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A CHARACTERIZATION OF A SPHERICAL m-ARRANGEMENT

MICHAEL C. GEMIGNANI

In [l] a simplified definition of an open ra-arrangement was presented.
The purpose of this paper is to present a simpler characterization of a
spherical m-arrangement than that presented in [2], a characterization
which because of its similarity to the characterization of an open ra-ar-
rangement in [l] leads us to define a new type of structure, an (n,m)-
arrangement, of which open m-arrangements and spherical ra-arrangements
are but special cases. The principal result to be proved in this paper in
the following:

Theorem Γ. Let X be a topological space with geometry G of length
m - 1 > 0. Then X and G form a spherical m-arrangement if and only if
the following conditions are satisfied:

i) Each 0-βat consists of precisely two points.
ii) If f is a k-l-flat andg is a k-βat with f <^g, then f disconnects g into

two non-empty convex components which are open in g, 0 < k < m.
iii) Each I-flat is connected.
iv) (If / i s an ra-1-flat, then we call the components of X-f half-spaces of X)
The collection of half-spaces of X forms a subbasis for the topology ofX.

Proof: We note first that i) and ii) are the same as 1) and 5) in the
definition of a spherical m-arrangement given in [2]. We now show that
i) through iv) also imply 2), 3), and 4) in the definition of a spherical
m-arrangement. In the following propositions then we assume that we have
a space X with geometry G of length ra-1 which satisfies i) through iv).

Proposition 1: X is TΊ.

Proof Each m-l-flat is closed and any 0-flat {x,y} is the intersection of
finitely many m-1-flats, and hence is closed. But by ii) {x,y} is discon-
nected; hence it follows that {x} and {y} are both closed sets. Since any one
point subset of X is contained in some 0-flat, X is Ti.

Proposition 2: If f is any 1-flat and x is a point of f, then x is a non-cut
point of f.
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Proof: Suppose x is a cut point of /. Since {x} is closed, f - {x} = C U D,
where C and D are non-empty, disjoint, and open in/. Let xx be the point of
/ antipodal to x. Then x' is either in C or in D; assume xrεC. Since
/ - {.%,#τ} = A U B, where A and B are convex, non-empty, disjoint, and open
in /, we have either x'εQB, or x'zOA (or {xr} would be open and / would
not be connected), but not both, or / - {x} would be connected. Assume
x'εQB. Then C = OB and A = D. Since A and 5 each do not contain any
pair of antipodal points, then same is true of C and D.

Choose any point y from C and let y be its antipodal point in D. Then
/ - {y,y'} = E UF, where E and i7 are disjoint, non-empty, convex, and open
in / . Assume xr is in £; then x is in F. Now A Π £ i s open in/, C Π is is
open in / and non-empty, as is F. Since £ = (D Π £) U (C Π £ ) , (Z> Π E) D
(C ίl £) = 0, and £ is connected since it is convex, it follows that D Π E = φ;
therefore E c C.

Since £ c C, Z> - {y} c F. Since .F and E are both convex, each cannot
contain a pair of antipodal points. But if E is a proper subset of C - { y},
then F must contain a pair of antipodal points. It follows then that
E = C - {y} and F = (Z> - {y}) U {*}. But then we have / = (F U £>) U C and
C Π ( F U i ) ) = j) with F U D and C both open in /. Therefore / is not
connected, a contradiction. Consequently, x is a non-cut point of/.

Proposition 3: //" {#,;y} zs any two point subset of X and {x,y} c / , a 1-flat,
then f = S U T, where S and T are both subsets of f irreducibly connected
between x and y. Moreover, if {x,y} is linearly independent, then either S
or T is the convex hull ~xy of {x,y}.

Proof: It is easily shown that any 1-flat satisfies Wilder's definition of a
quasi-closed curve (11.18, [4]), hence applying Lemma 11.19 of [3], we
obtain that f = S U Γ, where S and T are both subsets of / irreducibly
connected between x and y. Suppose {x,y} is linearly independent, and xy is
antipodal to x; that is, {x,x'} form a 0-flat. Also assume x1 is in T. Now
{#,ΛΓT} disconnects / into two convex components A and B, which are each
open in/; assume y is in A. From
Wilder [4], 11.4, we have that
B u {xy x'} is irreducibly connected ^^ " \ ^ ^
between x and xλ and is a subset f \s^
of Γ; hence B c T. But then S a A; [ Λ
hence S contains no O-flat. This I \
proves then that S is a convex set y B V y
([3], Proposition 2.2). If W is any ^ / \
convex set which contains {x,y}, / \
then W must contain either S or T / I
T, or it could be shown that / Π W I J A
is not connected. But W cannot ^ ^ ^ ^ _ _ ^ ^ J/
contain T since T contains anti- x' ^ . * ^ ^
podal points. Therefore S c W.
Thus S = Icy. Figure 1
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Corollary 1: A subset W of X is convex if and only if given any linearly
independent subset {x,y} of W,x~y c W, and W contains no antipodal points.

Proof Suppose xy c W for any linearly independent subset {x,y} of W, W
contains no antipodal points, and/ is any 1-flat of X. If / n W is empty
or consists of a single point, then / Π W is connected. Suppose % and y are
in / Π W. Then {#,;y} is linearly independent since f ΠW can contain no
antipodal points. Thus xy c / Π W. But then x and 3; are both in the same
component of / Π W, hence/ Π Wis connected. Therefore W is convex.

Suppose W is convex and {x,y} is a linearly independent subset of W.
Then ry c IF by Proposition 3. Moreover, since W is convex, W can
contain no antipodal points.

