given in [2]. We now show that
i) through iv) also imply 2), 3), and 4) in the definition of a spherical
m-arrangement. In the following propositions then we assume that we have
a space X with geometry G of length m-1 which satisfies i) through iv).

Proposition 1. X is T,.

Proof: Each m-1-flat is closed and any 0-flat {v,y} is the intersection of
finitely many m-1-flats, and hence is closed. But by ii) {x,y} is discon-
nected; hence it follows that {x} and {y} are both closed sets. Since any one
point subset of X is contained in some 0-flat, X is T,.

Proposition 2: If f is any 1-flat and x is a point of f, then x is a non-cut
point of f.
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Proof: Suppose x is a cut point of f. Since {x} is closed, f - {x} = C U D,
where C and D are non-empty, disjoint, and open in f. Let x' be the point of
f antipodal to x. Then x' is either in C or in D; assume x'¢C. Since
f -{xx}=A U B, where A and B are convex, non-empty, disjoint, and open
in f, we have either x'¢CIB, or x'e¢ClA (or {x'} would be open and / would
not be connected), but not both, or f - {x} would be connected. Assume
x'¢ClB. Then C =ClBand A =D. Since A and B each do not contain any
pair of antipodal points, then same is true of C and D.

Choose any point y from C and let »' be its antipodal point in D. Then
f-1{,9'}=E UF, where E and F are disjoint, non-empty, convex, and open
in f. Assume x' is in E; then x is in F. Now A N Eis openinf, CN E is
open in f and non-empty, as is F. Since E=(D NE)U(CNE), (D NE)N
(C N E) =9, and Eis connected since it is convex, it follows that D N E = ¢;
therefore E C C.

Since EC C, D - {y'} C F. Since F and E are both convex, each cannot
contain a pair of antipodal points. But if E is a proper subset of C - {y},
then F must contain a pair of antipodal points. It follows then that
E=C-{y}and F =(D - {y}) U {x}. But then we have f=(F U D) U C and
C N(FUD)=¢ with FUD and C both open in f. Therefore f is not
connected, a contradiction. Consequently, x is a non-cut point of f.

Proposition 3: If {x,y} is any two point subset of X and {x,y} C f, a 1-flat,
then f =S U T, wheve S and T ave both subsets of f ivveducibly connected
between x and y. Moveover, if {x,y} is linearly independent, then either S
or T is the convex hull Xy of {x,y}.

Proof: 1t is easily shown that any 1-flat satisfies Wilder’s definition of a
quasi-closed curve (11.18, [4]), hence applying Lemma 11.19 of [3], we
obtain that f =S U T, where S and T are both subsets of f irreducibly
connected between x and y. Suppose {x,y} is linearly independent, and x' is
antipodal to x; that is, {x '} form a 0-flat. Also assume x'is in T. Now
{x,x'} disconnects f into two convex components A and B, which are each
open in f; assume y is in A. From
Wilder [4], 11.4, we have that

B U{x,«'} is irreducibly connected
between x and x' and is a subset

of T; hence BC T. But then S C A4;
hence S contains no 0-flat. This
proves then that S is a convex set

([3], Proposition 2.2). If W is any
convex set which contains {x,y},
then W must contain either S or T
T, or it could be shown that f N W A
is not connected. But W cannot

contain T since T contains anti- x'

podal points. Therefore S c W,

Thus S = xy. Figure 1

<
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Covollary 1: A subset W of X is convex if and only if given any linearly
independent subset {x,y} of W, xy C W, and W contains no antipodal points.

Proof: Suppose Xy C W for any linearly independent subset {x,y} of W, W
contains no antipodal points, and f is any 1-flat of X. If f N W is empty
or consists of a single point, then f N W is connected. Suppose x and y are
in f N W. Then {x,y} is linearly independent since f N W can contain no
antipodal points. Thus xy C f N W. But then x and y are both in the same
component of f N W, hence f N Wis connected. Therefore W is convex.

Suppose W is convex and {x,y} is a linearly independent subset of W.
Then xy C W by Proposition 3. Moreover, since W is convex, W can
contain no antipodal points.

Corollary 2: G is a topological geomelry.

This corollary follows from Corollary 1 which can be used to show
that the intersection of any family of convex sets is convex, and from the
fact that each k-flat is closed (since any k-flat is the intersection of
finitely many m-1-flats which are each closed).

Using the simplified characterization of an m-arrangement found in
[1], it is now easy to prove

Proposition 4: If Wis any convex subspace of X, then W with geometry Gy
is an open (5(W) + 1)-arvangement. [This is 4) in the definition of a
spherical m-arrangement. |

Proposition 5: If f is a k-flat, k = 1, then no flat of dimension less than
k - 1disconnects f.

Proof: Suppose f'is a k-2-flat which is contained in some k-flat f, 2 = 1.
Let g be any k-1-flat which contains f' and is contained in f. Then g
disconnects f into convex open components A and B. Also f' disconnects g
into convex components C and D. Let x and y be any two points of f- f'. If
x and y are both in A, B, C, or D, thenxy C f- f'. If x and y are in A and
B, respectively, choose zin g -f'. Then ¥y U2y C f-f' and is connected.
If x and y are in C and D, respectively, choose z in A. Again, zx Uzy C f -
f'. Any two points of f-f' are therefore in the same component of f - f';
hence f -f' is connected.

Proposition 6: G is semi-projective [2) in the definition of a spherical
m-arrangement|.

Proof: Suppose f and f' are k-1-flats contained in some k-flat g and f =f'.
We must prove that fNf' is a k-2-flat, 1< k=< m. The proposition is
trivial for £ = 1. Suppose % = 2. Then if dim(fNf") =0, fNf'=¢. Now f'
disconnects g into convex components A and B. Since f - f' = f is connected,
fCA orfcB. If fCA, then A contains two points from some O0-flat,
hence is not convex; therefore f ¢ A. Similarly, f¢ B. It follows then that
FfN f'# ¢; hence fNf'is a 0-flat.

Assume Proposition 6 is true for 2 - 1 = 2, but dim(fNf') <% - 2. By
Proposition 5, f does not disconnect f. Again, however, f' disconnects g



104 MICHAEL C. GEMIGNANI

into convex components A and B. Therefore f-f'C A, or f-f'C B. But
then either A or B must contain some 0-flat, and hence could not be convex.
Therefore fNf'is a k-2-flat and the proposition is proved.

Proposition T: Let f be a k-1-flat contained in a k-flat g; then f disconnects
g tnto convex components A and B which ave open in g. Then f = FrA in
g= FrBin g.

Proof: If f# FrBin g, there is a point x of f and a neighborhood U in g of x
such that UN A = ¢, or U N B =¢. Choose y in A. Then fi(x,9) N f = {x,x'},
where x' is antipodal to x. 1f {x,x‘}c U, then fy(x,y) is not connected. If
only x is in U, then x' disconnects f,(x,¥), a contradiction of Proposition 2.

Corollary 3:. In the situation of Proposition T if W C f, then A U W and
B U W are connected. Moveover, if W is convex, then A U W and B U W
are also convex.

This corollary follows from Proposition 7 and Corollary 1 of Proposition 3,
together with the well-known fact that if A is connected and A D B DCIA,
then B is connected.

Proposition 8. If S = x,x,..., xk} is a linearly independent set, then S
has a convex hull.

Proof: Because of Corollary 2 of Proposition 3, it suffices to show that S
is contained in one convex set. We know the proposition is true for %2 = 1.
Assume it is true for 2- 1= 1. Then S;=S - {xk} has a convex hull in
fu-1Sk). Now f,_,(S) disconnects f(S) into convex components A and B with
x, in A, Then by the corollary to Proposition 7, A U C(Sg) is convex and
contains S.

Proposition 8, which is 3) in the definition of a spherical m-arrange-
ment, completes the proof that if i)-iv) of Theorem 1 are assumed, then we
have a spherical m-arrangement. We now show that if we have a spherical
m-arrangement that i)-iv) hold. Assume therefore that X and G form a
spherical m-arrangement. 1) is identical to i) and 5) is identical to ii). It
remains to prove iii) and iv). iii), however, follows at once from Lemma 2
of [2], hence we direct our efforts to proving iv).

Suppose x is a point of X and U is any neighborhood of x. Let f be any
m-~1-flat which does not contain x. Then f disconnects X into convex open
components A and B; assume x¢ A, Then A N Uc Uis a neighborhood of x.
Now by 4) of the definition of a spherical m-arrangement and the results of
[1], the half-spaces of X intersected with A form a subbasis for the
topology of A, hence A N U contains a finite intersection W of half-spaces
such that x& W. Therefore iv) is proved and the proof of Theorem 1 is
complete.

From the results of [1] and this paper, we are led to make the
following definition:

Definition: Let a space X have a geometry G of length m - 1 = 0. Then
and G form an open (n,m)-arvangement if:
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i) Each 0-flat consists of precisely % points.

ii) If f is a k-1-flat and g is a k-flat with f C g, then f disconnects g into
max(2,%) convex components which are open in g, 0 < 2 < m.
iii) Each 1-flat is connected.
iv) If fis an m-1-flat, then we call the components of X-f kalf-spaces of X.
The collection of half-spaces of X forms a subbasis for the topology of X.

Thus, an open m-arrangement is but an open (1,m)-arrangement and a
spherical m-arrangement is an open (2,m)-arrangement.
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