Corollary 2: G is a topological geometry.

This corollary follows from Corollary 1 which can be used to show
that the intersection of any family of convex sets is convex, and from the
fact that each &-flat is closed (since any &-flat is the intersection of
finitely many m-1-flats which are each closed).

Using the simplified characterization of an m -arrangement found in
[l], it is now easy to prove

Proposition A: If W is any convex subspace of X, then W with geometry Gψ
is an open (δ(W) + 1)-arrangement. [This is 4) in the definition of a
spherical m-arrangement.]

Proposition 5: If f is a k-βat, k ^ 1, then no flat of dimension less than
k - 1 disconnects f.

Proof: Suppose/' is a &-2-flat which is contained in some &-flat / k > 1.
Let g be any &-1-flat which contains / ' and is contained in /. Then g
disconnects/ into convex open components A and B. Also/1 disconnects g
into convex components C and D. Let x and y be any two points of / - f\ If
x and y are both in A, B, C, or D, then Icy c / - f\ If x and y are in A and
B, respectively, choose z in g - / \ Then "xy UlΓy c / - / τ and is connected.
If x and y are in C and D, respectively, choose z in A. Again, ~zx U ~zy c / -
/ ' . Any two points of / - / ' are therefore in the same component of/ -/';
hence/ - / ' i s connected.

Proposition 6: G is semi-projective [2) in the definition of a spherical
m- arrangement].

Proof: Suppose / and/1 are &-l-flats contained in some &-flat£*and/ ψf\
We must prove t h a t / Π / τ is a &-2-flat, 1 < k < m. The proposition is
trivial for k = 1. Suppose k = 2. Then if dim(/Π/τ) φ 0, / Π / τ = 0. Now f
disconnects g into convex components A and B. Since/ - f =f is connected,
/ c A , orfczB. If f <z A, then A contains two points from some O-flat,
hence is not convex; therefore f £ A. Similarly, / <jL B. It follows then that
/ Π / τ * 0; hence/Π/' is a O-flat.

Assume Proposition 6 is true for k - 1 > 2, but dim(/Π/τ) < & - 2. By
Proposition 5,/ does not disconnect/. Again, however,/' disconnects g
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into convex components A and B. Therefore / - / τ c A, or f -f1 c J5. But
then either A or 5 must contain some O-flat, and hence could not be convex.
Therefore / Π / f is a &-2-flat and the proposition is proved.

Proposition 7: Let f be a k-l-flat contained in a k-flat g; then f disconnects
g into convex components A and B which are open in g. Thenf = FrA in
g = FrB in g.

Proof: If / ψ FrB in g, there is a point x of / and a neighborhood U in g of x
such that U n A = φ, or U Γ) B = φ. Choose y in A. Then /I(AΓ,30 Π / = {X,ΛΓT},
where Λ;1 is antipodal to x. If {#,#'} c £7, then fx{x,y) is not connected. If
only x is in U, then xτ disconnects/^Λ;,^), a contradiction of Proposition 2.

Corollary 3:< In the situation of Proposition 7 if W^f, then A U W and
B U W are connected. Moreover, z/ TF zs convex, then A U W and B U W
are also convex.

This corollary follows from Proposition 7 and Corollary 1 of Proposition 3,
together with the well-known fact that if A is connected and A z> B D C I A ,
then B is connected.

Proposition 8: 7/ S = {x , x , . . . , xj} is a linearly independent set, then S

has a convex hull.

Proof: Because of Corollary 2 of Proposition 3, it suffices to show that S
is contained in one convex set. We know the proposition is true for k - 1.
Assume it is true for k - 1 > 1. Then S^-S - {xk} has a convex hull in
fk-i(Sk) Now fk-i{Sk) disconnects f{S) into convex components A and B with
xk in A. Then by the corollary to Proposition 7, A U C(Sk) is convex and
contains S.

Proposition 8, which is 3) in the definition of a spherical m-arrange-
ment, completes the proof that if i)-iv) of Theorem 1 are assumed, then we
have a spherical m-arrangement. We now show that if we have a spherical
m-arrangement that i)-iv) hold. Assume therefore that X and G form a
spherical m-arrangement. 1) is identical to i) and 5) is identical to ii). It
remains to prove iii) and iv). iii), however, follows at once from Lemma 2
of [2], hence we direct our efforts to proving iv).

Suppose x is a point of X and U is any neighborhood of x. Let / be any
m-l-flat which does not contain x. Then/ disconnects X into convex open
components A and B; assume xε A. Then A Π ί/c U is a neighborhood of x.
Now by 4) of the definition of a spherical m-arrangement and the results of
[1], the half-spaces of X intersected with A form a subbasis for the
topology of A, hence A Π U contains a finite intersection W of half-spaces
such that xε W. Therefore iv) is proved and the proof of Theorem 1 is
complete.

From the results of [l] and this paper, we are led to make the
following definition:

Definition: Let a space X have a geometry G of length m - 1 > 0. Then
and G form an open (n,m)-arrangement if:
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i) Each O-flat consists of precisely n points.
ii) If/ is a &-l-flat and g is a &-flat with fag, then /disconnects g into

mαx(2,n) convex components which are open in g, 0 < k < m.
iii) Each 1-flat is connected.
iv) If / is an m- 1-flat, then we call the components of X-f half-spaces of X.
The collection of half-spaces of X forms a subbasis for the topology of X.

Thus, an open m-arrangement is but an open (l,m)-arrangement and a
spherical ra-arrangement is an open (2,ra)-arrangement.
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